सरल क्षेत्र: Difference between revisions
(→गुण) |
(→गुण) |
||
Line 14: | Line 14: | ||
[[ऊपरी सीमा प्रमेय]] संख्याओं f के लिए ऊपरी सीमा देता है<sub>''i''</sub> एफ के साथ किसी भी प्रतिसमुच्चीय डी-क्षेत्र के आई-फेस का<sub>0</sub> = n शीर्ष. यह अनुमान 1970 में पीटर मैकमुलेन द्वारा प्रतिसमुच्चीय उत्तल पॉलीटोप्स के लिए सिद्ध किया गया था<ref>{{cite journal |last=McMullen |first=P. |title=उत्तल पॉलीटोप्स के लिए ऊपरी सीमा वाले अनुमान पर|journal=Journal of Combinatorial Theory, Series B |volume=10 |year=1971 |pages=187–200 |doi=10.1016/0095-8956(71)90042-6 |doi-access=free }}</ref> और 1975 में सामान्य प्रतिसमुच्चीय गोलाों के लिए रिचर्ड पी. स्टेनली द्वारा। | [[ऊपरी सीमा प्रमेय]] संख्याओं f के लिए ऊपरी सीमा देता है<sub>''i''</sub> एफ के साथ किसी भी प्रतिसमुच्चीय डी-क्षेत्र के आई-फेस का<sub>0</sub> = n शीर्ष. यह अनुमान 1970 में पीटर मैकमुलेन द्वारा प्रतिसमुच्चीय उत्तल पॉलीटोप्स के लिए सिद्ध किया गया था<ref>{{cite journal |last=McMullen |first=P. |title=उत्तल पॉलीटोप्स के लिए ऊपरी सीमा वाले अनुमान पर|journal=Journal of Combinatorial Theory, Series B |volume=10 |year=1971 |pages=187–200 |doi=10.1016/0095-8956(71)90042-6 |doi-access=free }}</ref> और 1975 में सामान्य प्रतिसमुच्चीय गोलाों के लिए रिचर्ड पी. स्टेनली द्वारा। | ||
1970 में मैकमुलेन द्वारा तैयार किया गया '' | 1970 में मैकमुलेन द्वारा तैयार किया गया ''g''-अनुमान, प्रतिसमुच्चीय ''d''-गोला के ''एफ''-वेक्टरों के संपूर्ण लक्षण वर्णन के लिए कहता है। दूसरे शब्दों में, एक प्रतिसमुच्चीय ''डी''-गोले के लिए प्रत्येक आयाम के चेहरों की संख्या का संभावित क्रम क्या है? बहुपदीय क्षेत्रों के मामले में, उत्तर ''जी''-प्रमेय द्वारा दिया गया है, जिसे 1979 में बिलेरा और ली (अस्तित्व) और स्टेनली (आवश्यकता) द्वारा सिद्ध किया गया था। यह अनुमान लगाया गया है कि सामान्य प्रतिसमुच्चीय गोलाों के लिए समान स्थितियाँ आवश्यक हैं। यह अनुमान दिसंबर 2018 में करीम एडिप्रासिटो द्वारा सिद्ध किया गया था।<ref name=":0" /><ref name=":1">{{Cite web|url=https://gilkalai.wordpress.com/2018/12/25/amazing-karim-adiprasito-proved-the-g-conjecture-for-spheres/|title=Amazing: Karim Adiprasito proved the g-conjecture for spheres!|last=Kalai|first=Gil|date=2018-12-25|website=Combinatorics and more|language=en|access-date=2018-12-25}}</ref> | ||
== यह भी देखें == | == यह भी देखें == | ||
* डेन-सोमरविले समीकरण | * [[डेन-सोमरविले समीकरण]] | ||
== संदर्भ == | == संदर्भ == |
Revision as of 00:04, 24 July 2023
ज्यामिति और साहचर्य में, एक प्रतिसमुच्चीय (या संयोजी) डी- गोला, डी-आयामी क्षेत्र के लिए एक प्रतिसमुच्चीयसंकुल होम्योमॉर्फिक है। कुछ प्रतिसमुच्चीय गोले उत्तल बहुतलीय की सीमाओं के रूप में उत्पन्न होते हैं, हालाँकि, उच्च आयामों में अधिकांश प्रतिसमुच्चीय गोले इस तरह से प्राप्त नहीं किए जा सकते हैं।
इस क्षेत्र में एक महत्वपूर्ण विवृत प्रश्न पीटर मैकमुलेन द्वारा तैयार किया गया g-अनुमान था, जो एक प्रतिसमुच्चीय गोला के विभिन्न आयामों के फलको की संभावित संख्या के बारे में पता लगता है। दिसंबर 2018 में, तर्कसंगत समजातता क्षेत्रों के अधिक सामान्य संदर्भ में g-अनुमान को करीम एडिप्रासिटो द्वारा सिद्ध किया गया था।[1][2]
