ऑनसेजर पारस्परिक संबंध: Difference between revisions
(text) |
|||
Line 8: | Line 8: | ||
यद्यपि द्रव प्रणाली को संभवतः सबसे सहज रूप से वर्णित किया गया है, विद्युत माप की उच्च परिशुद्धता विद्युत प्रतिभास से जुड़े प्रणाली में ऑनसागर की व्युत्क्रमता के प्रयोगात्मक प्रस्तुति को आसान बनाती है। वास्तव में, ऑनसागर का 1931 का पेपर<ref name="onsager" />[[ इलेक्ट्रोलीज़ |विद्युत अपघटन]] में [[थर्मोइलेक्ट्रिसिटी|तापविद्युत प्रभाव]] और परिवहन प्रतिभास को संदर्भित करता है जो 19वीं शताब्दी से अच्छी तरह से जाना जाता है, जिसमें क्रमशः थॉमसन और [[हेल्महोल्ट्ज़]] द्वारा "अर्ध-ऊष्मागतिक" सिद्धांत शामिल हैं। तापविद्युत प्रभाव में ऑनसागर की व्युत्क्रमता तापविद्युत सामग्री के पेल्टियर (वोल्टेज अंतर के कारण ऊष्मा प्रवाह) और सीबेक (तापमान अंतर के कारण विद्युत प्रवाह) गुणांक की समानता में प्रकट होती है। इसी प्रकार, तथाकथित "प्रत्यक्ष पीजोइलेक्ट्रिक प्रभाव (यांत्रिक तनाव से उत्पन्न विद्युत धारा) और रिवर्स [[पीज़ोइलेक्ट्रिक प्रभाव|दाबविद्युतिकी प्रभाव]] वोल्टेज अंतर से उत्पन्न विकृति) गुणांक बराबर हैं। कई गतिज प्रणालियों के लिए, जैसे बोल्ट्ज़मैन समीकरण या [[रासायनिक गतिकी]], ऑनसागर संबंध विस्तृत संतुलन के सिद्धांत से निकटता से जुड़े हुए है, ऑनसागर व्युत्क्रम संबंध और विस्तृत संतुलन<ref name="onsager" />और संतुलन के निकट रैखिक सन्निकटन में उनका अनुसरण करें। | यद्यपि द्रव प्रणाली को संभवतः सबसे सहज रूप से वर्णित किया गया है, विद्युत माप की उच्च परिशुद्धता विद्युत प्रतिभास से जुड़े प्रणाली में ऑनसागर की व्युत्क्रमता के प्रयोगात्मक प्रस्तुति को आसान बनाती है। वास्तव में, ऑनसागर का 1931 का पेपर<ref name="onsager" />[[ इलेक्ट्रोलीज़ |विद्युत अपघटन]] में [[थर्मोइलेक्ट्रिसिटी|तापविद्युत प्रभाव]] और परिवहन प्रतिभास को संदर्भित करता है जो 19वीं शताब्दी से अच्छी तरह से जाना जाता है, जिसमें क्रमशः थॉमसन और [[हेल्महोल्ट्ज़]] द्वारा "अर्ध-ऊष्मागतिक" सिद्धांत शामिल हैं। तापविद्युत प्रभाव में ऑनसागर की व्युत्क्रमता तापविद्युत सामग्री के पेल्टियर (वोल्टेज अंतर के कारण ऊष्मा प्रवाह) और सीबेक (तापमान अंतर के कारण विद्युत प्रवाह) गुणांक की समानता में प्रकट होती है। इसी प्रकार, तथाकथित "प्रत्यक्ष पीजोइलेक्ट्रिक प्रभाव (यांत्रिक तनाव से उत्पन्न विद्युत धारा) और रिवर्स [[पीज़ोइलेक्ट्रिक प्रभाव|दाबविद्युतिकी प्रभाव]] वोल्टेज अंतर से उत्पन्न विकृति) गुणांक बराबर हैं। कई गतिज प्रणालियों के लिए, जैसे बोल्ट्ज़मैन समीकरण या [[रासायनिक गतिकी]], ऑनसागर संबंध विस्तृत संतुलन के सिद्धांत से निकटता से जुड़े हुए है, ऑनसागर व्युत्क्रम संबंध और विस्तृत संतुलन<ref name="onsager" />और संतुलन के निकट रैखिक सन्निकटन में उनका अनुसरण करें। | ||
ऑनसागर व्युत्क्रम संबंधों के प्रायोगिक सत्यापन | ऑनसागर व्युत्क्रम संबंधों के प्रायोगिक सत्यापन डी। जी। मिलर द्वारा एकत्र और विश्लेषण <ref>{{cite journal | last=Miller | first=Donald G. | title=अपरिवर्तनीय प्रक्रियाओं की ऊष्मप्रवैगिकी। ऑनसागर पारस्परिक संबंधों का प्रायोगिक सत्यापन।| journal=Chemical Reviews | publisher=American Chemical Society (ACS) | volume=60 | issue=1 | year=1960 | issn=0009-2665 | doi=10.1021/cr60203a003 | pages=15–37| url=https://digital.library.unt.edu/ark:/67531/metadc1024467/ }}</ref> अपरिवर्तनीय प्रक्रियाओं के कई वर्गों के लिए, अर्थात् तापविद्युत प्रभाव, [[इलेक्ट्रोकेनेटिक घटनाएँ|वैद्युतगतिक]], [[इलेक्ट्रोलाइट|विद्युत अपघट्य]] (रसायन विज्ञान) में स्थानांतरण, [[प्रसार]], ऊष्मा संचालन और [[एनिसोट्रॉपिक|विषमदैशिकता]][[भौतिक विज्ञान की ठोस अवस्था|ठोस अवस्था]], [[थर्मोमैग्नेटिज्म|ताप चुंबकीय]] और[[ गैल्वेनोमैग्नेटिक | गैल्वेनोचुंबकीय]] में [[बिजली का संचालन]] किए गए थे। इस चिरसम्मत समीक्षा में, रासायनिक गतिकी को अल्प और अनिर्णायक "साक्ष्य वाले मामलों" के रूप में माना जाता है। आगे के सैद्धांतिक विश्लेषण और प्रयोग परिवहन के साथ रासायनिक गतिकी के व्युत्क्रम संबंधों का समर्थन करते हैं।