रामीकरण (गणित): Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{Short description|Branching out of a mathematical structure}}
{{Short description|Branching out of a mathematical structure}}
{{Other uses|रामीकरण (बहुविकल्पी){{!}}रामीकरण}}
{{Other uses|रामीकरण (बहुविकल्पी){{!}}रामीकरण}}
[[Image:Schematic depiction of ramification.svg|right|thumb|300px|प्रभाव का योजनाबद्ध चित्रण: नीचे Y में लगभग सभी बिंदुओं के फाइबर्स में तीन बिंदु होते हैं, Y में बिंदुओं से चिह्नित दो बिंदुओं को छोड़कर, जहां फाइबर्स में क्रमशः एक और दो बिंदु (काले रंग में चिह्नित) होते हैं। कहा जाता है कि माप f, Y के इन बिंदुओं में फैला हुआ है।]][[ज्यामिति]] में, प्रभावीकरण 'शाखाओं का बाहर निकलना' है, जिस प्रकार से [[जटिल संख्या]]ओं के लिए [[वर्गमूल]] फ़ंक्शन में दो ''शाखाओं'' के चिह्न में भिन्नता देखी जा सकता है। इस शब्द का उपयोग विपरीत परिप्रेक्ष्य (शाखाओं के एक साथ आने) से भी किया जाता है, जैसे कि जब किसी स्थान के एक बिंदु पर माप अधोगमन (गणित) को कवर किया जाता है, तो मानचित्रण के फाइबर्स के कुछ निपात के साथ विकृत हो जाता है।
[[Image:Schematic depiction of ramification.svg|right|thumb|300px|प्रभाव का योजनाबद्ध चित्रण: नीचे Y में लगभग सभी बिंदुओं के फाइबर्स में तीन बिंदु होते हैं, Y में बिंदुओं से चिह्नित दो बिंदुओं को छोड़कर, जहां फाइबर्स में क्रमशः एक और दो बिंदु (काले रंग में चिह्नित) होते हैं। कहा जाता है कि माप f, Y के इन बिंदुओं में फैला हुआ है।]][[ज्यामिति]] में, प्रभावीकरण 'शाखाओं का बाहर निकलना' है, जिस प्रकार से [[जटिल संख्या|जटिल संख्याओं]] के लिए [[वर्गमूल]] फलन में दो ''शाखाओं'' के चिह्न में भिन्नता देखी जा सकता है। इस शब्द का उपयोग विपरीत परिप्रेक्ष्य (शाखाओं के एक साथ आने) से भी किया जाता है, जैसे कि जब किसी स्थान के एक बिंदु पर माप अधोगमन (गणित) को कवर किया जाता है, तो माप के फाइबर्स के कुछ निपात के साथ विकृत हो जाता है।


==जटिल विश्लेषण में==
==जटिल विश्लेषण में==
Line 11: Line 11:
एक कवरिंग माप में यूलर-पोंकारे विशेषता को शीटों की संख्या से गुणा किया जाना चाहिए; इसलिए उसमें से कुछ गिरावट से प्रभाव का पता लगाया जा सकता है। z → z<sup>n</sup> माप इसे एक स्थानीय प्रारूप के रूप में दिखाती है: यदि हम 0 यदि हम 0 < |''z''| < 1 को देखते हुए 0 को बाहर कर देते हैं, तो मान लें कि हमारे पास (समरूप दृष्टिकोण से) n-वें पावर मैप (यूलर-पोंकारे विशेषता 0) द्वारा स्वयं को मैप किया गया वलय है, किन्तु संपूर्ण [[डिस्क (गणित)]] के साथ यूलर-पोंकारे विशेषता 1 है, n – 1 'लुप्त हुए' बिन्दु हैं क्योंकि n शीट z = 0 पर एक साथ आते हैं।
एक कवरिंग माप में यूलर-पोंकारे विशेषता को शीटों की संख्या से गुणा किया जाना चाहिए; इसलिए उसमें से कुछ गिरावट से प्रभाव का पता लगाया जा सकता है। z → z<sup>n</sup> माप इसे एक स्थानीय प्रारूप के रूप में दिखाती है: यदि हम 0 यदि हम 0 < |''z''| < 1 को देखते हुए 0 को बाहर कर देते हैं, तो मान लें कि हमारे पास (समरूप दृष्टिकोण से) n-वें पावर मैप (यूलर-पोंकारे विशेषता 0) द्वारा स्वयं को मैप किया गया वलय है, किन्तु संपूर्ण [[डिस्क (गणित)]] के साथ यूलर-पोंकारे विशेषता 1 है, n – 1 'लुप्त हुए' बिन्दु हैं क्योंकि n शीट z = 0 पर एक साथ आते हैं।


