लिप्सचिट्ज़ निरंतरता: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{short description|Strong form of uniform continuity}} | {{short description|Strong form of uniform continuity}} | ||
[[File:Lipschitz Visualisierung.gif|thumb|right|लिप्सचिट्ज़ सतत | [[File:Lipschitz Visualisierung.gif|thumb|right|लिप्सचिट्ज़ सतत फलन के लिए, दोहरा शंकु (सफ़ेद) उपस्तिथ होता है जिसके मूल को ग्राफ़ के साथ ले जाया जा सकता है जिससे कि पूरा ग्राफ़ सदैव दोहरे शंकु के बाहर रहे]][[गणितीय विश्लेषण]] में, लिप्सचिट्ज़ निरंतरता, जिसका नाम [[जर्मनी]] के [[गणितज्ञ]] [[रूडोल्फ लिप्सचिट्ज़]] के नाम पर रखा गया है, [[फ़ंक्शन (गणित)|फलन (गणित)]] के लिए समान निरंतरता का मजबूत रूप है। सहज रूप से, लिप्सचिट्ज़ निरंतर फलन इस बात में सीमित है कि यह कितनी तेजी से बदल सकता है: वास्तविक संख्या उपस्तिथ है, जैसे कि, इस फलन के ग्राफ़ पर बिंदुओं की प्रत्येक जोड़ी के लिए, उन्हें जोड़ने वाली रेखा के ढलान का पूर्ण मान इससे अधिक नहीं है यह वास्तविक संख्या; ऐसी सबसे छोटी सीमा को फलन का लिप्सचिट्ज़ स्थिरांक कहा जाता है (और यह निरंतरता के मापांक से संबंधित है)। उदाहरण के लिए, प्रत्येक फलन जो अंतराल पर परिभाषित होता है और पहले व्युत्पन्न से घिरा होता है, लिप्सचिट्ज़ निरंतर होता है।<ref>{{cite book |url=https://books.google.com/books?id=gBPI_oYZoMMC&pg=PA142 |last=Sohrab |first=H. H. |year=2003 |title=बुनियादी वास्तविक विश्लेषण|volume=231 |publisher=Birkhäuser |page=142 |isbn=0-8176-4211-0 }}</ref> | ||
विभेदक समीकरणों के सिद्धांत में, लिप्सचिट्ज़ निरंतरता पिकार्ड-लिंडेलोफ प्रमेय की केंद्रीय स्थिति है जो [[प्रारंभिक मूल्य समस्या]] के समाधान के अस्तित्व और विशिष्टता की गारंटी देती है। विशेष प्रकार की लिप्सचिट्ज़ निरंतरता, जिसे [[संकुचन मानचित्रण]] कहा जाता है, का उपयोग [[बानाच निश्चित-बिंदु प्रमेय]] में किया जाता है।<ref>{{cite book |first1=Brian S. |last1=Thomson |first2=Judith B. |last2=Bruckner |first3=Andrew M. |last3=Bruckner |title=प्राथमिक वास्तविक विश्लेषण|publisher=Prentice-Hall |year=2001 |page=623 |url=https://books.google.com/books?id=6l_E9OTFaK0C&pg=PA623 }}</ref> | विभेदक समीकरणों के सिद्धांत में, लिप्सचिट्ज़ निरंतरता पिकार्ड-लिंडेलोफ प्रमेय की केंद्रीय स्थिति है जो [[प्रारंभिक मूल्य समस्या]] के समाधान के अस्तित्व और विशिष्टता की गारंटी देती है। विशेष प्रकार की लिप्सचिट्ज़ निरंतरता, जिसे [[संकुचन मानचित्रण]] कहा जाता है, का उपयोग [[बानाच निश्चित-बिंदु प्रमेय]] में किया जाता है।<ref>{{cite book |first1=Brian S. |last1=Thomson |first2=Judith B. |last2=Bruckner |first3=Andrew M. |last3=Bruckner |title=प्राथमिक वास्तविक विश्लेषण|publisher=Prentice-Hall |year=2001 |page=623 |url=https://books.google.com/books?id=6l_E9OTFaK0C&pg=PA623 }}</ref> | ||
Line 12: | Line 12: | ||
== परिभाषाएँ == | == परिभाषाएँ == | ||
दो [[मीट्रिक स्थान]] (X, d) दिए गए हैं<sub>''X''</sub>) और (वाई, डी<sub>''Y''</sub>), जहां घ<sub>''X''</sub> | दो [[मीट्रिक स्थान]] (X, d) दिए गए हैं<sub>''X''</sub>) और (वाई, डी<sub>''Y''</sub>), जहां घ<sub>''X''</sub> समूह X और d पर [[मीट्रिक (गणित)]] को दर्शाता है<sub>''Y''</sub> समूह Y पर मीट्रिक है, फलन f:<sub>1</sub> और एक्स<sub>2</sub> एक्स में, | ||
:<math> d_Y(f(x_1), f(x_2)) \le K d_X(x_1, x_2).</math><ref>{{Citation | last1=Searcóid | first1=Mícheál Ó | title=Metric Spaces |chapter-url=https://books.google.com/books?id=aP37I4QWFRcC&pg=PA154 | publisher=[[Springer-Verlag]] | location=Berlin, New York | series=Springer undergraduate mathematics series | isbn=978-1-84628-369-7 | year=2006 |chapter=Lipschitz Functions }}</ref> | :<math> d_Y(f(x_1), f(x_2)) \le K d_X(x_1, x_2).</math><ref>{{Citation | last1=Searcóid | first1=Mícheál Ó | title=Metric Spaces |chapter-url=https://books.google.com/books?id=aP37I4QWFRcC&pg=PA154 | publisher=[[Springer-Verlag]] | location=Berlin, New York | series=Springer undergraduate mathematics series | isbn=978-1-84628-369-7 | year=2006 |chapter=Lipschitz Functions }}</ref> | ||