<ref>{{cite journal | last1=Yablonsky | first1=G. S. |author-link=Grigoriy Yablonsky| last2=Gorban | first2=A. N. |author-link2=Alexander Nikolaevich Gorban| last3=Constales | first3=D. | last4=Galvita | first4=V. V. | last5=Marin | first5=G. B. | title=गतिज वक्रों के बीच पारस्परिक संबंध| journal=EPL (Europhysics Letters) | publisher=IOP Publishing | volume=93 | issue=2 | date=2011-01-01 | issn=0295-5075 | doi=10.1209/0295-5075/93/20004 | page=20004|arxiv=1008.1056| s2cid=17060474 }}</ref> किरचॉफ का ऊष्मा विकिरण का नियम [[थर्मोडायनामिक संतुलन|उष्मागतिक साम्य]] में भौतिक तत्व द्वारा तरंग दैर्ध्य-विशिष्ट विकिरण उत्सर्जन स्पेक्ट्रम और [[अवशोषण (विद्युत चुम्बकीय विकिरण)]] पर लागू ऑनसेजर व्युत्क्रम संबंधों का एक और विशेष मामला है। | ||
इन व्युत्क्रम संबंधों की खोज के लिए, लार्स ऑनसागर को रसायन विज्ञान में 1968 के नोबेल पुरस्कार से सम्मानित किया गया था। प्रस्तुति भाषण में ऊष्मगतिकी के तीन नियमों का उल्लेख किया गया और फिर यह कहा जा सकता है कि ऑनसागर के व्युत्क्रम संबंध अपरिवर्तनीय प्रक्रियाओं के ऊष्मागतिक अध्ययन को संभव बनाने वाले एक और नियम का प्रतिनिधित्व करते हैं।<ref>[http://nobelprize.org/nobel_prizes/chemistry/laureates/1968/press.html The Nobel Prize in Chemistry 1968. Presentation Speech.]</ref> कुछ लेखकों ने ऑनसागर के संबंधों को ऊष्मागतिकी के चौथे नियम के रूप में भी वर्णित किया है।<ref>{{cite journal | last=Wendt | first=Richard P. | title=इलेक्ट्रोलाइट समाधानों के लिए सरलीकृत परिवहन सिद्धांत| journal=Journal of Chemical Education | publisher=American Chemical Society (ACS) | volume=51 | issue=10 | year=1974 | issn=0021-9584 | doi=10.1021/ed051p646 | page=646}}</ref> | |||
== उदाहरण: द्रव प्रणाली == | == उदाहरण: द्रव प्रणाली == | ||
=== मौलिक समीकरण === | === मौलिक समीकरण === | ||
मूल [[थर्मोडायनामिक क्षमता|ऊष्मागतिक क्षमता]] आंतरिक [[ऊर्जा]] है। | मूल [[थर्मोडायनामिक क्षमता|ऊष्मागतिक क्षमता]] आंतरिक [[ऊर्जा]] है। साधारण द्रव प्रणाली में, [[श्यानता]] के प्रभावों की उपेक्षा करते हुए मौलिक ऊष्मागतिक समीकरण लिखा जाता है: | ||
<math display="block">\mathrm{d}U = T \, \mathrm{d}S - P \, \mathrm{d}V + \mu \, \mathrm{d}M</math> | <math display="block">\mathrm{d}U = T \, \mathrm{d}S - P \, \mathrm{d}V + \mu \, \mathrm{d}M</math> | ||
जहां U आंतरिक ऊर्जा है, T तापमान है, S एन्ट्रापी है, P | जहां ''U'' आंतरिक ऊर्जा है, ''T'' तापमान है, ''S'' एन्ट्रापी (परिक्षय) है, ''P'' द्रवस्थैतिक दबाव है, ''V'' आयतन है, <math>\mu</math> रासायनिक क्षमता और ''M'' द्रव्यमान है। आंतरिक ऊर्जा घनत्व, ''u'', एन्ट्रॉपी घनत्व ''s'', और द्रव्यमान घनत्व के संदर्भ में <math>\rho</math>, निश्चित आयतन पर मौलिक समीकरण लिखा है: | ||
<math display="block">\mathrm{d}u = T \, \mathrm{d}s + \mu \, \mathrm{d}\rho</math> | <math display="block">\mathrm{d}u = T \, \mathrm{d}s + \mu \, \mathrm{d}\rho</math> | ||
गैर-तरल या अधिक जटिल प्रणालियों के लिए कार्य अवधि का वर्णन करने वाले चर का | गैर-तरल या अधिक जटिल प्रणालियों के लिए कार्य अवधि का वर्णन करने वाले चर का अलग संग्रह होगा, लेकिन सिद्धांत समान है। एन्ट्रापी घनत्व के लिए उपरोक्त समीकरण को हल किया जा सकता है: | ||
