वर्ग क्षेत्र सिद्धांत: Difference between revisions
No edit summary |
No edit summary |
||
Line 2: | Line 2: | ||
गणित में, '''वर्ग क्षेत्र सिद्धांत''' (सीएफटी) [[बीजगणितीय संख्या सिद्धांत]] की मूलभूत शाखा है जिसका लक्ष्य जमीनी क्षेत्र से जुड़ी वस्तुओं का उपयोग करके [[स्थानीय क्षेत्र]] और [[वैश्विक क्षेत्र|वैश्विक क्षेत्रों]] के सभी एबेलियन [[गैलोज़ विस्तार]] का वर्णन करना है।{{sfn|Milne|2020|loc=Introduction|p=1}} | गणित में, '''वर्ग क्षेत्र सिद्धांत''' (सीएफटी) [[बीजगणितीय संख्या सिद्धांत]] की मूलभूत शाखा है जिसका लक्ष्य जमीनी क्षेत्र से जुड़ी वस्तुओं का उपयोग करके [[स्थानीय क्षेत्र]] और [[वैश्विक क्षेत्र|वैश्विक क्षेत्रों]] के सभी एबेलियन [[गैलोज़ विस्तार]] का वर्णन करना है।{{sfn|Milne|2020|loc=Introduction|p=1}} | ||
[[डेविड हिल्बर्ट]] को वर्ग क्षेत्र की धारणा के अग्रदूतों में से एक माना जाता है। | [[डेविड हिल्बर्ट]] को वर्ग क्षेत्र की धारणा के अग्रदूतों में से एक माना जाता है। चूंकि, इस धारणा से [[लियोपोल्ड क्रोनकर]] पहले से ही परिचित थे और यह वास्तव में [[एडवर्ड रिटर वॉन वेबर]] ही थे जिन्होंने हिल्बर्ट के मौलिक कागजात सामने आने से पहले इस शब्द को गढ़ा था।{{sfn|Cassels|Fröhlich|1967|loc=Ch. XI by Helmut Hasse|p=266}} प्रासंगिक विचारों को कई दशकों की अवधि में विकसित किया गया, जिससे हिल्बर्ट द्वारा अनुमानों के एक समूह को जन्म दिया गया, जिसे पश्चात में [[ताकागी द्वारा प्रस्तुत किया गया|ताकागी]] और [[एमिल आर्टिन]] (चेबोतारेव के प्रमेय की मदद से) द्वारा सिद्ध किया गया। | ||
प्रमुख परिणामों में से एक है: एक संख्या | प्रमुख परिणामों में से एक है: एक संख्या क्षेत्र F दिया गया है, और F के [[हिल्बर्ट वर्ग क्षेत्र]] विस्तार के लिए K लिखा गया है, F के ऊपर K का गैलोज़ समूह, F के [[आदर्श वर्ग समूह]] के लिए कैनोनिक रूप से आइसोमोर्फिक है। इस कथन को तथाकथित [[आर्टिन पारस्परिकता कानून|आर्टिन पारस्परिकता नियम]] के लिए सामान्यीकृत किया गया था; आदर्श भाषा में, F के [[आदर्श वर्ग समूह]] के लिए ''C<sub>F</sub>'' लिखना, और L को F का कोई भी परिमित एबेलियन विस्तार मानना, यह नियम एक विहित समरूपता देता है | ||
:<math> \theta_{L/F}: C_F/{N_{L/F}(C_L)} \to \operatorname{Gal}(L/F), </math> | :<math> \theta_{L/F}: C_F/{N_{L/F}(C_L)} \to \operatorname{Gal}(L/F), </math> | ||
जहां <math>N_{L/F}</math> L से F तक आदर्श मानक मानचित्र को दर्शाता है। इस समरूपता को पारस्परिकता मानचित्र का नाम दिया गया है। | जहां <math>N_{L/F}</math> L से F तक आदर्श मानक मानचित्र को दर्शाता है। इस समरूपता को पारस्परिकता मानचित्र का नाम दिया गया है। | ||