ऐसे किसी भी K को | ऐसे किसी भी K को फलन f के लिए 'लिप्सचिट्ज़ स्थिरांक' के रूप में संदर्भित किया जाता है और f को 'K-लिप्सचिट्ज़' के रूप में भी संदर्भित किया जा सकता है। सबसे छोटे स्थिरांक को कभी-कभी '(सर्वोत्तम) लिप्सचिट्ज़ स्थिरांक' कहा जाता है।<ref>{{cite book |last1=Benyamini |first1=Yoav |last2=Lindenstrauss |first2=Joram |title=ज्यामितीय अरेखीय कार्यात्मक विश्लेषण|date=2000 |publisher=American Mathematical Society |isbn=0-8218-0835-4 |page=11}}</ref> च या 'फैलाव' या 'फैलाव' का<ref>{{cite book |last1=Burago |first1=Dmitri |last2=Burago |first2=Yuri |last3=Ivanov |first3=Sergei |title=मीट्रिक ज्यामिति में एक पाठ्यक्रम|date=2001 |publisher=American Mathematical Society |isbn=0-8218-2129-6}}</ref>{{rp|at=p. 9, Definition 1.4.1}}<ref>{{cite journal |last1=Mahroo |first1=Omar A |last2=Shalchi |first2=Zaid |last3=Hammond |first3=Christopher J |title='Dilatation' and 'dilation': trends in use on both sides of the Atlantic |journal=British Journal of Ophthalmology |date=2014 |volume=98 |issue=6 |pages=845–846 |doi=10.1136/bjophthalmol-2014-304986 |pmid=24568871 |url=https://bjo.bmj.com/content/98/6/845}}</ref><ref>{{cite book |last1=Gromov |first1=Mikhael |author1-link=Mikhael Gromov (mathematician) |editor1-last=Rossi |editor1-first=Hugo |title=Prospects in Mathematics: Invited Talks on the Occasion of the 250th Anniversary of Princeton University, March 17-21, 1996, Princeton University |chapter=Quantitative Homotopy Theory |date=1999 |publisher=American Mathematical Society |isbn=0-8218-0975-X |page=46}}</ref> बंद। यदि K = 1 फलन को '[[लघु मानचित्र]]' कहा जाता है, और यदि 0 ≤ K < 1 और f स्वयं के लिए मीट्रिक स्थान मानचित्र करता है, तो फलन को 'संकुचन मानचित्रण' कहा जाता है। | ||
विशेष रूप से, वास्तविक-मूल्यवान | विशेष रूप से, वास्तविक-मूल्यवान फलन f: R → R को लिप्सचिट्ज़ निरंतर कहा जाता है यदि कोई धनात्मक वास्तविक स्थिरांक K उपस्तिथ हो, जैसे कि सभी वास्तविक x के लिए<sub>1</sub> और एक्स<sub>2</sub>, | ||
:<math> |f(x_1) - f(x_2)| \le K |x_1 - x_2|.</math> | :<math> |f(x_1) - f(x_2)| \le K |x_1 - x_2|.</math> | ||
इस मामले में, Y मानक मीट्रिक d के साथ [[वास्तविक संख्या]] 'R' का | इस मामले में, Y मानक मीट्रिक d के साथ [[वास्तविक संख्या]] 'R' का समूह है<sub>''Y''</sub>(और<sub>1</sub>, और<sub>2</sub>) = |य<sub>1</sub>− और<sub>2</sub>|, और X 'R' का उपसमुच्चय है। | ||
सामान्यतः, असमानता (तुच्छ रूप से) संतुष्ट होती है यदि x<sub>1</sub> = एक्स<sub>2</sub>. अन्यथा, कोई किसी | सामान्यतः, असमानता (तुच्छ रूप से) संतुष्ट होती है यदि x<sub>1</sub> = एक्स<sub>2</sub>. अन्यथा, कोई किसी फलन को लिप्सचिट्ज़ निरंतर के रूप में परिभाषित कर सकता है यदि और केवल तभी जब कोई स्थिरांक K ≥ 0 उपस्तिथ हो, जैसे कि सभी x के लिए<sub>1</sub> ≠ एक्स<sub>2</sub>, | ||
:<math>\frac{d_Y(f(x_1),f(x_2))}{d_X(x_1,x_2)}\le K.</math> | :<math>\frac{d_Y(f(x_1),f(x_2))}{d_X(x_1,x_2)}\le K.</math> | ||
अनेक वास्तविक चरों के वास्तविक-मूल्यवान कार्यों के लिए, यह तभी क्रियान्वित होता है जब सभी छेदक रेखाओं के ढलानों का निरपेक्ष मान K से घिरा हो। फलन के ग्राफ़ पर बिंदु से गुजरने वाली ढलान K की रेखाओं का समूह बनाता है वृत्ताकार शंकु, और फलन लिप्सचिट्ज़ है यदि और केवल यदि फलन का ग्राफ हर स्थान इस शंकु के पूरी तरह से बाहर है (आंकड़ा देखें)। | |||
फलन को 'स्थानीय रूप से लिप्सचिट्ज़ निरंतर' कहा जाता है यदि एक्स में प्रत्येक एक्स के लिए एक्स का [[पड़ोस (गणित)]] यू उपस्तिथ है जैसे कि यू तक सीमित एफ लिप्सचिट्ज़ निरंतर है। समान रूप से, यदि | |||
अधिक सामान्यतः, एक्स पर परिभाषित | अधिक सामान्यतः, एक्स पर परिभाषित फलन एफ को 'होल्डर निरंतर' कहा जाता है या एक्स पर ऑर्डर α > 0 की 'होल्डर स्थिति' को संतुष्ट करने के लिए कहा जाता है यदि कोई निरंतर एम ≥ 0 उपस्तिथ है | ||
:<math>d_Y(f(x), f(y)) \leq M d_X(x, y)^{\alpha}</math> एक्स में सभी एक्स और वाई के लिए। कभी-कभी ऑर्डर α की धारक स्थिति को 'ऑर्डर की यूनिफ़ॉर्म लिप्सचिट्ज़ स्थिति' α > 0 भी कहा जाता है। | :<math>d_Y(f(x), f(y)) \leq M d_X(x, y)^{\alpha}</math> एक्स में सभी एक्स और वाई के लिए। कभी-कभी ऑर्डर α की धारक स्थिति को 'ऑर्डर की यूनिफ़ॉर्म लिप्सचिट्ज़ स्थिति' α > 0 भी कहा जाता है। | ||
वास्तविक संख्या K ≥ 1 के लिए, यदि | वास्तविक संख्या K ≥ 1 के लिए, यदि | ||
:<math>\frac{1}{K}d_X(x_1,x_2) \le d_Y(f(x_1), f(x_2)) \le K d_X(x_1, x_2)\quad\text{ for all }x_1,x_2\in X,</math> | :<math>\frac{1}{K}d_X(x_1,x_2) \le d_Y(f(x_1), f(x_2)) \le K d_X(x_1, x_2)\quad\text{ for all }x_1,x_2\in X,</math> | ||
तब f को 'K-bilipschitz' (जिसे 'K-bi-Lipschitz' भी लिखा जाता है) कहा जाता है। हम कहते हैं कि f 'बिलिप्सचिट्ज़' या 'बाई-लिप्सचिट्ज़' है, इसका मतलब यह है कि ऐसा K उपस्तिथ है। बिलिप्सचिट्ज़ | तब f को 'K-bilipschitz' (जिसे 'K-bi-Lipschitz' भी लिखा जाता है) कहा जाता है। हम कहते हैं कि f 'बिलिप्सचिट्ज़' या 'बाई-लिप्सचिट्ज़' है, इसका मतलब यह है कि ऐसा K उपस्तिथ है। बिलिप्सचिट्ज़ मानचित्रिंग [[इंजेक्शन समारोह|इंजेक्शन फलन]] है, और वास्तव में इसकी छवि पर [[होमियोमोर्फिज्म]] है। बिलिप्सचिट्ज़ फलन इंजेक्टिव लिप्सचिट्ज़ फलन के समान है जिसका उलटा फलन भी लिप्सचिट्ज़ है। | ||