<math display="block">\mathrm{d}s = \frac 1 T \, \mathrm{d}u + \frac {-\mu} T \, \mathrm{d}\rho</math> | <math display="block">\mathrm{d}s = \frac 1 T \, \mathrm{d}u + \frac {-\mu} T \, \mathrm{d}\rho</math> | ||
एन्ट्रापी परिवर्तन के संदर्भ में पहले | एन्ट्रापी परिवर्तन के संदर्भ में पहले नियम की उपरोक्त अभिव्यक्ति एन्ट्रोपिक संयुग्म चर (ऊष्मगतिकी) <math>u</math> और <math>\rho</math> को परिभाषित करती है, जो <math>1 / T</math> और <math>-\mu / T</math> हैं और [[संभावित ऊर्जा]] के अनुरूप गहन मात्रा हैं; उनके प्रवणपता को ऊष्मागतिक बल कहा जाता है क्योंकि वे संबंधित व्यापक चर के प्रवाह का कारण बनते हैं जैसा कि निम्नलिखित समीकरणों में व्यक्त किया गया है। | ||
=== निरंतरता समीकरण === | === निरंतरता समीकरण === | ||
Line 29: | Line 26: | ||
द्रव्यमान का संरक्षण स्थानीय रूप से इस तथ्य से व्यक्त होता है कि द्रव्यमान घनत्व का प्रवाह <math>\rho</math> निरंतरता समीकरण को संतुष्ट करता है: | द्रव्यमान का संरक्षण स्थानीय रूप से इस तथ्य से व्यक्त होता है कि द्रव्यमान घनत्व का प्रवाह <math>\rho</math> निरंतरता समीकरण को संतुष्ट करता है: | ||
<math display="block">\frac{\partial \rho}{\partial t} + \nabla \cdot \mathbf{J}_\rho = 0,</math> | <math display="block">\frac{\partial \rho}{\partial t} + \nabla \cdot \mathbf{J}_\rho = 0,</math> | ||
जहाँ <math>\mathbf{J}_\rho</math> द्रव्यमान प्रवाह सदिश है, ऊर्जा संरक्षण का सूत्रीकरण आम तौर पर निरंतरता समीकरण के रूप में नहीं होता है क्योंकि इसमें द्रव प्रवाह की स्थूल यांत्रिक ऊर्जा और सूक्ष्म आंतरिक ऊर्जा दोनों का योगदान शामिल होता है। हालाँकि, यदि हम मान लें कि द्रव का स्थूल वेग नगण्य है, तो हम निम्नलिखित रूप में ऊर्जा संरक्षण प्राप्त करते हैं: | |||
<math display="block">\frac{\partial u}{\partial t} + \nabla \cdot \mathbf{J}_u = 0,</math> | <math display="block">\frac{\partial u}{\partial t} + \nabla \cdot \mathbf{J}_u = 0,</math> | ||
जहाँ <math>u</math> आंतरिक ऊर्जा घनत्व है और <math>\mathbf{J}_u</math>आंतरिक ऊर्जा प्रवाह है। | |||
चूँकि हम | चूँकि हम सामान्य अपूर्ण तरल पदार्थ में रुचि रखते हैं, एन्ट्रापी स्थानीय रूप से संरक्षित नहीं होती है और इसके स्थानीय विकास को एन्ट्रापी घनत्व <math>s</math> के रूप में दिया जा सकता है जैसा | ||
<math display="block"> \frac{\partial s}{\partial t} + \nabla \cdot \mathbf{J}_s = \frac{\partial s_c}{\partial t}</math> | <math display="block"> \frac{\partial s}{\partial t} + \nabla \cdot \mathbf{J}_s = \frac{\partial s_c}{\partial t}</math> | ||
जहाँ <math display="inline">{\partial s_c}/{\partial t}</math> द्रव में होने वाली संतुलन की अपरिवर्तनीय प्रक्रियाओं के कारण एन्ट्रापी घनत्व में वृद्धि की दर है और <math>\mathbf{J}_s</math> एन्ट्रापी प्रवाह है। | |||
=== | === वृत्तिकीय समीकरण === | ||
पदार्थ प्रवाह की अनुपस्थिति में, फूरियर का नियम आमतौर पर लिखा जाता है: | पदार्थ प्रवाह की अनुपस्थिति में, फूरियर का नियम आमतौर पर लिखा जाता है: | ||
<math display="block">\mathbf{J}_{u} = -k\,\nabla T;</math> | <math display="block">\mathbf{J}_{u} = -k\,\nabla T;</math> | ||
जहाँ <math>k</math> तापीय चालकता है। हालाँकि, यह नियम केवल रैखिक सन्निकटन है, और केवल उस स्थिति के लिए लागू होता है <math>\nabla T \ll T</math>, तापीय चालकता संभवतः ऊष्मागतिक अवस्था चर का एक कार्य है, लेकिन उनके ग्रेडिएंट या परिवर्तन की समय दर नहीं है।{{Dubious|date=January 2022}} यह मानते हुए कि यह मामला है, फूरियर का नियम भी इसी तरह लिखा जा सकता है: | |||
<math display="block">\mathbf{J}_u = k T^2 \nabla \frac 1 T;</math> | <math display="block">\mathbf{J}_u = k T^2 \nabla \frac 1 T;</math> | ||
