संतति संशोधन (कॉन्टिनुइटी करेक्शन): Difference between revisions

From Vigyanwiki
(Created page with "संभाव्यता सिद्धांत में, निरंतरता सुधार एक समायोजन है जो तब किया जा...")
 
No edit summary
Line 1: Line 1:
संभाव्यता सिद्धांत में, निरंतरता सुधार एक समायोजन है जो तब किया जाता है जब एक असतत संभाव्यता वितरण को निरंतर वितरण द्वारा अनुमानित किया जाता है।
संभाव्यता सिद्धांत में, निरंतरता सुधार एक समायोजन है जो तब किया जाता है जब एक असतत संभाव्यता वितरण को निरंतर वितरण द्वारा अनुमानित दिया जाता है।


==उदाहरण==
==उदाहरण==


===द्विपद===
===द्विपद===
{{see also|Binomial distribution#Normal approximation}}
{{see also|द्विपद वितरण#सामान्य सन्निकटन}}


यदि एक यादृच्छिक चर X में पैरामीटर n और p के साथ एक [[द्विपद वितरण]] है, अर्थात,
यदि एक यादृच्छिक चर X में पैरामीटर n और p के साथ एक [[द्विपद वितरण]] है, अर्थात,


:<math>P(X\leq x) = P(X<x+1)</math>
:<math>P(X\leq x) = P(X<x+1)</math>
किसी भी x ∈ {0, 1, 2, ... n} के लिए। यदि एनपी और एनपी(1 − पी) बड़े हैं (कभी-कभी दोनों को ≥ 5 के रूप में लिया जाता है), तो उपरोक्त संभावना काफी हद तक अनुमानित है
किसी भी x ∈ {0, 1, 2, ... n} के लिए। यदि एनपी और एनपी(1 − पी) बड़े हैं (कभी-कभी दोनों को ≥ 5 के रूप में लिया जाता है), तो उपरोक्त संभावना अत्यधिक सीमा तक अनुमानित हों सकता  है


:<math>P(Y\leq x+1/2)</math>
:<math>P(Y\leq x+1/2)</math>
Line 16: Line 16:
===पॉइसन===
===पॉइसन===


निरंतरता सुधार तब भी लागू किया जा सकता है जब पूर्णांकों पर समर्थित अन्य असतत वितरण सामान्य वितरण द्वारा अनुमानित होते हैं। उदाहरण के लिए, यदि X में अपेक्षित मान λ के साथ पॉइसन वितरण है तो X का प्रसरण भी λ है, और
निरंतरता सुधार तब भी प्रारंभ किया जा सकता है जब पूर्णांकों पर समर्थित अन्य असतत वितरण सामान्य वितरण द्वारा अनुमानित होते हैं। उदाहरण के लिए, यदि X में अपेक्षित मान λ के साथ पॉइसन वितरण है तो X का प्रसरण भी λ है, और


:<math>P(X\leq x)=P(X<x+1)\approx P(Y\leq x+1/2)</math>
:<math>P(X\leq x)=P(X<x+1)\approx P(Y\leq x+1/2)</math>
Line 22: Line 22:


==अनुप्रयोग==
==अनुप्रयोग==
संभाव्यता वितरण कार्यों का सटीक मूल्यांकन करने की क्षमता वाले सांख्यिकीय सॉफ़्टवेयर की तैयार उपलब्धता से पहले, निरंतरता सुधार ने [[सांख्यिकीय परिकल्पना परीक्षण]] के व्यावहारिक अनुप्रयोग में एक महत्वपूर्ण भूमिका निभाई थी जिसमें परीक्षण आंकड़ों का एक अलग वितरण होता है: मैन्युअल गणना के लिए इसका विशेष महत्व था। इसका एक विशेष उदाहरण [[द्विपद परीक्षण]] है, जिसमें द्विपद वितरण शामिल है, जैसे कि यह जांचना कि कोई सिक्का उचित है या नहीं। जहां अत्यधिक सटीकता आवश्यक नहीं है, कुछ श्रेणियों के मापदंडों के लिए कंप्यूटर गणना अभी भी सरलता बनाए रखते हुए सटीकता में सुधार के लिए निरंतरता सुधार का उपयोग करने पर निर्भर हो सकती है।
संभाव्यता वितरण फलनों का सटीक मूल्यांकन करने की क्षमता वाले सांख्यिकीय सॉफ़्टवेयर की तैयार उपलब्धता से पहले, निरंतरता सुधार ने [[सांख्यिकीय परिकल्पना परीक्षण]] के व्यावहारिक अनुप्रयोग में एक महत्वपूर्ण भूमिका निभाई थी जिसमें परीक्षण आंकड़ों का एक पृथक वितरण होता है: मानवीय गणना के लिए इसका विशेष महत्व था। इसका एक विशेष उदाहरण [[द्विपद परीक्षण]] है, जिसमें द्विपद वितरण सम्मिलित होता है,जैसे मुद्रा के बारे में जांच करना कि क्या यह निष्पक्ष है। जहां अत्यधिक सटीकता आवश्यक नहीं है, कुछ श्रेणियों के मापदंडों के लिए संगणक  गणना अभी भी सरलता बनाए रखते हुए सटीकता में सुधार के लिए निरंतरता सुधार का उपयोग करने पर निर्भर हो सकती है।