==उदाहरण== | ==उदाहरण== | ||
;लिप्सचिट्ज़ निरंतर कार्य जो हर | ;लिप्सचिट्ज़ निरंतर कार्य जो हर स्थान भिन्न होते हैं:{{unordered list | ||
| The function <math>f(x)=\sqrt{x^2+5}</math> defined for all real numbers is Lipschitz continuous with the Lipschitz constant ''K'' {{=}} 1, because it is everywhere [[Differentiable function|differentiable]] and the absolute value of the derivative is bounded above by 1. See the first property listed below under "[[Lipschitz continuity#Properties|Properties]]". | | The function <math>f(x)=\sqrt{x^2+5}</math> defined for all real numbers is Lipschitz continuous with the Lipschitz constant ''K'' {{=}} 1, because it is everywhere [[Differentiable function|differentiable]] and the absolute value of the derivative is bounded above by 1. See the first property listed below under "[[Lipschitz continuity#Properties|Properties]]". | ||
| Likewise, the [[sine]] function is Lipschitz continuous because its derivative, the cosine function, is bounded above by 1 in absolute value. | | Likewise, the [[sine]] function is Lipschitz continuous because its derivative, the cosine function, is bounded above by 1 in absolute value. | ||
}} | }} | ||
;लिप्सचिट्ज़ निरंतर कार्य जो हर | ;लिप्सचिट्ज़ निरंतर कार्य जो हर स्थान भिन्न नहीं होते हैं:{{unordered list | ||
|The function <math>f(x) = |x|</math> defined on the reals is Lipschitz continuous with the Lipschitz constant equal to 1, by the [[reverse triangle inequality]]. More generally, a [[norm (mathematics)|norm]] on a vector space is Lipschitz continuous with respect to the associated metric, with the Lipschitz constant equal to 1.}} | |The function <math>f(x) = |x|</math> defined on the reals is Lipschitz continuous with the Lipschitz constant equal to 1, by the [[reverse triangle inequality]]. More generally, a [[norm (mathematics)|norm]] on a vector space is Lipschitz continuous with respect to the associated metric, with the Lipschitz constant equal to 1.}} | ||
;लिप्सचिट्ज़ निरंतर कार्य जो हर | ;लिप्सचिट्ज़ निरंतर कार्य जो हर स्थान भिन्न होते हैं किन्तु निरंतर भिन्न नहीं होते हैं:{{unordered list | ||
| The function <math>f(x) \;=\; \begin{cases} x^2\sin (1/x) & \text{if }x \ne 0 \\ 0 & \text{if }x=0\end{cases}</math>, whose derivative exists but has an essential discontinuity at <math>x=0</math>. | | The function <math>f(x) \;=\; \begin{cases} x^2\sin (1/x) & \text{if }x \ne 0 \\ 0 & \text{if }x=0\end{cases}</math>, whose derivative exists but has an essential discontinuity at <math>x=0</math>. | ||
}} | }} | ||
Line 55: | Line 55: | ||
==गुण== | ==गुण== | ||
*हर | *हर स्थान भिन्न-भिन्न फलन जी: 'आर' → 'आर' लिप्सचिट्ज़ निरंतर है (के = सुपर | जी ′ (एक्स) | के साथ) यदि और केवल अगर यह पहले व्युत्पन्न से घिरा हुआ है; [[माध्य मान प्रमेय]] से दिशा अनुसरण करती है। विशेष रूप से, कोई भी निरंतर भिन्न कार्य स्थानीय रूप से लिप्सचिट्ज़ होता है, क्योंकि निरंतर कार्य स्थानीय रूप से बंधे होते हैं इसलिए इसका ग्रेडिएंट भी स्थानीय रूप से बाध्य होता है। | ||
*लिप्सचिट्ज़ | *लिप्सचिट्ज़ फलन g : 'R' → 'R' बिल्कुल निरंतर है और इसलिए [[लगभग हर जगह|लगभग हर स्थान]] भिन्न होता है, अर्थात, लेब्सग्यू माप शून्य के समूह के बाहर हर बिंदु पर भिन्न होता है। इसका व्युत्पन्न अनिवार्य रूप से लिप्सचिट्ज़ स्थिरांक द्वारा परिमाण में घिरा हुआ है, और a < b के लिए, अंतर g(b) - g(a) अंतराल [a, b] पर व्युत्पन्न g′ के अभिन्न अंग के सामान्तर है। | ||