ऊष्मा प्रवाह की अनुपस्थिति में, फ़िक का प्रसार नियम आमतौर पर लिखा जाता है: | ऊष्मा प्रवाह की अनुपस्थिति में, फ़िक का प्रसार नियम आमतौर पर लिखा जाता है: | ||
Line 47: | Line 44: | ||
जहाँ D प्रसार का गुणांक है। चूँकि यह भी एक रैखिक सन्निकटन है और चूँकि रासायनिक क्षमता एक निश्चित तापमान पर घनत्व के साथ एकरस रूप से बढ़ रही है, फ़िक का नियम भी इसी तरह लिखा जा सकता है: | जहाँ D प्रसार का गुणांक है। चूँकि यह भी एक रैखिक सन्निकटन है और चूँकि रासायनिक क्षमता एक निश्चित तापमान पर घनत्व के साथ एकरस रूप से बढ़ रही है, फ़िक का नियम भी इसी तरह लिखा जा सकता है: | ||
<math display="block"> \mathbf{J}_{\rho} = D'\,\nabla \frac {-\mu} T </math> | <math display="block"> \mathbf{J}_{\rho} = D'\,\nabla \frac {-\mu} T </math> | ||
जहाँ, फिर से, <math>D'</math> ऊष्मागतिक स्थिति मापदंडों का एक कार्य है, लेकिन उनके ग्रेडिएंट या परिवर्तन की समय दर नहीं। सामान्य स्थिति के लिए जिसमें द्रव्यमान और ऊर्जा दोनों प्रवाह होते हैं, वृत्तिकीय समीकरण इस प्रकार लिखे जा सकते हैं: | |||
<math display="block"> \mathbf{J}_{u} = L_{uu} \, \nabla \frac 1 T + L_{u\rho} \, \nabla \frac {-\mu} T</math> | <math display="block"> \mathbf{J}_{u} = L_{uu} \, \nabla \frac 1 T + L_{u\rho} \, \nabla \frac {-\mu} T</math> | ||
<math display="block"> \mathbf{J}_{\rho} = L_{\rho u} \, \nabla \frac 1 T + L_{\rho\rho} \, \nabla \frac{-\mu} T</math> | <math display="block"> \mathbf{J}_{\rho} = L_{\rho u} \, \nabla \frac 1 T + L_{\rho\rho} \, \nabla \frac{-\mu} T</math> | ||
Line 62: | Line 59: | ||
निरंतरता समीकरणों का उपयोग करते हुए, [[एन्ट्रापी उत्पादन]] की दर अब लिखी जा सकती है: | निरंतरता समीकरणों का उपयोग करते हुए, [[एन्ट्रापी उत्पादन]] की दर अब लिखी जा सकती है: | ||
<math display="block">\frac{\partial s_c}{\partial t} = \mathbf{J}_u \cdot \nabla \frac 1 T + \mathbf{J}_\rho \cdot \nabla \frac {-\mu} T = \sum_\alpha \mathbf{J}_\alpha \cdot \nabla f_\alpha </math> | <math display="block">\frac{\partial s_c}{\partial t} = \mathbf{J}_u \cdot \nabla \frac 1 T + \mathbf{J}_\rho \cdot \nabla \frac {-\mu} T = \sum_\alpha \mathbf{J}_\alpha \cdot \nabla f_\alpha </math> | ||
और, | और, वृत्तिकीय समीकरणों को शामिल करते हुए: | ||
<math display="block">\frac{\partial s_c}{\partial t} = \sum_\alpha\sum_\beta L_{\alpha \beta}(\nabla f_\alpha) \cdot (\nabla f_\beta)</math> | <math display="block">\frac{\partial s_c}{\partial t} = \sum_\alpha\sum_\beta L_{\alpha \beta}(\nabla f_\alpha) \cdot (\nabla f_\beta)</math> | ||
यह देखा जा सकता है कि, चूंकि एन्ट्रापी उत्पादन गैर-नकारात्मक होना चाहिए, | यह देखा जा सकता है कि, चूंकि एन्ट्रापी उत्पादन गैर-नकारात्मक होना चाहिए, वृत्तिकीय गुणांक का ऑनसागर मैट्रिक्स <math>L_{\alpha \beta}</math> एक [[सकारात्मक अर्ध-निश्चित मैट्रिक्स]] है। | ||
=== ऑनसागर व्युत्क्रम संबंध === | === ऑनसागर व्युत्क्रम संबंध === | ||
ऑनसागर का योगदान न केवल यह प्रदर्शित करना था <math>L_{\alpha \beta}</math> सकारात्मक अर्ध-निश्चित, यह सममित भी है, उन मामलों को छोड़कर जहां समय-उलट समरूपता टूट गई है। दूसरे शब्दों में, क्रॉस-गुणांक <math>\ L_{u\rho}</math> और <math>\ L_{\rho u}</math> बराबर हैं। यह तथ्य कि वे कम से कम आनुपातिक हैं, सरल [[आयामी विश्लेषण]] द्वारा सुझाया गया है (यानी, दोनों गुणांक तापमान गुणा द्रव्यमान घनत्व की एक ही [[इकाई (माप)]] में मापा जाता है)। वेक्टर [[डॉट उत्पाद]] की समरूपता <math> (\nabla f_\alpha)\cdot(\nabla f_\beta) = (\nabla f_\beta)\cdot(\nabla f_\alpha) \,,</math> पिछले अनुभाग के अंतिम समीकरण में भी यही सुझाव दिया गया है <math> L_{\alpha\!