ज्यामितीय शब्दों में, प्रभाव कुछ ऐसा है जो कोडिमेंशन दो (जैसे गाँठ सिद्धांत, और [[मोनोड्रोमी]]) में होता है; चूंकि वास्तविक कोडिमेंशन दो जटिल कोडिमेंशन एक है, स्थानीय जटिल उदाहरण उच्च-आयामी जटिल मैनिफोल्ड्स के लिए प्रारूप सेट करता है। जटिल विश्लेषण में, शीट को केवल एक रेखा (एक वेरिएबल) के साथ मोड़ा नहीं जा सकता है, या सामान्य स्थिति में एक उप-स्थान को कोडित नहीं किया जा सकता है। रेमिफिकेशन सेट (आधार पर शाखा स्थान, ऊपर दोहरा बिंदु सेट) परिवेश के [[कई गुना]] से कम दो वास्तविक आयाम होंगे, और इसलिए इसे दो 'पक्षों' में अलग नहीं किया जाएगा, स्थानीय रूप से - ऐसे पथ होंगे जो शाखा स्थान के चारों ओर घूमते हैं , जैसा कि उदाहरण में है। किसी भी क्षेत्र (गणित) पर [[बीजगणितीय ज्यामिति]] में, सादृश्य द्वारा, यह बीजगणितीय संहिता एक में भी होता है।
ज्यामितीय शब्दों में, प्रभाव कुछ ऐसा है जो कोडिमेंशन दो (जैसे गाँठ सिद्धांत, और [[मोनोड्रोमी]]) में होता है; चूंकि वास्तविक कोडिमेंशन दो जटिल कोडिमेंशन एक है, स्थानीय जटिल उदाहरण उच्च-आयामी जटिल मैनिफोल्ड्स के लिए प्रारूप सेट करता है। जटिल विश्लेषण में, शीट को केवल एक रेखा (एक वेरिएबल) के साथ मोड़ा नहीं जा सकता है, या सामान्य स्थिति में एक उप-स्थान को कोडित नहीं किया जा सकता है। रेमिफिकेशन सेट (आधार पर शाखा स्थान, ऊपर दोहरा बिंदु सेट) परिवेश के [[कई गुना]] से कम दो वास्तविक आयाम होंगे, और इसलिए इसे दो 'पक्षों' में अलग नहीं किया जाएगा, स्थानीय रूप से - ऐसे पथ होंगे जो शाखा स्थान के चारों ओर घूमते हैं , जैसा कि उदाहरण में है। किसी भी क्षेत्र (गणित) पर [[बीजगणितीय ज्यामिति]] में, सादृश्य द्वारा, यह बीजगणितीय आयाम एक में भी होता है।