**इसके विपरीत, यदि f : I → 'R' बिल्कुल निरंतर है और इस प्रकार लगभग हर | **इसके विपरीत, यदि f : I → 'R' बिल्कुल निरंतर है और इस प्रकार लगभग हर स्थान भिन्न है, और |f′(x)| को संतुष्ट करता है। I में लगभग सभी x के लिए ≤ K, तो अधिकतम K पर लिप्सचिट्ज़ स्थिरांक के साथ f लिप्सचिट्ज़ निरंतर है। | ||
**अधिक सामान्यतः, रैडेमाकर का प्रमेय यूक्लिडियन स्थानों के | **अधिक सामान्यतः, रैडेमाकर का प्रमेय यूक्लिडियन स्थानों के मध्य लिप्सचिट्ज़ मानचित्रिंग के लिए भिन्नता परिणाम का विस्तार करता है: लिप्सचिट्ज़ मानचित्र एफ: यू → 'आर'<sup>एम</sup>, जहां यू 'आर' में खुला समूह है<sup>n</sup>, लगभग हर स्थान व्युत्पन्न है। इसके अतिरिक्त, यदि K, f का सर्वश्रेष्ठ लिप्सचिट्ज़ स्थिरांक है, तो <math>\|Df(x)\|\le K</math> जब भी [[कुल व्युत्पन्न]] Df उपस्तिथ हो।{{citation needed|date=March 2023}} | ||
*भिन्न लिप्सचिट्ज़ मानचित्र के लिए <math>f: U \to \R^m</math> असमानता <math>\|Df\|_{W^{1,\infty}(U)}\le K</math> सर्वोत्तम लिप्सचिट्ज़ स्थिरांक के लिए धारण करता है <math>K</math> का <math>f</math>. यदि डोमेन <math>U</math> वास्तव में उत्तल है <math>\|Df\|_{W^{1,\infty}(U)}= K</math>.{{Explain|date=November 2019}} | *भिन्न लिप्सचिट्ज़ मानचित्र के लिए <math>f: U \to \R^m</math> असमानता <math>\|Df\|_{W^{1,\infty}(U)}\le K</math> सर्वोत्तम लिप्सचिट्ज़ स्थिरांक के लिए धारण करता है <math>K</math> का <math>f</math>. यदि डोमेन <math>U</math> वास्तव में उत्तल है <math>\|Df\|_{W^{1,\infty}(U)}= K</math>.{{Explain|date=November 2019}} | ||
*मान लीजिए कि {एफ<sub>n</sub>} दो मीट्रिक स्थानों के | *मान लीजिए कि {एफ<sub>n</sub>} दो मीट्रिक स्थानों के मध्य लिप्सचिट्ज़ निरंतर मानचित्रिंग का क्रम है, और वह सभी एफ<sub>n</sub>लिप्सचिट्ज़ स्थिरांक कुछ K से घिरा है। यदि f<sub>n</sub>मानचित्रिंग f [[एकसमान अभिसरण]] में अभिसरण करता है, तो f भी लिप्सचिट्ज़ है, लिप्सचिट्ज़ स्थिरांक समान K से घिरा होता है। विशेष रूप से, इसका तात्पर्य यह है कि लिप्सचिट्ज़ स्थिरांक के लिए विशेष सीमा के साथ कॉम्पैक्ट मीट्रिक स्थान पर वास्तविक-मूल्यवान कार्यों का समूह है सतत कार्यों के बानाच स्थान का बंद और उत्तल उपसमुच्चय। हालाँकि, यह परिणाम उन अनुक्रमों के लिए मान्य नहीं है जिनमें फ़ंक्शंस में असीमित लिप्सचिट्ज़ स्थिरांक हो सकते हैं। वास्तव में, कॉम्पैक्ट मीट्रिक स्पेस पर सभी लिप्सचिट्ज़ फ़ंक्शंस का स्थान निरंतर फ़ंक्शंस के [[बनच स्थान]] का उपबीजगणित है, और इस प्रकार इसमें सघनता है, जो स्टोन-वीयरस्ट्रैस प्रमेय का प्रारंभिक परिणाम है (या [[वीयरस्ट्रैस सन्निकटन प्रमेय]] के परिणामस्वरूप, क्योंकि प्रत्येक बहुपद स्थानीय रूप से लिप्सचिट्ज़ निरंतर है)। | ||
*प्रत्येक लिप्सचिट्ज़ निरंतर मानचित्र समान रूप से निरंतर होता है, और इसलिए फोर्टियोरी निरंतर कार्य होता है। अधिक सामान्यतः, परिबद्ध लिप्सचिट्ज़ स्थिरांक के साथ कार्यों का | *प्रत्येक लिप्सचिट्ज़ निरंतर मानचित्र समान रूप से निरंतर होता है, और इसलिए फोर्टियोरी निरंतर कार्य होता है। अधिक सामान्यतः, परिबद्ध लिप्सचिट्ज़ स्थिरांक के साथ कार्यों का समूह समविराम समूह बनाता है। अर्ज़ेला-एस्कोली प्रमेय का तात्पर्य है कि यदि {f<sub>n</sub>} परिबद्ध लिप्सचिट्ज़ स्थिरांक के साथ कार्यों का समान रूप से परिबद्ध अनुक्रम है, फिर इसमें अभिसरण अनुवर्ती होता है। पिछले पैराग्राफ के परिणाम के अनुसार, सीमा फलन भी लिप्सचिट्ज़ है, लिप्सचिट्ज़ स्थिरांक के लिए समान सीमा के साथ। विशेष रूप से लिप्सचिट्ज़ स्थिरांक ≤ K वाले कॉम्पैक्ट मीट्रिक स्पेस | ||
*लिप्सचिट्ज़ के परिवार के लिए निरंतर कार्य एफ<sub>α</sub> सामान्य स्थिरांक के साथ, | *लिप्सचिट्ज़ के परिवार के लिए निरंतर कार्य एफ<sub>α</sub> सामान्य स्थिरांक के साथ, फलन <math>\sup_\alpha f_\alpha</math> (और <math>\inf_\alpha f_\alpha</math>) लिप्सचिट्ज़ निरंतर भी है, समान लिप्सचिट्ज़ स्थिरांक के साथ, बशर्ते कि यह कम से कम बिंदु पर सीमित मान मानता हो। | ||
*यदि U मीट्रिक स्पेस M और f का उपसमुच्चय है: U → 'R' लिप्सचिट्ज़ निरंतर | *यदि U मीट्रिक स्पेस M और f का उपसमुच्चय है: U → 'R' लिप्सचिट्ज़ निरंतर फलन है, तो सदैव लिप्सचिट्ज़ निरंतर मानचित्र M → 'R' उपस्तिथ होते हैं जो f का विस्तार करते हैं और f के समान लिप्सचिट्ज़ स्थिरांक रखते हैं (यह भी देखें) [[किर्स्ज़ब्रौन प्रमेय]])। द्वारा एक्सटेंशन प्रदान किया जाता है | ||
::<math>\tilde f(x):=\inf_{u\in U}\{ f(u)+k\, d(x,u)\},</math> :जहाँ k, U पर f के लिए लिप्सचिट्ज़ स्थिरांक है। | ::<math>\tilde f(x):=\inf_{u\in U}\{ f(u)+k\, d(x,u)\},</math> :जहाँ k, U पर f के लिए लिप्सचिट्ज़ स्थिरांक है। | ||
==लिप्सचिट्ज़ मैनिफोल्ड्स== | ==लिप्सचिट्ज़ मैनिफोल्ड्स== | ||