\,\beta} \, \overset{\scriptscriptstyle ?}{=} \, L_{\beta\!\,\alpha} \,.</math> | ऑनसागर का योगदान न केवल यह प्रदर्शित करना था <math>L_{\alpha \beta}</math> सकारात्मक अर्ध-निश्चित, यह सममित भी है, उन मामलों को छोड़कर जहां समय-उलट समरूपता टूट गई है। दूसरे शब्दों में, क्रॉस-गुणांक <math>\ L_{u\rho}</math> और <math>\ L_{\rho u}</math> बराबर हैं। यह तथ्य कि वे कम से कम आनुपातिक हैं, सरल [[आयामी विश्लेषण]] द्वारा सुझाया गया है (यानी, दोनों गुणांक तापमान गुणा द्रव्यमान घनत्व की एक ही [[इकाई (माप)]] में मापा जाता है)। वेक्टर [[डॉट उत्पाद]] की समरूपता <math> (\nabla f_\alpha)\cdot(\nabla f_\beta) = (\nabla f_\beta)\cdot(\nabla f_\alpha) \,,</math> पिछले अनुभाग के अंतिम समीकरण में भी यही सुझाव दिया गया है <math> L_{\alpha\!\,\beta} \, \overset{\scriptscriptstyle ?}{=} \, L_{\beta\!\,\alpha} \,.</math> | ||
उपरोक्त सरल उदाहरण के लिए एन्ट्रापी उत्पादन की दर केवल दो एन्ट्रोपिक बलों और एक 2×2 ऑनसागर फेनोमेनोलॉजिकल मैट्रिक्स का उपयोग करती है। | उपरोक्त सरल उदाहरण के लिए एन्ट्रापी उत्पादन की दर केवल दो एन्ट्रोपिक बलों और एक 2×2 ऑनसागर फेनोमेनोलॉजिकल मैट्रिक्स का उपयोग करती है। प्रवाह के रैखिक सन्निकटन और एन्ट्रापी उत्पादन की दर की अभिव्यक्ति अक्सर कई सामान्य और जटिल प्रणालियों के लिए एक समान तरीके से व्यक्त की जा सकती है। | ||
== सार सूत्रीकरण == | == सार सूत्रीकरण == | ||
होने देना <math>x_1,x_2,\ldots,x_n</math> कई ऊष्मागतिक मात्राओं में संतुलन मूल्यों से उतार-चढ़ाव को निरूपित करें, और जाने दें <math>S(x_1,x_2,\ldots,x_n)</math> एन्ट्रापी | होने देना <math>x_1,x_2,\ldots,x_n</math> कई ऊष्मागतिक मात्राओं में संतुलन मूल्यों से उतार-चढ़ाव को निरूपित करें, और जाने दें <math>S(x_1,x_2,\ldots,x_n)</math> एन्ट्रापी हो। फिर, बोल्ट्ज़मैन का एन्ट्रापी सूत्र संभाव्यता वितरण फ़ंक्शन (भौतिकी) के लिए देता है <math>w =A\exp(S/k)</math>, जहां ए एक स्थिरांक है, क्योंकि उतार-चढ़ाव के दिए गए सेट की संभावना है <math>{x_1,x_2,\ldots,x_n}</math> उस उतार-चढ़ाव के साथ माइक्रोस्टेट्स की संख्या के समानुपाती होता है। यह मानते हुए कि उतार-चढ़ाव छोटा है, संभाव्यता वितरण फ़ंक्शन (भौतिकी) को एन्ट्रापी के दूसरे अंतर के माध्यम से व्यक्त किया जा सकता है<ref name="landau">{{cite book |title=सांख्यिकीय भौतिकी, भाग 1|last1=Landau |first1=L. D.| last2 = Lifshitz | first2 = E.M. |year=1975 |publisher=[[Butterworth-Heinemann]] |location=Oxford, UK |isbn=978-81-8147-790-3}}</ref> | ||
<math display="block">w = \tilde{A} e^{-\frac{1}{2} \beta_{ik} x_i x_k}\, ; \quad \beta_{ik} = \beta_{ki}= -\frac{1}{k} \frac{\partial^2 S}{\partial x_i \partial x_k}\, ,</math> | <math display="block">w = \tilde{A} e^{-\frac{1}{2} \beta_{ik} x_i x_k}\, ; \quad \beta_{ik} = \beta_{ki}= -\frac{1}{k} \frac{\partial^2 S}{\partial x_i \partial x_k}\, ,</math> | ||
जहां हम [[आइंस्टीन सारांश सम्मेलन]] का उपयोग कर रहे हैं और <math>\beta_{ik}</math> एक सकारात्मक निश्चित सममित मैट्रिक्स है। | जहां हम [[आइंस्टीन सारांश सम्मेलन]] का उपयोग कर रहे हैं और <math>\beta_{ik}</math> एक सकारात्मक निश्चित सममित मैट्रिक्स है। | ||
Line 78: | Line 75: | ||
अर्ध-स्थिर संतुलन सन्निकटन का उपयोग करते हुए, अर्थात, यह मानते हुए कि प्रणाली केवल थोड़ा सा [[गैर-संतुलन]] है, हमारे पास है<ref name="landau"/> <math>\dot{x}_i = -\lambda_{ik}x_k</math> | अर्ध-स्थिर संतुलन सन्निकटन का उपयोग करते हुए, अर्थात, यह मानते हुए कि प्रणाली केवल थोड़ा सा [[गैर-संतुलन]] है, हमारे पास है<ref name="landau"/> <math>\dot{x}_i = -\lambda_{ik}x_k</math> | ||