==बीजगणितीय संख्या सिद्धांत में==
==बीजगणितीय संख्या सिद्धांत में==
Line 25: Line 25:
प्रभाव को <math>K</math> में [[सापेक्ष विभेदक]] द्वारा और <math>L</math> में सापेक्ष भिन्न द्वारा एन्कोड किया गया है। पहला <math>\mathcal{O}_K</math> का एक आदर्श है और यह <math>\mathfrak{p}</math> से विभाज्य है यदि और केवल तभी जब <math>\mathcal{O}_L</math> को विभाजित करने वाले कुछ आदर्श <math>\mathfrak{p}_i</math> को विभाजित किया जाता है। उत्तरार्द्ध <math>\mathcal{O}_L</math> का एक आदर्श है और यह ठीक उसी समय <math>\mathcal{O}_L</math>के मुख्य आदर्श <math>\mathfrak{p}_i</math>से विभाज्य होता है, जब <math>\mathfrak{p}_i</math> का प्रभाव होता है।
प्रभाव को <math>K</math> में [[सापेक्ष विभेदक]] द्वारा और <math>L</math> में सापेक्ष भिन्न द्वारा एन्कोड किया गया है। पहला <math>\mathcal{O}_K</math> का एक आदर्श है और यह <math>\mathfrak{p}</math> से विभाज्य है यदि और केवल तभी जब <math>\mathcal{O}_L</math> को विभाजित करने वाले कुछ आदर्श <math>\mathfrak{p}_i</math> को विभाजित किया जाता है। उत्तरार्द्ध <math>\mathcal{O}_L</math> का एक आदर्श है और यह ठीक उसी समय <math>\mathcal{O}_L</math>के मुख्य आदर्श <math>\mathfrak{p}_i</math>से विभाज्य होता है, जब <math>\mathfrak{p}_i</math> का प्रभाव होता है।


प्रभाव तब शांत होता है जब प्रभाव सूचकांक <math>e_i</math> सभी पी के अवशेष विशेषता P के लिए <math>\mathfrak{p}</math> अपेक्षाकृत प्रमुख होते हैं, अन्यथा अनियंत्रित होते हैं। [[गैलोज़ मापांक|गैलोज़ मॉड्यूल]] सिद्धांत में यह स्थिति महत्वपूर्ण है। डेडेकाइंड डोमेन का एक सीमित सामान्य रूप से étale एक्सटेंशन <math>B/A</math> अनुकूल में है यदि और केवल यदि ट्रेस <math>\operatorname{Tr}: B \to A</math> विशेषण है।
प्रभाव तब शांत होता है जब प्रभाव सूचकांक <math>e_i</math> सभी पी के अवशेष विशेषता P के लिए <math>\mathfrak{p}</math> अपेक्षाकृत प्रमुख होते हैं, अन्यथा अनियंत्रित होते हैं। [[गैलोज़ मापांक|गैलोज़ मॉड्यूल]] सिद्धांत में यह स्थिति महत्वपूर्ण है। डेडेकाइंड डोमेन का एक सीमित सामान्य रूप से ईटेल एक्सटेंशन <math>B/A</math> अनुकूल में है यदि और केवल यदि ट्रेस <math>\operatorname{Tr}: B \to A</math> विशेषण है।


===स्थानीय क्षेत्रों में===
===स्थानीय क्षेत्रों में===

Revision as of 13:03, 21 July 2023

प्रभाव का योजनाबद्ध चित्रण: नीचे Y में लगभग सभी बिंदुओं के फाइबर्स में तीन बिंदु होते हैं, Y में बिंदुओं से चिह्नित दो बिंदुओं को छोड़कर, जहां फाइबर्स में क्रमशः एक और दो बिंदु (काले रंग में चिह्नित) होते हैं। कहा जाता है कि माप f, Y के इन बिंदुओं में फैला हुआ है।

ज्यामिति में, प्रभावीकरण 'शाखाओं का बाहर निकलना' है, जिस प्रकार से जटिल संख्याओं के लिए वर्गमूल फलन में दो शाखाओं के चिह्न में भिन्नता देखी जा सकता है। इस शब्द का उपयोग विपरीत परिप्रेक्ष्य (शाखाओं के एक साथ आने) से भी किया जाता है, जैसे कि जब किसी स्थान के एक बिंदु पर माप अधोगमन (गणित) को कवर किया जाता है, तो माप के फाइबर्स के कुछ निपात के साथ विकृत हो जाता है।