उदाहरण
- किसी भी n ≥ 3 के लिए, प्रतिसमुच्चीय n-चक्र Cn एक प्रतिसमुच्चीय वृत्त है, अर्थात आयाम 1 का एक प्रतिसमुच्चीय गोला है। यह निर्माण सभी प्रतिसमुच्चीय वृत्तों का निर्माण करता है।
- R3 में त्रिकोणीय फलकों वाले उत्तल बहुफलक की सीमा, जैसे अष्टफलक या विंशतिफलक, एक प्रतिसमुच्चीय 2-गोला है।
- सामान्य रूप से, यूक्लिडियन समष्टि में किसी भी (d+1)-आयामी सघन (या परिबद्ध) प्रतिसमुच्चीय उत्तल बहुतलीय की सीमा एक प्रतिसमुच्चीय d-गोला है।
गुण
यूलर के सूत्र से यह पता चलता है कि n शीर्षों वाले किसी भी प्रतिसमुच्चीय 2-गोले में 3n - 6 किनारे और 2n - 4 फलक होते हैं। n = 4 की स्थिति चतुष्फलक द्वारा संपादित होती है। बैरीसेंट्रिक उपखंड को बार-बार निष्पादित करके, किसी भी n ≥ 4 के लिए एक प्रतिसमुच्चीय गोला का निर्माण करना आसान है। इसके अलावा, अर्नेस्ट स्टीनिट्ज़ ने 'आर' में उत्तल पॉलीटोप्स के 1-स्केलेटा (या किनारे ग्राफ) की एक स्टीनित्ज़ प्रमेय | विशेषता दी है।3 इसका अर्थ यह है कि कोई भी प्रतिसमुच्चीय 2-गोला एक उत्तल पॉलीटोप की सीमा है।
ब्रैंको ग्रुनबाम ने एक गैर-पॉलीटोपल प्रतिसमुच्चीय गोला का एक उदाहरण बनाया (अर्थात, एक प्रतिसमुच्चीय गोला जो एक पॉलीटोप की सीमा नहीं है)। गिल कलाई ने साबित किया कि, वास्तव में, अधिकांश प्रतिसमुच्चीय गोला गैर-बहुपद हैं। सबसे छोटा उदाहरण आयाम d = 4 का है और इसमें f है0 = 8 शीर्ष.
ऊपरी सीमा प्रमेय संख्याओं f के लिए ऊपरी सीमा देता हैi एफ के साथ किसी भी प्रतिसमुच्चीय डी-क्षेत्र के आई-फेस का0 = n शीर्ष. यह अनुमान 1970 में पीटर मैकमुलेन द्वारा प्रतिसमुच्चीय उत्तल पॉलीटोप्स के लिए सिद्ध किया गया था[3] और 1975 में सामान्य प्रतिसमुच्चीय गोलाों के लिए रिचर्ड पी. स्टेनली द्वारा।
1970 में मैकमुलेन द्वारा तैयार किया गया g-अनुमान, प्रतिसमुच्चीय d-गोला के एफ-वेक्टरों के संपूर्ण लक्षण वर्णन के लिए कहता है। दूसरे शब्दों में, एक प्रतिसमुच्चीय डी-गोले के लिए प्रत्येक आयाम के चेहरों की संख्या का संभावित क्रम क्या है? बहुपदीय क्षेत्रों के मामले में, उत्तर जी-प्रमेय द्वारा दिया गया है, जिसे 1979 में बिलेरा और ली (अस्तित्व) और स्टेनली (आवश्यकता) द्वारा सिद्ध किया गया था। यह अनुमान लगाया गया है कि सामान्य प्रतिसमुच्चीय गोलाों के लिए समान स्थितियाँ आवश्यक हैं। यह अनुमान दिसंबर 2018 में करीम एडिप्रासिटो द्वारा सिद्ध किया गया था।[1][2]
यह भी देखें
संदर्भ
- ↑ 1.0 1.1 Adiprasito, Karim (2019). "सकारात्मकता से परे कॉम्बिनेटोरियल लेफ्शेट्ज़ प्रमेय". arXiv:1812.10454.
- ↑ 2.0 2.1 Kalai, Gil (2018-12-25). "Amazing: Karim Adiprasito proved the g-conjecture for spheres!". Combinatorics and more (in English). Retrieved 2018-12-25.
- ↑ McMullen, P. (1971). "उत्तल पॉलीटोप्स के लिए ऊपरी सीमा वाले अनुमान पर". Journal of Combinatorial Theory, Series B. 10: 187–200. doi:10.1016/0095-8956(71)90042-6.
- Stanley, Richard (1996). Combinatorics and commutative algebra. Progress in Mathematics. Vol. 41 (Second ed.). Boston: Birkhäuser. ISBN 0-8176-3836-9.