अस्तित्व प्रमेय में कहा गया है कि पारस्परिकता मानचित्र का उपयोग ''F'' के एबेलियन विस्तार के | अस्तित्व प्रमेय में कहा गया है कि पारस्परिकता मानचित्र का उपयोग ''F'' के एबेलियन विस्तार के समूह और परिमित सूचकांक के संवृत उपसमूहों के समूहके बीच एक आपत्ति देने के लिए किया जा सकता है <math>C_F.</math> | ||
1930 के दशक से वैश्विक वर्ग क्षेत्र सिद्धांत को विकसित करने के लिए एक मानक | 1930 के दशक से वैश्विक वर्ग क्षेत्र सिद्धांत को विकसित करने के लिए एक मानक ढंग [[स्थानीय वर्ग क्षेत्र सिद्धांत]] का निर्माण करना था, जो स्थानीय क्षेत्रों के एबेलियन विस्तार का वर्णन करता है, और फिर इसका उपयोग वैश्विक वर्ग क्षेत्र सिद्धांत के निर्माण के लिए किया जाता है। यह पहली बार एमिल आर्टिन और [[जॉन टेट (गणितज्ञ)]] द्वारा समूह कोहोलॉजी के सिद्धांत का उपयोग करके और विशेष रूप से वर्ग संरचनाओं की धारणा विकसित करके किया गया था। पश्चात में, न्यूकिर्च को कोहोमोलॉजिकल विचारों का उपयोग किए बिना वैश्विक वर्ग क्षेत्र सिद्धांत के मुख्य कथनों का प्रमाण मिला। उनकी पद्धति स्पष्ट और एल्गोरिदमिक थी। | ||
वर्ग क्षेत्र सिद्धांत के अंदर कोई विशेष वर्ग क्षेत्र सिद्धांत और सामान्य वर्ग क्षेत्र सिद्धांत में अंतर कर सकता है।<ref>{{Cite journal |last=Fesenko |first=Ivan |date=2021-08-31 |title=वर्ग क्षेत्र सिद्धांत, इसके तीन मुख्य सामान्यीकरण और अनुप्रयोग|url=https://ems.press/journals/emss/articles/2504062 |journal=EMS Surveys in Mathematical Sciences |language=en |volume=8 |issue=1 |pages=107–133 |doi=10.4171/emss/45 |s2cid=239667749 |issn=2308-2151|doi-access=free }}</ref> | वर्ग क्षेत्र सिद्धांत के अंदर कोई विशेष वर्ग क्षेत्र सिद्धांत और सामान्य वर्ग क्षेत्र सिद्धांत में अंतर कर सकता है।<ref>{{Cite journal |last=Fesenko |first=Ivan |date=2021-08-31 |title=वर्ग क्षेत्र सिद्धांत, इसके तीन मुख्य सामान्यीकरण और अनुप्रयोग|url=https://ems.press/journals/emss/articles/2504062 |journal=EMS Surveys in Mathematical Sciences |language=en |volume=8 |issue=1 |pages=107–133 |doi=10.4171/emss/45 |s2cid=239667749 |issn=2308-2151|doi-access=free }}</ref> | ||
स्पष्ट वर्ग क्षेत्र सिद्धांत विभिन्न स्थितियों में एक संख्या क्षेत्र के अधिकतम एबेलियन विस्तार का स्पष्ट निर्माण प्रदान करता है। सिद्धांत के इस भाग में क्रोनकर-वेबर प्रमेय सम्मलित है, जिसका उपयोग एबेलियन | स्पष्ट वर्ग क्षेत्र सिद्धांत विभिन्न स्थितियों में एक संख्या क्षेत्र के अधिकतम एबेलियन विस्तार का स्पष्ट निर्माण प्रदान करता है। सिद्धांत के इस भाग में क्रोनकर-वेबर प्रमेय सम्मलित है, जिसका उपयोग एबेलियन विस्तार के निर्माण के लिए किया जा सकता है <math>\Q</math>, और [[सीएम-फ़ील्ड|सीएम-क्षेत्र]] के एबेलियन विस्तार के निर्माण के लिए [[जटिल गुणन]] का सिद्धांत। | ||