==यह भी देखें==
==यह भी देखें==
*निरंतरता के लिए येट्स का सुधार
 
*द्विपद अनुपात आत्मविश्वास अंतराल#विल्सन स्कोर अंतराल निरंतरता सुधार के साथ
* निरंतरता के लिए येट्स का सुधार
 
* निरंतरता सुधार के साथ विल्सन स्कोर अंतराल


== संदर्भ ==
== संदर्भ ==

Revision as of 22:27, 18 July 2023

संभाव्यता सिद्धांत में, निरंतरता सुधार एक समायोजन है जो तब किया जाता है जब एक असतत संभाव्यता वितरण को निरंतर वितरण द्वारा अनुमानित दिया जाता है।

उदाहरण

द्विपद

यदि एक यादृच्छिक चर X में पैरामीटर n और p के साथ एक द्विपद वितरण है, अर्थात,

किसी भी x ∈ {0, 1, 2, ... n} के लिए। यदि एनपी और एनपी(1 − पी) बड़े हैं (कभी-कभी दोनों को ≥ 5 के रूप में लिया जाता है), तो उपरोक्त संभावना अत्यधिक सीमा तक अनुमानित हों सकता है

जहां Y एक सामान्य वितरण यादृच्छिक चर है जिसका अपेक्षित मान समान है और X के समान विचरण है, अर्थात, E(Y) = np और var(Y) = np(1 - p)। x में 1/2 का यह जोड़ एक निरंतरता सुधार है।

पॉइसन

निरंतरता सुधार तब भी प्रारंभ किया जा सकता है जब पूर्णांकों पर समर्थित अन्य असतत वितरण सामान्य वितरण द्वारा अनुमानित होते हैं। उदाहरण के लिए, यदि X में अपेक्षित मान λ के साथ पॉइसन वितरण है तो X का प्रसरण भी λ है, और

यदि Y को सामान्यतः अपेक्षा और भिन्नता दोनों के साथ वितरित किया जाता है।

अनुप्रयोग

संभाव्यता वितरण फलनों का सटीक मूल्यांकन करने की क्षमता वाले सांख्यिकीय सॉफ़्टवेयर की तैयार उपलब्धता से पहले, निरंतरता सुधार ने सांख्यिकीय परिकल्पना परीक्षण के व्यावहारिक अनुप्रयोग में एक महत्वपूर्ण भूमिका निभाई थी जिसमें परीक्षण आंकड़ों का एक पृथक वितरण होता है: मानवीय गणना के लिए इसका विशेष महत्व था। इसका एक विशेष उदाहरण द्विपद परीक्षण है, जिसमें द्विपद वितरण सम्मिलित होता है,जैसे मुद्रा के बारे में जांच करना कि क्या यह निष्पक्ष है। जहां अत्यधिक सटीकता आवश्यक नहीं है, कुछ श्रेणियों के मापदंडों के लिए संगणक गणना अभी भी सरलता बनाए रखते हुए सटीकता में सुधार के लिए निरंतरता सुधार का उपयोग करने पर निर्भर हो सकती है।

यह भी देखें

  • निरंतरता के लिए येट्स का सुधार
  • निरंतरता सुधार के साथ विल्सन स्कोर अंतराल

संदर्भ

  • Devore, Jay L., Probability and Statistics for Engineering and the Sciences, Fourth Edition, Duxbury Press, 1995.
  • Feller, W., On the normal approximation to the binomial distribution, The Annals of Mathematical Statistics, Vol. 16 No. 4, Page 319–329, 1945.