अशक्त तुल्यता (होमोटॉपी सिद्धांत): Difference between revisions

From Vigyanwiki
No edit summary
Line 38: Line 38:
*{{Citation | author1-first=Arne | author1-last=Strøm | title=The homotopy category is a homotopy category | journal=Archiv der Mathematik | volume=23 | pages=435–441 | year=1972 | mr=0321082 | doi=10.1007/BF01304912}}
*{{Citation | author1-first=Arne | author1-last=Strøm | title=The homotopy category is a homotopy category | journal=Archiv der Mathematik | volume=23 | pages=435–441 | year=1972 | mr=0321082 | doi=10.1007/BF01304912}}


{{DEFAULTSORT:Weak Equivalence}}[[Category: समरूपता सिद्धांत]] [[Category: सजातीय बीजगणित]] [[Category: समतुल्यता (गणित)]]
{{DEFAULTSORT:Weak Equivalence}}


 
[[Category:Created On 08/07/2023|Weak Equivalence]]
 
[[Category:Machine Translated Page|Weak Equivalence]]
[[Category: Machine Translated Page]]
[[Category:Pages with script errors|Weak Equivalence]]
[[Category:Created On 08/07/2023]]
[[Category:Templates Vigyan Ready|Weak Equivalence]]
[[Category:Vigyan Ready]]
[[Category:सजातीय बीजगणित|Weak Equivalence]]
[[Category:समतुल्यता (गणित)|Weak Equivalence]]
[[Category:समरूपता सिद्धांत|Weak Equivalence]]

Revision as of 14:44, 28 July 2023

गणित में, अशक्त तुल्यता (होमोटॉपी सिद्धांत) की एक धारणा है जो कुछ अर्थों में उन वस्तुओं की पहचान करती है जिनका "आकार" समान होता है। मॉडल श्रेणी की स्वयंसिद्ध परिभाषा में इस धारणा को औपचारिक रूप दिया गया है।

मॉडल श्रेणी एक ऐसी श्रेणी है जिसमें आकारिकी के वर्ग होते हैं जिन्हें तनु समकक्ष, तंतु और सह-तंतु कहा जाता है, जो कई स्वयंसिद्धों को संतुष्ट करता है। एक मॉडल श्रेणी की संबद्ध होमोटॉपी श्रेणी में समान वस्तुएं होती हैं, लेकिन तनु समकक्षों को समरूपता में बदलने के लिए रूपवाद को बदल दिया जाता है।  यह एक उपयोगी अवलोकन है कि संबंधित होमोटॉपी श्रेणी केवल तनु समकक्षों पर निर्भर करती है, फ़ाइब्रेशन और सह-फाइब्रेशन पर नहीं है।

टोपोलॉजिकल स्पेस

क्विलेन द्वारा मॉडल श्रेणियों को होमोटोपी सिद्धांत के स्वयंसिद्धीकरण के रूप में परिभाषित किया गया था जो टोपोलॉजिकल रिक्त स्थान पर लागू होता है, लेकिन बीजगणित और ज्यामिति में कई अन्य श्रेणियों पर भी लागू होता है। जिस उदाहरण ने विषय को प्रारम्भ किया वह टोपोलॉजिकल रिक्त स्थान की श्रेणी है जिसमें सेरे फाइब्रेशन को फाइब्रेशन के रूप में और अशक्त होमोटॉपी समकक्ष को अशक्त समकक्ष के रूप में सम्मिलित किया गया है (इस मॉडल संरचना के लिए कोफाइब्रेशन को सापेक्ष सेल सम्मिश्र XY [1] के रिट्रेक्ट के रूप में वर्णित किया जा सकता है)। परिभाषा के अनुसार, यदि पथ घटकों के सेट पर प्रेरित कार्य होता है, तो रिक्त स्थान की निरंतर मैपिंग f: XY को तनु होमोटॉपी तुल्यता कहा जाता है।

विशेषण है, और प्रत्येक बिंदु x के लिए X और प्रत्येक n ≥ 1, प्रेरित समरूपता

होमोटोपी समूहों पर विशेषण है। (X और Y पथ से जुड़े के लिए, पहली शर्त स्वचालित है, और यह x में एकल बिंदु X के लिए दूसरी शर्त बताने के लिए पर्याप्त है।)