जटिल विश्लेषण में

वर्गमूल की रीमैन सतह का उपयोग करना

जटिल विश्लेषण में, मूल मॉडल को z = 0 के पास जटिल तल में z → zn माप के रूप में लिया जा सकता है। यह रीमैन सतह सिद्धांत में क्रम n के प्रभाव का मानक स्थानीय चित्र है। यह उदाहरण के लिए जीनस (गणित) पर माप के प्रभाव के लिए रीमैन-हर्विट्ज़ सूत्र में होता है।

बीजगणितीय टोपोलॉजी में

एक कवरिंग माप में यूलर-पोंकारे विशेषता को शीटों की संख्या से गुणा किया जाना चाहिए; इसलिए उसमें से कुछ गिरावट से प्रभाव का पता लगाया जा सकता है। z → zn माप इसे एक स्थानीय प्रारूप के रूप में दिखाती है: यदि हम 0 यदि हम 0 < |z| < 1 को देखते हुए 0 को बाहर कर देते हैं, तो मान लें कि हमारे पास (समरूप दृष्टिकोण से) n-वें पावर मैप (यूलर-पोंकारे विशेषता 0) द्वारा स्वयं को मैप किया गया वलय है, किन्तु संपूर्ण डिस्क (गणित) के साथ यूलर-पोंकारे विशेषता 1 है, n – 1 'लुप्त हुए' बिन्दु हैं क्योंकि n शीट z = 0 पर एक साथ आते हैं।

ज्यामितीय शब्दों में, प्रभाव कुछ ऐसा है जो कोडिमेंशन दो (जैसे गाँठ सिद्धांत, और मोनोड्रोमी) में होता है; चूंकि वास्तविक कोडिमेंशन दो जटिल कोडिमेंशन एक है, स्थानीय जटिल उदाहरण उच्च-आयामी जटिल मैनिफोल्ड्स के लिए प्रारूप सेट करता है। जटिल विश्लेषण में, शीट को केवल एक रेखा (एक वेरिएबल) के साथ मोड़ा नहीं जा सकता है, या सामान्य स्थिति में एक उप-स्थान को कोडित नहीं किया जा सकता है। रेमिफिकेशन सेट (आधार पर शाखा स्थान, ऊपर दोहरा बिंदु सेट) परिवेश के कई गुना से कम दो वास्तविक आयाम होंगे, और इसलिए इसे दो 'पक्षों' में अलग नहीं किया जाएगा, स्थानीय रूप से - ऐसे पथ होंगे जो शाखा स्थान के चारों ओर घूमते हैं , जैसा कि उदाहरण में है। किसी भी क्षेत्र (गणित) पर बीजगणितीय ज्यामिति में, सादृश्य द्वारा, यह बीजगणितीय आयाम एक में भी होता है।

बीजगणितीय संख्या सिद्धांत में

परिमेय संख्याओं के बीजगणितीय विस्तार में

बीजगणितीय संख्या सिद्धांत में रामीकरण का अर्थ है किसी विस्तार में एक अभाज्य आदर्श गुणनखंडन जिससे कुछ दोहराए गए अभाज्य आदर्श गुणनखंड दिए जा सकें। अर्थात्, मान लीजिए कि एक बीजगणितीय संख्या क्षेत्र के पूर्णांकों का वलय बनें, और का एक प्रमुख आदर्श है। फ़ील्ड एक्सटेंशन के लिए हम पूर्णांक की रिंग (जो में का अभिन्न समापन है) और के आदर्श पर विचार कर सकते हैं। यह आदर्श अभाज्य हो भी सकता है और नहीं भी, लेकिन परिमित के लिए, इसका अभाज्य आदर्शों में गुणनखंडन होता है:

जहां के विशिष्ट अभाज्य आदर्श हैं। तब कहा जाता है कि का प्रभाव में पड़ता है यदि कुछ के लिए; अन्यथा यह अप्रभावित है. दूसरे शब्दों में, यदि प्रभाव सूचकांक कुछ के लिए एक से अधिक है, तो में प्रभाव डालता है। एक समतुल्य शर्त यह है कि में एक गैर-शून्य निलपोटेंट तत्व है: यह परिमित क्षेत्रों का उत्पाद नहीं है। रीमैन सतह स्थिति के साथ सादृश्य उन्नीसवीं सदी में रिचर्ड डेडेकाइंड और हेनरिक एम. वेबर द्वारा पहले ही बताया गया था।

प्रभाव को में सापेक्ष विभेदक द्वारा और में सापेक्ष भिन्न द्वारा एन्कोड किया गया है। पहला का एक आदर्श है और यह से विभाज्य है यदि और केवल तभी जब को विभाजित करने वाले कुछ आदर्श को विभाजित किया जाता है। उत्तरार्द्ध का एक आदर्श है और यह ठीक उसी समय के मुख्य आदर्श से विभाज्य होता है, जब का प्रभाव होता है।

प्रभाव तब शांत होता है जब प्रभाव सूचकांक सभी पी के अवशेष विशेषता P के लिए अपेक्षाकृत प्रमुख होते हैं, अन्यथा अनियंत्रित होते हैं। गैलोज़ मॉड्यूल सिद्धांत में यह स्थिति महत्वपूर्ण है। डेडेकाइंड डोमेन का एक सीमित सामान्य रूप से ईटेल एक्सटेंशन अनुकूल में है यदि और केवल यदि ट्रेस विशेषण है।

स्थानीय क्षेत्रों में

संख्या क्षेत्रों में प्रभाव का अधिक विस्तृत विश्लेषण P-एडिक संख्याओं के एक्सटेंशन का उपयोग करके किया जा सकता है, क्योंकि यह एक स्थानीय प्रश्न है। उस स्थिति में गैलोज़ एक्सटेंशन के लिए प्रभाव का एक मात्रात्मक माप मूल रूप से यह पूछकर परिभाषित किया जाता है कि गैलोज़ समूह मीट्रिक के संबंध में फ़ील्ड तत्वों को कितनी दूर तक ले जाता है। प्रभाव समूहों का एक क्रम परिभाषित किया गया है, जो (अन्य बातों के अतिरिक्त) अनियंत्रित (गैर-अनुकूल) प्रभाव को दर्शाता है। यह ज्यामितीय एनालॉग से आगे जाता है।

बीजगणित में

मूल्यांकन सिद्धांत में, मूल्यांकन का प्रभाव सिद्धांत एक क्षेत्र (गणित) K के मूल्यांकन (बीजगणित) के मूल्यांकन के विस्तार के सेट का K के विस्तार क्षेत्र तक अध्ययन करता है। यह बीजगणितीय संख्या सिद्धांत, स्थानीय क्षेत्रों और डेडेकाइंड डोमेन में धारणाओं को सामान्य बनाता है।

बीजगणितीय ज्यामिति में

बीजगणितीय ज्यामिति में असंबद्ध रूपवाद की संगत धारणा भी है। यह ईटेल आकारिकी को परिभाषित करने का कार्य करता है।

मान लीजिए कि योजनाओं का एक रूप बनें। क्वासिकोहेरेंट शीफ के समर्थन को का शाखा स्थान कहा जाता है और शाखा स्थान, , की छवि को का शाखा स्थान कहा जाता है। यदि हम ऐसा कहते हैं औपचारिक रूप से असंबद्ध है और यदि भी स्थानीय रूप से परिमित प्रस्तुति का है तो हम कहते हैं कि असंबद्ध रूपवाद है। (वकील 2017 देखें)

यह भी देखें

संदर्भ

  • Neukirch, Jürgen (1999). Algebraische Zahlentheorie. Grundlehren der mathematischen Wissenschaften. Vol. 322. Berlin: Springer-Verlag. ISBN 978-3-540-65399-8. MR 1697859. Zbl 0956.11021.
  • Vakil, Ravi (18 November 2017). The Rising Sea: Foundations of algebraic geometry (PDF). Retrieved 5 June 2019.


बाहरी संबंध