समतुल्य अवकल रूप: Difference between revisions

From Vigyanwiki
No edit summary
 
Line 19: Line 19:
* {{Citation | last1=Berline | first1=Nicole | last2=Getzler | first2=E. | last3=Vergne | first3=Michèle | title=Heat Kernels and Dirac Operators | publisher=Springer |isbn=978-3-540-20062-8 |url={{GBurl|_e2FjvLbO94C|pg=PP1}} | year=2004}}
* {{Citation | last1=Berline | first1=Nicole | last2=Getzler | first2=E. | last3=Vergne | first3=Michèle | title=Heat Kernels and Dirac Operators | publisher=Springer |isbn=978-3-540-20062-8 |url={{GBurl|_e2FjvLbO94C|pg=PP1}} | year=2004}}


[[Category: विभेदक ज्यामिति]]




{{differential-geometry-stub}}
{{differential-geometry-stub}}


 
[[Category:All stub articles]]
 
[[Category: Machine Translated Page]]
[[Category:Created On 03/07/2023]]
[[Category:Created On 03/07/2023]]
[[Category:Vigyan Ready]]
[[Category:Differential geometry stubs]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Templates Vigyan Ready]]
[[Category:विभेदक ज्यामिति]]

Latest revision as of 16:38, 29 July 2023

अवकल ज्यामिति में, एक बहुपद M पर एक समतुल्य अवकल रूप, जिस पर एक ली समूह G द्वारा कार्य किया जाता है, एक बहुपद  प्रतिचित्र  है

ली बीजगणित से M पर अवकल रूपों के स्थान पर जो समतुल्य हैं; अर्थात:

दूसरे शब्दों में, एक समतुल्य अवकल रूप एक अपरिवर्तनीय तत्व है।[1]

समतुल्य अवकल रूप के लिए , समतुल्य बाहरी व्युत्पन्न का द्वारा परिभाषित किया गया है

जहां d सामान्य बाह्य व्युत्पन्न है और X द्वारा उत्पन्न मौलिक सदिश फ़ील्ड द्वारा आंतरिक उत्पाद है। इसे देखना आसान है ((इस तथ्य का उपयोग करें कि ली व्युत्पन्न के साथ में शून्य है) और फिर एक डालता है।

जिसे M की समतुल्य सहसंगति कहा जाता है (जो बोरेल निर्माण के संदर्भ में परिभाषित सामान्य समतुल्य सहसंगति से मेल खाता है।) यह परिभाषा एच. कार्टन के कारण है। यह धारणा समवर्ती सूचकांक सिद्धांत पर लागू होती है।

-संवृत या -सटीक रूपों को समान रूप से संवृत या समान रूप से शुद्ध कहा जाता है।

स्थानीयकरण सूत्र के माध्यम से एक समान रूप से संवृत फॉर्म के अभिन्न अंग का समाकलन उसके प्रतिबंध से निश्चित बिंदु तक किया जा सकता है।

संदर्भ

  1. Proof: with , we have: Note is the ring of polynomials in linear functionals of ; see ring of polynomial functions. See also https://math.stackexchange.com/q/101453 for M. Emerton's comment.
  • Berline, Nicole; Getzler, E.; Vergne, Michèle (2004), Heat Kernels and Dirac Operators, Springer, ISBN 978-3-540-20062-8