मान लीजिए हम ऊष्मागतिक संयुग्मी मात्राओं को इस प्रकार परिभाषित करते हैं <math display="inline">X_i = -\frac{1}{k}\frac{\partial S}{\partial x_i}</math>, जिसे रैखिक कार्यों के रूप में भी व्यक्त किया जा सकता है (छोटे उतार-चढ़ाव के लिए): <math>X_i= \beta_{ik}x_k</math> | मान लीजिए हम ऊष्मागतिक संयुग्मी मात्राओं को इस प्रकार परिभाषित करते हैं <math display="inline">X_i = -\frac{1}{k}\frac{\partial S}{\partial x_i}</math>, जिसे रैखिक कार्यों के रूप में भी व्यक्त किया जा सकता है (छोटे उतार-चढ़ाव के लिए): <math>X_i= \beta_{ik}x_k</math> | ||
इस प्रकार, हम लिख सकते हैं <math>\dot{x}_i=-\gamma_{ik}X_k</math> | इस प्रकार, हम लिख सकते हैं <math>\dot{x}_i=-\gamma_{ik}X_k</math> जहाँ <math>\gamma_{ik}=\lambda_{il}\beta^{-1}_{lk}</math> गतिज गुणांक कहलाते हैं | ||
गतिज गुणांकों की समरूपता का सिद्धांत या ऑनसागर सिद्धांत यह बताता है <math>\gamma</math> एक सममित मैट्रिक्स है, अर्थात् <math>\gamma_{ik} = \gamma_{ki}</math><ref name="landau"/> | गतिज गुणांकों की समरूपता का सिद्धांत या ऑनसागर सिद्धांत यह बताता है <math>\gamma</math> एक सममित मैट्रिक्स है, अर्थात् <math>\gamma_{ik} = \gamma_{ki}</math><ref name="landau"/> | ||
Line 86: | Line 83: | ||
===प्रमाण=== | ===प्रमाण=== | ||
माध्य मानों को परिभाषित करें <math>\xi_i(t)</math> और <math>\Xi_i(t)</math> उतार-चढ़ाव वाली मात्राओं का <math>x_i</math> और <math>X_i</math> क्रमशः इस प्रकार कि वे दिए गए मान लेते हैं <math>x_1,x_2,\ldots</math> पर <math>t=0</math> | माध्य मानों को परिभाषित करें <math>\xi_i(t)</math> और <math>\Xi_i(t)</math> उतार-चढ़ाव वाली मात्राओं का <math>x_i</math> और <math>X_i</math> क्रमशः इस प्रकार कि वे दिए गए मान लेते हैं <math>x_1,x_2,\ldots</math> पर <math>t=0</math>। ध्यान दें कि <math display="block">\dot{\xi}_i(t) = -\gamma_{ik}\Xi_k(t).</math> | ||
समय के उलटाव के तहत उतार-चढ़ाव की समरूपता का तात्पर्य है <math display="block">\langle x_i(t) x_k(0)\rangle = \langle x_i(-t) x_k(0) \rangle = \langle x_i(0) x_k(t) \rangle. </math> | समय के उलटाव के तहत उतार-चढ़ाव की समरूपता का तात्पर्य है <math display="block">\langle x_i(t) x_k(0)\rangle = \langle x_i(-t) x_k(0) \rangle = \langle x_i(0) x_k(t) \rangle. </math> | ||
या, साथ <math>\xi_i(t)</math>, अपने पास <math display="block">\langle \xi_i(t) x_k \rangle=\langle x_i \xi_k(t) \rangle.</math> | या, साथ <math>\xi_i(t)</math>, अपने पास <math display="block">\langle \xi_i(t) x_k \rangle=\langle x_i \xi_k(t) \rangle.</math> |
Revision as of 10:32, 20 July 2023
थर्मोडायनामिक्स |
---|
ऊष्मप्रवैगिकी में, ऑनसागर व्युत्क्रम संबंध संतुलन (थर्मो) से बाहर ऊष्मागतिक तंत्र में प्रवाह और बलों के बीच कुछ अनुपातों की समानता को व्यक्त करते हैं, लेकिन जहां स्थानीय उष्मागतिक साम्य की धारणा मौजूद होती है।
विभिन्न भौतिक प्रणालियों में बलों और प्रवाहों के विभिन्न युग्मों के बीच व्युत्क्रम संबंध होते हैं। उदाहरण के लिए, तापमान, पदार्थ घनत्व और दबाव के संदर्भ में वर्णित द्रव प्रणालियों पर विचार करते हैं। प्रणालियों के इस वर्ग में, यह ज्ञात है कि तापमान अंतर के कारण प्रणाली के ऊष्मा से ठंडे भागों की ओर ऊष्मा का प्रवाह होता है; इसी तरह, दबाव के अंतर के कारण पदार्थ उच्च दबाव से निम्न दबाव वाले क्षेत्रों की ओर प्रवाहित होगा। उल्लेखनीय बात यह है कि, जब दबाव और तापमान दोनों भिन्न होते हैं, तो निरंतर