[[ टोपोलॉजिकल मैनिफ़ोल्ड | टोपोलॉजिकल मैनिफ़ोल्ड]] पर लिप्सचिट्ज़ संरचना को [[एटलस (टोपोलॉजी)]] का उपयोग करके परिभाषित किया गया है, जिसके संक्रमण मानचित्र बिलिप्सचिट्ज़ हैं; यह संभव है क्योंकि बिलिप्सचिट्ज़ मानचित्र छद्म समूह बनाते हैं। इस तरह की संरचना किसी को ऐसे मैनिफोल्ड्स के | [[ टोपोलॉजिकल मैनिफ़ोल्ड | टोपोलॉजिकल मैनिफ़ोल्ड]] पर लिप्सचिट्ज़ संरचना को [[एटलस (टोपोलॉजी)]] का उपयोग करके परिभाषित किया गया है, जिसके संक्रमण मानचित्र बिलिप्सचिट्ज़ हैं; यह संभव है क्योंकि बिलिप्सचिट्ज़ मानचित्र छद्म समूह बनाते हैं। इस तरह की संरचना किसी को ऐसे मैनिफोल्ड्स के मध्य स्थानीय रूप से लिप्सचिट्ज़ मानचित्रों को परिभाषित करने की अनुमति देती है, उसी तरह जैसे कोई [[ चिकनी कई गुना |चिकनी अनेक गुना]] ्स के मध्य स्मूथ मानचित्र को परिभाषित करता है: यदि {{mvar|M}} और {{mvar|N}} लिप्सचिट्ज़ मैनिफ़ोल्ड हैं, फिर फलन <math>f:M \to N</math> स्थानीय रूप से लिप्सचिट्ज़ है यदि और केवल यदि समन्वय चार्ट की प्रत्येक जोड़ी के लिए <math>\phi:U \to M</math> और <math>\psi:V \to N</math>, कहाँ {{mvar|U}} और {{mvar|V}} संगत यूक्लिडियन रिक्त स्थान, रचना में खुले समूह हैं | ||
<math display="block">\psi^{-1} \circ f \circ \phi:U \cap (f \circ \phi)^{-1}(\psi(V)) \to N</math> | <math display="block">\psi^{-1} \circ f \circ \phi:U \cap (f \circ \phi)^{-1}(\psi(V)) \to N</math> | ||
स्थानीय रूप से लिप्सचिट्ज़ है। यह परिभाषा किसी मीट्रिक को परिभाषित करने पर निर्भर नहीं करती है {{mvar|M}} या {{mvar|N}}.<ref name="Rosenberg">{{cite conference |first=Jonathan |last=Rosenberg |author-link=Jonathan Rosenberg (mathematician) |book-title=Miniconferences on harmonic analysis and operator algebras (Canberra, 1987) |title=लिप्सचिट्ज़ मैनिफोल्ड्स पर विश्लेषण के अनुप्रयोग|year=1988 |publisher=[[Australian National University]] |location=Canberra |pages=269–283 |url=https://projecteuclid.org/proceedings/proceedings-of-the-centre-for-mathematics-and-its-applications/Miniconference-on-Harmonic-Analysis-and-Operator-Algebras/Chapter/Applications-of-analysis-on-Lipschitz-manifolds/pcma/1416336222}} {{MathSciNet|id=954004}}</ref> | स्थानीय रूप से लिप्सचिट्ज़ है। यह परिभाषा किसी मीट्रिक को परिभाषित करने पर निर्भर नहीं करती है {{mvar|M}} या {{mvar|N}}.<ref name="Rosenberg">{{cite conference |first=Jonathan |last=Rosenberg |author-link=Jonathan Rosenberg (mathematician) |book-title=Miniconferences on harmonic analysis and operator algebras (Canberra, 1987) |title=लिप्सचिट्ज़ मैनिफोल्ड्स पर विश्लेषण के अनुप्रयोग|year=1988 |publisher=[[Australian National University]] |location=Canberra |pages=269–283 |url=https://projecteuclid.org/proceedings/proceedings-of-the-centre-for-mathematics-and-its-applications/Miniconference-on-Harmonic-Analysis-and-Operator-Algebras/Chapter/Applications-of-analysis-on-Lipschitz-manifolds/pcma/1416336222}} {{MathSciNet|id=954004}}</ref> | ||
यह संरचना टुकड़े-टुकड़े-रैखिक मैनिफोल्ड और टोपोलॉजिकल मैनिफोल्ड के | यह संरचना टुकड़े-टुकड़े-रैखिक मैनिफोल्ड और टोपोलॉजिकल मैनिफोल्ड के मध्य मध्यवर्ती है: पीएल संरचना अद्वितीय लिप्सचिट्ज़ संरचना को जन्म देती है।<ref>{{SpringerEOM|title=Topology of manifolds}}</ref> जबकि लिप्सचिट्ज़ मैनिफोल्ड्स टोपोलॉजिकल मैनिफोल्ड्स से निकटता से संबंधित हैं, रेडेमाकर का प्रमेय किसी को विश्लेषण करने की अनुमति देता है, जिससे विभिन्न अनुप्रयोग प्राप्त होते हैं।<ref name="Rosenberg"/> | ||
==एकतरफ़ा लिप्सचिट्ज़== | ==एकतरफ़ा लिप्सचिट्ज़== | ||
मान लीजिए कि F(x) x का अर्ध-निरंतर|ऊपरी अर्ध-निरंतर फलन है, और F(x) सभी x के लिए बंद, उत्तल | मान लीजिए कि F(x) x का अर्ध-निरंतर|ऊपरी अर्ध-निरंतर फलन है, और F(x) सभी x के लिए बंद, उत्तल समूह है। तब F एकतरफ़ा लिप्सचिट्ज़ है<ref>{{cite journal |last1=Donchev |first1=Tzanko |last2=Farkhi |first2=Elza |year=1998 |title=एक तरफा लिप्सचिट्ज़ विभेदक समावेशन की स्थिरता और यूलर अनुमान|journal=SIAM Journal on Control and Optimization |volume=36 |issue=2 |pages=780–796 |doi=10.1137/S0363012995293694 }}</ref> अगर | ||
:<math>(x_1-x_2)^T(F(x_1)-F(x_2))\leq C\Vert x_1-x_2\Vert^2</math> कुछ C के लिए और सभी x के लिए<sub>1</sub> और एक्स<sub>2</sub>. | :<math>(x_1-x_2)^T(F(x_1)-F(x_2))\leq C\Vert x_1-x_2\Vert^2</math> कुछ C के लिए और सभी x के लिए<sub>1</sub> और एक्स<sub>2</sub>. | ||
यह संभव है कि | यह संभव है कि फलन F में बहुत बड़ा लिप्सचिट्ज़ स्थिरांक हो किन्तु मध्यम आकार का, या यहां तक कि ऋणात्मक, तरफा लिप्सचिट्ज़ स्थिरांक हो। उदाहरण के लिए, फलन | ||
:<math>\begin{cases} | :<math>\begin{cases} | ||
Line 89: | Line 89: | ||
* निरंतरता का मापांक | * निरंतरता का मापांक | ||
* अर्ध-आइसोमेट्री | * अर्ध-आइसोमेट्री | ||
* [[जॉनसन-लिंडेनस्ट्रॉस लेम्मा]] - किसी भी पूर्णांक n≥0 के लिए, कोई भी परिमित उपसमुच्चय X⊆'R'<sup>n</sup>, और कोई भी वास्तविक संख्या 0<ε<1, वहां (1+ε)-द्वि-लिप्सचिट्ज़ | * [[जॉनसन-लिंडेनस्ट्रॉस लेम्मा]] - किसी भी पूर्णांक n≥0 के लिए, कोई भी परिमित उपसमुच्चय X⊆'R'<sup>n</sup>, और कोई भी वास्तविक संख्या 0<ε<1, वहां (1+ε)-द्वि-लिप्सचिट्ज़ फलन उपस्तिथ है <math>f:\mathbb R^n\to\mathbb R^d,</math> कहाँ <math>d=\lceil15(\ln|X|)/\varepsilon^2\rceil.</math> | ||