वर्ग क्षेत्र सिद्धांत के तीन मुख्य सामान्यीकरण हैं: उच्च वर्ग क्षेत्र सिद्धांत, [[लैंगलैंड्स कार्यक्रम]] (या 'लैंगलैंड्स पत्राचार'), और [[एनाबेलियन ज्यामिति]]। | वर्ग क्षेत्र सिद्धांत के तीन मुख्य सामान्यीकरण हैं: उच्च वर्ग क्षेत्र सिद्धांत, [[लैंगलैंड्स कार्यक्रम]] (या 'लैंगलैंड्स पत्राचार'), और [[एनाबेलियन ज्यामिति]]। | ||
Line 30: | Line 30: | ||
कुछ छोटे क्षेत्रों के लिए, जैसे परिमेय संख्याओं का क्षेत्त्र <math>\Q</math> या इसके [[द्विघात विस्तार]] में एक अधिक विस्तृत, बहुत स्पष्ट लेकिन बहुत विशिष्ट सिद्धांत है जो अधिक जानकारी प्रदान करता है। उदाहरण के लिए, एबेलियानाइज्ड एब्सोल्यूट गैलोज़ ग्रुप ''G'' का <math>\Q</math> (स्वाभाविक रूप से समरूपी) सभी [[अभाज्य संख्या]]ओं p पर लिए गए p-एडिक पूर्णांकों की इकाइयों के समूह का एक अनंत उत्पाद है, और परिमेय का संगत अधिकतम एबेलियन विस्तार के सभी मूलो द्वारा उत्पन्न क्षेत्र है। इसे क्रोनकर-वेबर प्रमेय के रूप में जाना जाता है, मूल रूप से लियोपोल्ड क्रोनकर द्वारा अनुमान लगाया गया था। इस मामले में वर्ग क्षेत्र सिद्धांत (या आर्टिन पारस्परिकता मानचित्र) की पारस्परिक समरूपता भी क्रोनेकर-वेबर प्रमेय के कारण एक स्पष्ट विवरण स्वीकार करती है। हालाँकि, छोटे बीजगणितीय संख्या क्षेत्रों के लिए ऐसे अधिक विस्तृत सिद्धांतों के प्रमुख निर्माण बीजगणितीय संख्या क्षेत्रों के सामान्य मामले में विस्तार योग्य नहीं हैं, और सामान्य वर्ग क्षेत्र सिद्धांत में विभिन्न वैचारिक सिद्धांत उपयोग में हैं। | कुछ छोटे क्षेत्रों के लिए, जैसे परिमेय संख्याओं का क्षेत्त्र <math>\Q</math> या इसके [[द्विघात विस्तार]] में एक अधिक विस्तृत, बहुत स्पष्ट लेकिन बहुत विशिष्ट सिद्धांत है जो अधिक जानकारी प्रदान करता है। उदाहरण के लिए, एबेलियानाइज्ड एब्सोल्यूट गैलोज़ ग्रुप ''G'' का <math>\Q</math> (स्वाभाविक रूप से समरूपी) सभी [[अभाज्य संख्या]]ओं p पर लिए गए p-एडिक पूर्णांकों की इकाइयों के समूह का एक अनंत उत्पाद है, और परिमेय का संगत अधिकतम एबेलियन विस्तार के सभी मूलो द्वारा उत्पन्न क्षेत्र है। इसे क्रोनकर-वेबर प्रमेय के रूप में जाना जाता है, मूल रूप से लियोपोल्ड क्रोनकर द्वारा अनुमान लगाया गया था। इस मामले में वर्ग क्षेत्र सिद्धांत (या आर्टिन पारस्परिकता मानचित्र) की पारस्परिक समरूपता भी क्रोनेकर-वेबर प्रमेय के कारण एक स्पष्ट विवरण स्वीकार करती है। हालाँकि, छोटे बीजगणितीय संख्या क्षेत्रों के लिए ऐसे अधिक विस्तृत सिद्धांतों के प्रमुख निर्माण बीजगणितीय संख्या क्षेत्रों के सामान्य मामले में विस्तार योग्य नहीं हैं, और सामान्य वर्ग क्षेत्र सिद्धांत में विभिन्न वैचारिक सिद्धांत उपयोग में हैं। | ||