दबाव पर तापमान अंतर पदार्थ प्रवाह (संवहन में) का कारण बन सकता है और स्थिर तापमान पर दबाव अंतर ऊष्मा प्रवाह का कारण बन सकता है। शायद आश्चर्य की बात है कि दबाव अंतर की प्रति इकाई ऊष्मा प्रवाह और तापमान अंतर की प्रति इकाई घनत्व (पदार्थ) प्रवाह बराबर हैं। सूक्ष्म गतिशीलता (सूक्ष्म उत्क्रमणीयता) की समय उत्क्रमणीयता के परिणामस्वरूप सांख्यिकीय यांत्रिकी का उपयोग करके लार्स ऑनसागर द्वारा इस समानता को आवश्यक दिखाया गया था। ऑनसागर द्वारा विकसित सिद्धांत इस उदाहरण की तुलना में बहुत अधिक सामान्य है और एक साथ दो से अधिक ऊष्मागतिक बलों का उपचार करने में सक्षम है, इस सीमा के साथ कि "गतिशील उत्क्रमण का सिद्धांत तब लागू नहीं होता है जब (बाहरी) चुंबकीय क्षेत्र या कोरिओलिस बल मौजूद होते हैं", जिस स्थिति में "व्युत्क्रम संबंध टूट जाते हैं"।[1]
यद्यपि द्रव प्रणाली को संभवतः सबसे सहज रूप से वर्णित किया गया है, विद्युत माप की उच्च परिशुद्धता विद्युत प्रतिभास से जुड़े प्रणाली में ऑनसागर की व्युत्क्रमता के प्रयोगात्मक प्रस्तुति को आसान बनाती है। वास्तव में, ऑनसागर का 1931 का पेपर[1]विद्युत अपघटन में तापविद्युत प्रभाव और परिवहन प्रतिभास को संदर्भित करता है जो 19वीं शताब्दी से अच्छी तरह से जाना जाता है, जिसमें क्रमशः थॉमसन और हेल्महोल्ट्ज़ द्वारा "अर्ध-ऊष्मागतिक" सिद्धांत शामिल हैं। तापविद्युत प्रभाव में ऑनसागर की व्युत्क्रमता तापविद्युत सामग्री के पेल्टियर (वोल्टेज अंतर के कारण ऊष्मा प्रवाह) और सीबेक (तापमान अंतर के कारण विद्युत प्रवाह) गुणांक की समानता में प्रकट होती है। इसी प्रकार, तथाकथित "प्रत्यक्ष पीजोइलेक्ट्रिक प्रभाव (यांत्रिक तनाव से उत्पन्न विद्युत धारा) और रिवर्स दाबविद्युतिकी प्रभाव वोल्टेज अंतर से उत्पन्न विकृति) गुणांक बराबर हैं। कई गतिज प्रणालियों के लिए, जैसे बोल्ट्ज़मैन समीकरण या रासायनिक गतिकी, ऑनसागर संबंध विस्तृत संतुलन के सिद्धांत से निकटता से जुड़े हुए है, ऑनसागर व्युत्क्रम संबंध और विस्तृत संतुलन[1]और संतुलन के निकट रैखिक सन्निकटन में उनका अनुसरण करें।
ऑनसागर व्युत्क्रम संबंधों के प्रायोगिक सत्यापन डी। जी। मिलर द्वारा एकत्र और विश्लेषण [2] अपरिवर्तनीय प्रक्रियाओं के कई वर्गों के लिए, अर्थात् तापविद्युत प्रभाव, वैद्युतगतिक, विद्युत अपघट्य (रसायन विज्ञान) में स्थानांतरण, प्रसार, ऊष्मा संचालन और विषमदैशिकताठोस अवस्था, ताप चुंबकीय और गैल्वेनोचुंबकीय में बिजली का संचालन किए गए थे। इस चिरसम्मत समीक्षा में, रासायनिक गतिकी को अल्प और अनिर्णायक "साक्ष्य वाले मामलों" के रूप में माना जाता है। आगे के सैद्धांतिक विश्लेषण और प्रयोग परिवहन के साथ रासायनिक गतिकी के व्युत्क्रम संबंधों का समर्थन करते हैं।[3] किरचॉफ का ऊष्मा विकिरण का नियम उष्मागतिक साम्य में भौतिक तत्व द्वारा तरंग दैर्ध्य-विशिष्ट विकिरण उत्सर्जन स्पेक्ट्रम और अवशोषण (विद्युत चुम्बकीय विकिरण) पर लागू ऑनसेजर व्युत्क्रम संबंधों का एक और विशेष मामला है।
इन व्युत्क्रम संबंधों की खोज के लिए, लार्स ऑनसागर को रसायन विज्ञान में 1968 के नोबेल पुरस्कार से सम्मानित किया गया था। प्रस्तुति भाषण में ऊष्मगतिकी के तीन नियमों का उल्लेख किया गया और फिर यह कहा जा सकता है कि ऑनसागर के व्युत्क्रम संबंध अपरिवर्तनीय प्रक्रियाओं के ऊष्मागतिक अध्ययन को संभव बनाने वाले एक और नियम का प्रतिनिधित्व करते हैं।[4] कुछ लेखकों ने ऑनसागर के संबंधों को ऊष्मागतिकी के चौथे नियम के रूप में भी वर्णित किया है।[5]
उदाहरण: द्रव प्रणाली
मौलिक समीकरण
मूल ऊष्मागतिक क्षमता आंतरिक ऊर्जा है। साधारण द्रव प्रणाली में, श्यानता के प्रभावों की उपेक्षा करते हुए मौलिक ऊष्मागतिक समीकरण लिखा जाता है:
निरंतरता समीकरण
द्रव्यमान का संरक्षण स्थानीय रूप से इस तथ्य से व्यक्त होता है कि द्रव्यमान घनत्व का प्रवाह निरंतरता समीकरण को संतुष्ट करता है:
चूँकि हम सामान्य अपूर्ण तरल पदार्थ में रुचि रखते हैं, एन्ट्रापी स्थानीय रूप से संरक्षित नहीं होती है और इसके स्थानीय विकास को एन्ट्रापी घनत्व के रूप में दिया जा सकता है जैसा
वृत्तिकीय समीकरण
पदार्थ प्रवाह की अनुपस्थिति में, फूरियर का नियम आमतौर पर लिखा जाता है:
एन्ट्रापी उत्पादन की दर
मूलभूत समीकरण से, यह इस प्रकार है:
ऑनसागर व्युत्क्रम संबंध
ऑनसागर का योगदान न केवल यह प्रदर्शित करना था सकारात्मक अर्ध-निश्चित, यह सममित भी है, उन मामलों को छोड़कर जहां समय-उलट समरूपता टूट गई है। दूसरे शब्दों में, क्रॉस-गुणांक और बराबर हैं। यह तथ्य कि वे कम से कम आनुपातिक हैं, सरल आयामी विश्लेषण द्वारा सुझाया गया है (यानी, दोनों गुणांक तापमान गुणा द्रव्यमान घनत्व की एक ही इकाई (माप) में मापा जाता है)। वेक्टर डॉट उत्पाद की समरूपता पिछले अनुभाग के अंतिम समीकरण में भी यही सुझाव दिया गया है उपरोक्त सरल उदाहरण के लिए एन्ट्रापी उत्पादन की दर केवल दो एन्ट्रोपिक बलों और एक 2×2 ऑनसागर फेनोमेनोलॉजिकल मैट्रिक्स का उपयोग करती है। प्रवाह के रैखिक सन्निकटन और एन्ट्रापी उत्पादन की दर की अभिव्यक्ति अक्सर कई सामान्य और जटिल प्रणालियों के लिए एक समान तरीके से व्यक्त की जा सकती है।
सार सूत्रीकरण
होने देना कई ऊष्मागतिक मात्राओं में संतुलन मूल्यों से उतार-चढ़ाव को निरूपित करें, और जाने दें एन्ट्रापी हो। फिर, बोल्ट्ज़मैन का एन्ट्रापी सूत्र संभाव्यता वितरण फ़ंक्शन (भौतिकी) के लिए देता है , जहां ए एक स्थिरांक है, क्योंकि उतार-चढ़ाव के दिए गए सेट की संभावना है उस उतार-चढ़ाव के साथ माइक्रोस्टेट्स की संख्या के समानुपाती होता है। यह मानते हुए कि उतार-चढ़ाव छोटा है, संभाव्यता वितरण फ़ंक्शन (भौतिकी) को एन्ट्रापी के दूसरे अंतर के माध्यम से व्यक्त किया जा सकता है[6]
अर्ध-स्थिर संतुलन सन्निकटन का उपयोग करते हुए, अर्थात, यह मानते हुए कि प्रणाली केवल थोड़ा सा गैर-संतुलन है, हमारे पास है[6] मान लीजिए हम ऊष्मागतिक संयुग्मी मात्राओं को इस प्रकार परिभाषित करते हैं , जिसे रैखिक कार्यों के रूप में भी व्यक्त किया जा सकता है (छोटे उतार-चढ़ाव के लिए): इस प्रकार, हम लिख सकते हैं जहाँ गतिज गुणांक कहलाते हैं
गतिज गुणांकों की समरूपता का सिद्धांत या ऑनसागर सिद्धांत यह बताता है एक सममित मैट्रिक्स है, अर्थात् [6]
प्रमाण
माध्य मानों को परिभाषित करें और उतार-चढ़ाव वाली मात्राओं का और क्रमशः इस प्रकार कि वे दिए गए मान लेते हैं पर । ध्यान दें कि
यह भी देखें
- लार्स ऑनसागर
- लैंग्विन समीकरण
संदर्भ
- ↑ 1.0 1.1 1.2 Onsager, Lars (1931-02-15). "अपरिवर्तनीय प्रक्रियाओं में पारस्परिक संबंध। मैं।". Physical Review. American Physical Society (APS). 37 (4): 405–426. doi:10.1103/physrev.37.405. ISSN 0031-899X.
- ↑ Miller, Donald G. (1960). "अपरिवर्तनीय प्रक्रियाओं की ऊष्मप्रवैगिकी। ऑनसागर पारस्परिक संबंधों का प्रायोगिक सत्यापन।". Chemical Reviews. American Chemical Society (ACS). 60 (1): 15–37. doi:10.1021/cr60203a003. ISSN 0009-2665.
- ↑ Yablonsky, G. S.; Gorban, A. N.; Constales, D.; Galvita, V. V.; Marin, G. B. (2011-01-01). "गतिज वक्रों के बीच पारस्परिक संबंध". EPL (Europhysics Letters). IOP Publishing. 93 (2): 20004. arXiv:1008.1056. doi:10.1209/0295-5075/93/20004. ISSN 0295-5075. S2CID 17060474.
- ↑ The Nobel Prize in Chemistry 1968. Presentation Speech.
- ↑ Wendt, Richard P. (1974). "इलेक्ट्रोलाइट समाधानों के लिए सरलीकृत परिवहन सिद्धांत". Journal of Chemical Education. American Chemical Society (ACS). 51 (10): 646. doi:10.1021/ed051p646. ISSN 0021-9584.
- ↑ 6.0 6.1 6.2 Landau, L. D.; Lifshitz, E.M. (1975). सांख्यिकीय भौतिकी, भाग 1. Oxford, UK: Butterworth-Heinemann. ISBN 978-81-8147-790-3.