==संदर्भ== | ==संदर्भ== | ||
{{reflist}} | {{reflist}} |
Revision as of 21:51, 15 July 2023
गणितीय विश्लेषण में, लिप्सचिट्ज़ निरंतरता, जिसका नाम जर्मनी के गणितज्ञ रूडोल्फ लिप्सचिट्ज़ के नाम पर रखा गया है, फलन (गणित) के लिए समान निरंतरता का मजबूत रूप है। सहज रूप से, लिप्सचिट्ज़ निरंतर फलन इस बात में सीमित है कि यह कितनी तेजी से बदल सकता है: वास्तविक संख्या उपस्तिथ है, जैसे कि, इस फलन के ग्राफ़ पर बिंदुओं की प्रत्येक जोड़ी के लिए, उन्हें जोड़ने वाली रेखा के ढलान का पूर्ण मान इससे अधिक नहीं है यह वास्तविक संख्या; ऐसी सबसे छोटी सीमा को फलन का लिप्सचिट्ज़ स्थिरांक कहा जाता है (और यह निरंतरता के मापांक से संबंधित है)। उदाहरण के लिए, प्रत्येक फलन जो अंतराल पर परिभाषित होता है और पहले व्युत्पन्न से घिरा होता है, लिप्सचिट्ज़ निरंतर होता है।[1]
विभेदक समीकरणों के सिद्धांत में, लिप्सचिट्ज़ निरंतरता पिकार्ड-लिंडेलोफ प्रमेय की केंद्रीय स्थिति है जो प्रारंभिक मूल्य समस्या के समाधान के अस्तित्व और विशिष्टता की गारंटी देती है। विशेष प्रकार की लिप्सचिट्ज़ निरंतरता, जिसे संकुचन मानचित्रण कहा जाता है, का उपयोग बानाच निश्चित-बिंदु प्रमेय में किया जाता है।[2]
हमारे पास वास्तविक रेखा के सघनता गैर-तुच्छ अंतराल पर कार्यों के लिए सख्त समावेशन की निम्नलिखित श्रृंखला है:
- निरंतर भिन्न ⊂ लिप्सचिट्ज़ निरंतर ⊂ -धारक निरंतर,
कहाँ . हमारे पास भी है
- लिप्सचिट्ज़ निरंतर ⊂ बिल्कुल निरंतर ⊂ समान रूप से निरंतर।
परिभाषाएँ
दो मीट्रिक स्थान (X, d) दिए गए हैंX) और (वाई, डीY), जहां घX समूह X और d पर मीट्रिक (गणित) को दर्शाता हैY समूह Y पर मीट्रिक है, फलन f:1 और एक्स2 एक्स में,
ऐसे किसी भी K को फलन f के लिए 'लिप्सचिट्ज़ स्थिरांक' के रूप में संदर्भित किया जाता है और f को 'K-लिप्सचिट्ज़' के रूप में भी संदर्भित किया जा सकता है। सबसे छोटे स्थिरांक को कभी-कभी '(सर्वोत्तम) लिप्सचिट्ज़ स्थिरांक' कहा जाता है।[4] च या 'फैलाव' या 'फैलाव' का[5]: p. 9, Definition 1.4.1 [6][7] बंद। यदि K = 1 फलन को 'लघु मानचित्र' कहा जाता है, और यदि 0 ≤ K < 1 और f स्वयं के लिए मीट्रिक स्थान मानचित्र करता है, तो फलन को 'संकुचन मानचित्रण' कहा जाता है।
विशेष रूप से, वास्तविक-मूल्यवान फलन f: R → R को लिप्सचिट्ज़ निरंतर कहा जाता है यदि कोई धनात्मक वास्तविक स्थिरांक K उपस्तिथ हो, जैसे कि सभी वास्तविक x के लिए1 और एक्स2,
इस मामले में, Y मानक मीट्रिक d के साथ वास्तविक संख्या 'R' का समूह हैY(और1, और2) = |य1− और2|, और X 'R' का उपसमुच्चय है।
सामान्यतः, असमानता (तुच्छ रूप से) संतुष्ट होती है यदि x1 = एक्स2. अन्यथा, कोई किसी फलन को लिप्सचिट्ज़ निरंतर के रूप में परिभाषित कर सकता है यदि और केवल तभी जब कोई स्थिरांक K ≥ 0 उपस्तिथ हो, जैसे कि सभी x के लिए1 ≠ एक्स2,
अनेक वास्तविक चरों के वास्तविक-मूल्यवान कार्यों के लिए, यह तभी क्रियान्वित होता है जब सभी छेदक रेखाओं के ढलानों का निरपेक्ष मान K से घिरा हो। फलन के ग्राफ़ पर बिंदु से गुजरने वाली ढलान K की रेखाओं का समूह बनाता है वृत्ताकार शंकु, और फलन लिप्सचिट्ज़ है यदि और केवल यदि फलन का ग्राफ हर स्थान इस शंकु के पूरी तरह से बाहर है (आंकड़ा देखें)।
फलन को 'स्थानीय रूप से लिप्सचिट्ज़ निरंतर' कहा जाता है यदि एक्स में प्रत्येक एक्स के लिए एक्स का पड़ोस (गणित) यू उपस्तिथ है जैसे कि यू तक सीमित एफ लिप्सचिट्ज़ निरंतर है। समान रूप से, यदि
अधिक सामान्यतः, एक्स पर परिभाषित फलन एफ को 'होल्डर निरंतर' कहा जाता है या एक्स पर ऑर्डर α > 0 की 'होल्डर स्थिति' को संतुष्ट करने के लिए कहा जाता है यदि कोई निरंतर एम ≥ 0 उपस्तिथ है
- एक्स में सभी एक्स और वाई के लिए। कभी-कभी ऑर्डर α की धारक स्थिति को 'ऑर्डर की यूनिफ़ॉर्म लिप्सचिट्ज़ स्थिति' α > 0 भी कहा जाता है।
वास्तविक संख्या K ≥ 1 के लिए, यदि
तब f को 'K-bilipschitz' (जिसे 'K-bi-Lipschitz' भी लिखा जाता है) कहा जाता है। हम कहते हैं कि f 'बिलिप्सचिट्ज़' या 'बाई-लिप्सचिट्ज़' है, इसका मतलब यह है कि ऐसा K उपस्तिथ है। बिलिप्सचिट्ज़ मानचित्रिंग इंजेक्शन फलन है, और वास्तव में इसकी छवि पर होमियोमोर्फिज्म है। बिलिप्सचिट्ज़ फलन इंजेक्टिव लिप्सचिट्ज़ फलन के समान है जिसका उलटा फलन भी लिप्सचिट्ज़ है।
उदाहरण
- लिप्सचिट्ज़ निरंतर कार्य जो हर स्थान भिन्न होते हैं
- The function defined for all real numbers is Lipschitz continuous with the Lipschitz constant K = 1, because it is everywhere differentiable and the absolute value of the derivative is bounded above by 1. See the first property listed below under "Properties".