पारस्परिक समरूपता का निर्माण करने की मानक विधि पहले वैश्विक क्षेत्र के पूर्ण होने के गुणक समूह से उसके अधिकतम एबेलियन विस्तार के गैलोइस समूह तक स्थानीय पारस्परिक समरूपता का निर्माण करना है (यह स्थानीय वर्ग क्षेत्र सिद्धांत के अंदर किया जाता है) और फिर सिद्ध करना करें कि वैश्विक क्षेत्र के आदर्श समूह पर परिभाषित होने पर ऐसे सभी स्थानीय पारस्परिक मानचित्रों का उत्पाद वैश्विक क्षेत्र के गुणक समूह की छवि पर तुच्छ होता है। पश्चात वाली संपत्ति को वैश्विक पारस्परिकता | पारस्परिक समरूपता का निर्माण करने की मानक विधि पहले वैश्विक क्षेत्र के पूर्ण होने के गुणक समूह से उसके अधिकतम एबेलियन विस्तार के गैलोइस समूह तक स्थानीय पारस्परिक समरूपता का निर्माण करना है (यह स्थानीय वर्ग क्षेत्र सिद्धांत के अंदर किया जाता है) और फिर सिद्ध करना करें कि वैश्विक क्षेत्र के आदर्श समूह पर परिभाषित होने पर ऐसे सभी स्थानीय पारस्परिक मानचित्रों का उत्पाद वैश्विक क्षेत्र के गुणक समूह की छवि पर तुच्छ होता है। पश्चात वाली संपत्ति को वैश्विक पारस्परिकता नियमकहा जाता है और यह गॉस [[द्विघात पारस्परिकता कानून|द्विघात पारस्परिकता]] नियमका दूरगामी सामान्यीकरण है। | ||
पारस्परिक समरूपता के निर्माण के तरीकों में से एक वर्ग गठन का उपयोग करता है जो वर्ग क्षेत्र सिद्धांत को वर्ग क्षेत्र सिद्धांत के सिद्धांतों से प्राप्त करता है। यह व्युत्पत्ति विशुद्ध रूप से टोपोलॉजिकल समूह सैद्धांतिक है, जबकि स्वयंसिद्धों को स्थापित करने के लिए जमीनी क्षेत्र की रिंग संरचना का उपयोग करना पड़ता है।<ref>[https://ivanfesenko.org/wp-content/uploads/2021/10/jl.pdf Reciprocity and IUT, talk at RIMS workshop on IUT Summit, July 2016, Ivan Fesenko]</ref> | पारस्परिक समरूपता के निर्माण के तरीकों में से एक वर्ग गठन का उपयोग करता है जो वर्ग क्षेत्र सिद्धांत को वर्ग क्षेत्र सिद्धांत के सिद्धांतों से प्राप्त करता है। यह व्युत्पत्ति विशुद्ध रूप से टोपोलॉजिकल समूह सैद्धांतिक है, जबकि स्वयंसिद्धों को स्थापित करने के लिए जमीनी क्षेत्र की रिंग संरचना का उपयोग करना पड़ता है।<ref>[https://ivanfesenko.org/wp-content/uploads/2021/10/jl.pdf Reciprocity and IUT, talk at RIMS workshop on IUT Summit, July 2016, Ivan Fesenko]</ref> | ||
Line 40: | Line 40: | ||
{{main|वर्ग क्षेत्र सिद्धांत का इतिहास}} | {{main|वर्ग क्षेत्र सिद्धांत का इतिहास}} | ||