केवल जुड़े हुए टोपोलॉजिकल स्पेस X और Y के लिए, मैप f: XY तनु होमोटोपी तुल्यता है यदि और केवल अगर प्रेरित होमोमोर्फिज्म f*: Hn(X,Z) → Hn(Y,Z) एकवचन होमोलॉजी समूहों पर सभी n के लिए विशेषण है।[2] इसी तरह, केवल जुड़े हुए स्थानों के लिए X और Y, एक मैप f: X → Y एक तनु होमोटोपी तुल्यता है यदि और केवल अगर पुलबैक होमोमोर्फिज्म f*: Hn(Y,Z) → Hn(X,Z) एकवचन समरूपता पर सभी n के लिए विशेषण है।[3]

उदाहरण: X को प्राकृतिक संख्याओं का सेट होने दें { 0, 1, 2, ... } और Y को सेट होने दें { 0 } ∪ 1, 1/2, 1 / 3, ...}, दोनों वास्तविक लाइन से उप-स्थलाकृति के साथ परिभाषित करें f: X → Y मैपिंग द्वारा 0 से 0 और n से 1/n तक धनात्मक पूर्णांक n के लिए. फिर f निरंतर है, और वास्तव में एक तनु होमोटोपी तुल्यता है, लेकिन यह होमोटोपी तुल्यता नहीं है।

टोपोलॉजिकल स्पेस की श्रेणी में कई अन्य मॉडल संरचनाओं पर भी विचार किया गया है. उदाहरण के लिए, टोपोलॉजिकल स्पेस पर स्ट्रॉम मॉडल संरचना में, फ़ाइब्रेशन ह्यूरविक्ज़ फ़िब्रेशन हैं और तनु समतुल्य होमोटोपी समकक्ष हैं।

श्रृंखला सम्मिश्र

कुछ अन्य महत्वपूर्ण मॉडल श्रेणियों में चेन सम्मिश्र सम्मिलित हैं। मान लीजिए A ग्रोथेंडिक एबेलियन श्रेणी है, उदाहरण के लिए, रिंग पर मॉड्यूल की श्रेणी या टोपोलॉजिकल स्पेस पर एबेलियन समूहों के शीव्स की श्रेणी। A में वस्तुओं के सम्मिश्र X के साथ श्रेणी C(A) को परिभाषित करें,

और शृंखला मानचित्रों में रूपवाद। (यह A की वस्तुओं के "कोचेन सम्मिश्र" पर विचार करने के बराबर है, जहां क्रमांकन इस प्रकार लिखा जाता है

केवल Xi = Xi.को परिभाषित करके।)

श्रेणी C(A) में एक मॉडल संरचना होती है जिसमें सह-फाइब्रेशन मोनोमोर्फिज्म होते हैं और तनु समकक्ष अअर्ध-समरूपता होते हैं।[4] परिभाषा के अनुसार, श्रृंखला मानचित्र f: X → Y अर्ध-समरूपता है यदि प्रेरित समरूपता है

होमोलॉजी पर सभी पूर्णांकों n के लिए एक समरूपता है। (यहाँ Hn(X) A का ऑब्जेक्ट है जिसे XnXn−1 मॉड्यूलो Xn+1Xn की छवि के कर्नेल के रूप में परिभाषित किया गया है।) परिणामी समरूप श्रेणी को व्युत्पन्न श्रेणी D(A) कहा जाता है।

ट्रिवियल फाइब्रेशन और ट्रिवियल कोफाइब्रेशन

किसी भी मॉडल श्रेणी में, फाइब्रेशन जो तनु तुल्यता भी है, को ट्रिवियल (या अचक्रीय) फ़िब्रेशन कहा जाता है। सह-फाइब्रेशन जो तनु तुल्यता भी है, को तुच्छ (या एसाइक्लिक) सह-फाइब्रेशन कहा जाता है।

टिप्पणियाँ

  1. Hatcher (2002), Theorem 4.32.
  2. Is there the Whitehead theorem for cohomology theory?
  3. Strøm (1972).
  4. Beke (2000), Proposition 3.13.

संदर्भ

  • Beke, Tibor (2000), "Sheafifiable homotopy model categories", Mathematical Proceedings of the Cambridge Philosophical Society, 129: 447–473, arXiv:math/0102087, Bibcode:2000MPCPS.129..447B, doi:10.1017/S0305004100004722, MR 1780498
  • Hatcher, Allen (2002), Algebraic Topology, Cambridge University Press, ISBN 0-521-79540-0, MR 1867354
  • Hovey, Mark (1999), Model Categories (PDF), American Mathematical Society, ISBN 0-8218-1359-5, MR 1650134
  • Strøm, Arne (1972), "The homotopy category is a homotopy category", Archiv der Mathematik, 23: 435–441, doi:10.1007/BF01304912, MR 0321082