- Likewise, the sine function is Lipschitz continuous because its derivative, the cosine function, is bounded above by 1 in absolute value.
- लिप्सचिट्ज़ निरंतर कार्य जो हर स्थान भिन्न नहीं होते हैं
- The function defined on the reals is Lipschitz continuous with the Lipschitz constant equal to 1, by the reverse triangle inequality. More generally, a norm on a vector space is Lipschitz continuous with respect to the associated metric, with the Lipschitz constant equal to 1.
- लिप्सचिट्ज़ निरंतर कार्य जो हर स्थान भिन्न होते हैं किन्तु निरंतर भिन्न नहीं होते हैं
- The function , whose derivative exists but has an essential discontinuity at .
- निरंतर कार्य जो (वैश्विक स्तर पर) लिप्सचिट्ज़ निरंतर नहीं हैं
- The function f(x) = √x defined on [0, 1] is not Lipschitz continuous. This function becomes infinitely steep as x approaches 0 since its derivative becomes infinite. However, it is uniformly continuous,[8] and both Hölder continuous of class C0, α for α ≤ 1/2 and also absolutely continuous on [0, 1] (both of which imply the former).
- विभिन्न कार्य जो (स्थानीय रूप से) लिप्सचिट्ज़ निरंतर नहीं हैं
- The function f defined by f(0) = 0 and f(x) = x3/2sin(1/x) for 0<x≤1 gives an example of a function that is differentiable on a compact set while not locally Lipschitz because its derivative function is not bounded. See also the first property below.
- विश्लेषणात्मक कार्य जो (वैश्विक स्तर पर) लिप्सचिट्ज़ निरंतर नहीं हैं
- The exponential function becomes arbitrarily steep as x → ∞, and therefore is not globally Lipschitz continuous, despite being an analytic function.
- The function f(x) = x2 with domain all real numbers is not Lipschitz continuous. This function becomes arbitrarily steep as x approaches infinity. It is however locally Lipschitz continuous.
गुण
- हर स्थान भिन्न-भिन्न फलन जी: 'आर' → 'आर' लिप्सचिट्ज़ निरंतर है (के = सुपर | जी ′ (एक्स) | के साथ) यदि और केवल अगर यह पहले व्युत्पन्न से घिरा हुआ है; माध्य मान प्रमेय से दिशा अनुसरण करती है। विशेष रूप से, कोई भी निरंतर भिन्न कार्य स्थानीय रूप से लिप्सचिट्ज़ होता है, क्योंकि निरंतर कार्य स्थानीय रूप से बंधे होते हैं इसलिए इसका ग्रेडिएंट भी स्थानीय रूप से बाध्य होता है।
- लिप्सचिट्ज़ फलन g : 'R' → 'R' बिल्कुल निरंतर है और इसलिए लगभग हर स्थान भिन्न होता है, अर्थात, लेब्सग्यू माप शून्य के समूह के बाहर हर बिंदु पर भिन्न होता है। इसका व्युत्पन्न अनिवार्य रूप से लिप्सचिट्ज़ स्थिरांक द्वारा परिमाण में घिरा हुआ है, और a < b के लिए, अंतर g(b) - g(a) अंतराल [a, b] पर व्युत्पन्न g′ के अभिन्न अंग के सामान्तर है।
- इसके विपरीत, यदि f : I → 'R' बिल्कुल निरंतर है और इस प्रकार लगभग हर स्थान भिन्न है, और |f′(x)| को संतुष्ट करता है। I में लगभग सभी x के लिए ≤ K, तो अधिकतम K पर लिप्सचिट्ज़ स्थिरांक के साथ f लिप्सचिट्ज़ निरंतर है।
- अधिक सामान्यतः, रैडेमाकर का प्रमेय यूक्लिडियन स्थानों के मध्य लिप्सचिट्ज़ मानचित्रिंग के लिए भिन्नता परिणाम का विस्तार करता है: लिप्सचिट्ज़ मानचित्र एफ: यू → 'आर'एम, जहां यू 'आर' में खुला समूह हैn, लगभग हर स्थान व्युत्पन्न है। इसके अतिरिक्त, यदि K, f का सर्वश्रेष्ठ लिप्सचिट्ज़ स्थिरांक है, तो जब भी कुल व्युत्पन्न Df उपस्तिथ हो।[citation needed]
- भिन्न लिप्सचिट्ज़ मानचित्र के लिए असमानता सर्वोत्तम लिप्सचिट्ज़ स्थिरांक के लिए धारण करता है का . यदि डोमेन वास्तव में उत्तल है .[further explanation needed]
- मान लीजिए कि {एफn} दो मीट्रिक स्थानों के मध्य लिप्सचिट्ज़ निरंतर मानचित्रिंग का क्रम है, और वह सभी एफnलिप्सचिट्ज़ स्थिरांक कुछ K से घिरा है। यदि fnमानचित्रिंग f एकसमान अभिसरण में अभिसरण करता है, तो f भी लिप्सचिट्ज़ है, लिप्सचिट्ज़ स्थिरांक समान K से घिरा होता है। विशेष रूप से, इसका तात्पर्य यह है कि लिप्सचिट्ज़ स्थिरांक के लिए विशेष सीमा के साथ कॉम्पैक्ट मीट्रिक स्थान पर वास्तविक-मूल्यवान कार्यों का समूह है सतत कार्यों के बानाच स्थान का बंद और उत्तल उपसमुच्चय। हालाँकि, यह परिणाम उन अनुक्रमों के लिए मान्य नहीं है जिनमें फ़ंक्शंस में असीमित लिप्सचिट्ज़ स्थिरांक हो सकते हैं। वास्तव में, कॉम्पैक्ट मीट्रिक स्पेस पर सभी लिप्सचिट्ज़ फ़ंक्शंस का स्थान निरंतर फ़ंक्शंस के बनच स्थान का उपबीजगणित है, और इस प्रकार इसमें सघनता है, जो स्टोन-वीयरस्ट्रैस प्रमेय का प्रारंभिक परिणाम है (या वीयरस्ट्रैस सन्निकटन प्रमेय के परिणामस्वरूप, क्योंकि प्रत्येक बहुपद स्थानीय रूप से लिप्सचिट्ज़ निरंतर है)।
- प्रत्येक लिप्सचिट्ज़ निरंतर मानचित्र समान रूप से निरंतर होता है, और इसलिए फोर्टियोरी निरंतर कार्य होता है। अधिक सामान्यतः, परिबद्ध लिप्सचिट्ज़ स्थिरांक के साथ कार्यों का समूह समविराम समूह बनाता है। अर्ज़ेला-एस्कोली प्रमेय का तात्पर्य है कि यदि {fn} परिबद्ध लिप्सचिट्ज़ स्थिरांक के साथ कार्यों का समान रूप से परिबद्ध अनुक्रम है, फिर इसमें अभिसरण अनुवर्ती होता है। पिछले पैराग्राफ के परिणाम के अनुसार, सीमा फलन भी लिप्सचिट्ज़ है, लिप्सचिट्ज़ स्थिरांक के लिए समान सीमा के साथ। विशेष रूप से लिप्सचिट्ज़ स्थिरांक ≤ K वाले कॉम्पैक्ट मीट्रिक स्पेस
- लिप्सचिट्ज़ के परिवार के लिए निरंतर कार्य एफα सामान्य स्थिरांक के साथ, फलन (और ) लिप्सचिट्ज़ निरंतर भी है, समान लिप्सचिट्ज़ स्थिरांक के साथ, बशर्ते कि यह कम से कम बिंदु पर सीमित मान मानता हो।
- यदि U मीट्रिक स्पेस M और f का उपसमुच्चय है: U → 'R' लिप्सचिट्ज़ निरंतर फलन है, तो सदैव लिप्सचिट्ज़ निरंतर मानचित्र M → 'R' उपस्तिथ होते हैं जो f का विस्तार करते हैं और f के समान लिप्सचिट्ज़ स्थिरांक रखते हैं (यह भी देखें) किर्स्ज़ब्रौन प्रमेय)। द्वारा एक्सटेंशन प्रदान किया जाता है
- :जहाँ k, U पर f के लिए लिप्सचिट्ज़ स्थिरांक है।
लिप्सचिट्ज़ मैनिफोल्ड्स
टोपोलॉजिकल मैनिफ़ोल्ड पर लिप्सचिट्ज़ संरचना को एटलस (टोपोलॉजी) का उपयोग करके परिभाषित किया गया है, जिसके संक्रमण मानचित्र बिलिप्सचिट्ज़ हैं; यह संभव है क्योंकि बिलिप्सचिट्ज़ मानचित्र छद्म समूह बनाते हैं। इस तरह की संरचना किसी को ऐसे मैनिफोल्ड्स के मध्य स्थानीय रूप से लिप्सचिट्ज़ मानचित्रों को परिभाषित करने की अनुमति देती है, उसी तरह जैसे कोई चिकनी अनेक गुना ्स के मध्य स्मूथ मानचित्र को परिभाषित करता है: यदि M और N लिप्सचिट्ज़ मैनिफ़ोल्ड हैं, फिर फलन स्थानीय रूप से लिप्सचिट्ज़ है यदि और केवल यदि समन्वय चार्ट की प्रत्येक जोड़ी के लिए और , कहाँ U और V संगत यूक्लिडियन रिक्त स्थान, रचना में खुले समूह हैं
एकतरफ़ा लिप्सचिट्ज़
मान लीजिए कि F(x) x का अर्ध-निरंतर|ऊपरी अर्ध-निरंतर फलन है, और F(x) सभी x के लिए बंद, उत्तल समूह है। तब F एकतरफ़ा लिप्सचिट्ज़ है[11] अगर
- कुछ C के लिए और सभी x के लिए1 और एक्स2.
यह संभव है कि फलन F में बहुत बड़ा लिप्सचिट्ज़ स्थिरांक हो किन्तु मध्यम आकार का, या यहां तक कि ऋणात्मक, तरफा लिप्सचिट्ज़ स्थिरांक हो। उदाहरण के लिए, फलन
लिप्सचिट्ज़ स्थिरांक K = 50 है और तरफा लिप्सचिट्ज़ स्थिरांक C = 0 है। उदाहरण जो तरफा लिप्सचिट्ज़ है किन्तु लिप्सचिट्ज़ निरंतर नहीं है वह F(x) = e है−x, C = 0 के साथ।
यह भी देखें
- Contraction mapping
- दीनी निरंतरता
- निरंतरता का मापांक
- अर्ध-आइसोमेट्री
- जॉनसन-लिंडेनस्ट्रॉस लेम्मा - किसी भी पूर्णांक n≥0 के लिए, कोई भी परिमित उपसमुच्चय X⊆'R'n, और कोई भी वास्तविक संख्या 0<ε<1, वहां (1+ε)-द्वि-लिप्सचिट्ज़ फलन उपस्तिथ है कहाँ
संदर्भ
- ↑ Sohrab, H. H. (2003). बुनियादी वास्तविक विश्लेषण. Vol. 231. Birkhäuser. p. 142. ISBN 0-8176-4211-0.
- ↑ Thomson, Brian S.; Bruckner, Judith B.; Bruckner, Andrew M. (2001). प्राथमिक वास्तविक विश्लेषण. Prentice-Hall. p. 623.
- ↑ Searcóid, Mícheál Ó (2006), "Lipschitz Functions", Metric Spaces, Springer undergraduate mathematics series, Berlin, New York: Springer-Verlag, ISBN 978-1-84628-369-7
- ↑ Benyamini, Yoav; Lindenstrauss, Joram (2000). ज्यामितीय अरेखीय कार्यात्मक विश्लेषण. American Mathematical Society. p. 11. ISBN 0-8218-0835-4.
- ↑ Burago, Dmitri; Burago, Yuri; Ivanov, Sergei (2001). मीट्रिक ज्यामिति में एक पाठ्यक्रम. American Mathematical Society. ISBN 0-8218-2129-6.
- ↑ Mahroo, Omar A; Shalchi, Zaid; Hammond, Christopher J (2014). "'Dilatation' and 'dilation': trends in use on both sides of the Atlantic". British Journal of Ophthalmology. 98 (6): 845–846. doi:10.1136/bjophthalmol-2014-304986. PMID 24568871.
- ↑ Gromov, Mikhael (1999). "Quantitative Homotopy Theory". In Rossi, Hugo (ed.). Prospects in Mathematics: Invited Talks on the Occasion of the 250th Anniversary of Princeton University, March 17-21, 1996, Princeton University. American Mathematical Society. p. 46. ISBN 0-8218-0975-X.
- ↑ Robbin, Joel W., Continuity and Uniform Continuity (PDF)
- ↑ 9.0 9.1 Rosenberg, Jonathan (1988). "लिप्सचिट्ज़ मैनिफोल्ड्स पर विश्लेषण के अनुप्रयोग". Miniconferences on harmonic analysis and operator algebras (Canberra, 1987). Canberra: Australian National University. pp. 269–283. MR954004
- ↑ "Topology of manifolds", Encyclopedia of Mathematics, EMS Press, 2001 [1994]
- ↑ Donchev, Tzanko; Farkhi, Elza (1998). "एक तरफा लिप्सचिट्ज़ विभेदक समावेशन की स्थिरता और यूलर अनुमान". SIAM Journal on Control and Optimization. 36 (2): 780–796. doi:10.1137/S0363012995293694.