वर्ग क्षेत्र सिद्धांत की उत्पत्ति गॉस द्वारा सिद्ध किए गए द्विघात पारस्परिकता | वर्ग क्षेत्र सिद्धांत की उत्पत्ति गॉस द्वारा सिद्ध किए गए द्विघात पारस्परिकता नियममें निहित है। सामान्यीकरण एक दीर्घकालिक ऐतिहासिक परियोजना के रूप मे हुआ, जिसमें [[द्विघात रूप]] और उनके 'जीनस सिद्धांत', आदर्शों और पूर्णताओं पर [[गंभीर दुःख|अर्न्स्ट कुमेर]] और लियोपोल्ड क्रोनकर/[[कर्ट हेंसल]] का काम, साइक्लोटोमिक और [[कुमेर विस्तार]] का सिद्धांत सम्मलित था। | ||
पहले दो वर्ग क्षेत्र सिद्धांत बहुत स्पष्ट साइक्लोटोमिक और जटिल गुणन वर्ग क्षेत्र सिद्धांत थे। उन्होंने अतिरिक्त संरचनाओं का उपयोग किया: परिमेय संख्याओं के क्षेत्र के मामले में वे एकता की जड़ों (डी मोइवर संख्या) का उपयोग करते हैं, परिमेय संख्याओं के क्षेत्र के काल्पनिक द्विघात विस्तार के मामले में वे जटिल गुणन के साथ अण्डाकार वक्रों और उनके परिमित क्रम के बिंदुओं का उपयोग करते हैं। बहुत पश्चात में,[[ ग्राउंडर शिमुरा ]]के सिद्धांत ने बीजगणितीय संख्या क्षेत्रों के एक वर्ग के लिए एक और बहुत स्पष्ट वर्ग क्षेत्र सिद्धांत प्रदान किया। सकारात्मक विशेषता में <math>p</math>, [[ युकियोशी कवाडा ]] और [[इचिरो सातके]] ने इसका बहुत आसान विवरण प्राप्त करने के लिए विट द्वैत का उपयोग किया पारस्परिक समरूपता का <math>p</math>-भाग। | पहले दो वर्ग क्षेत्र सिद्धांत बहुत स्पष्ट साइक्लोटोमिक और जटिल गुणन वर्ग क्षेत्र सिद्धांत थे। उन्होंने अतिरिक्त संरचनाओं का उपयोग किया: परिमेय संख्याओं के क्षेत्र के मामले में वे एकता की जड़ों (डी मोइवर संख्या) का उपयोग करते हैं, परिमेय संख्याओं के क्षेत्र के काल्पनिक द्विघात विस्तार के मामले में वे जटिल गुणन के साथ अण्डाकार वक्रों और उनके परिमित क्रम के बिंदुओं का उपयोग करते हैं। बहुत पश्चात में,[[ ग्राउंडर शिमुरा ]]के सिद्धांत ने बीजगणितीय संख्या क्षेत्रों के एक वर्ग के लिए एक और बहुत स्पष्ट वर्ग क्षेत्र सिद्धांत प्रदान किया। सकारात्मक विशेषता में <math>p</math>, [[ युकियोशी कवाडा ]] और [[इचिरो सातके]] ने इसका बहुत आसान विवरण प्राप्त करने के लिए विट द्वैत का उपयोग किया पारस्परिक समरूपता का <math>p</math>-भाग। | ||
Line 46: | Line 46: | ||
हालाँकि, इन अत्यंत स्पष्ट सिद्धांतों को अधिक सामान्य संख्या क्षेत्रों तक विस्तारित नहीं किया जा सका। सामान्य वर्ग क्षेत्र सिद्धांत ने विभिन्न अवधारणाओं और निर्माणों का उपयोग किया जो हर वैश्विक क्षेत्र पर काम करते हैं। | हालाँकि, इन अत्यंत स्पष्ट सिद्धांतों को अधिक सामान्य संख्या क्षेत्रों तक विस्तारित नहीं किया जा सका। सामान्य वर्ग क्षेत्र सिद्धांत ने विभिन्न अवधारणाओं और निर्माणों का उपयोग किया जो हर वैश्विक क्षेत्र पर काम करते हैं। | ||
डेविड हिल्बर्ट की प्रसिद्ध समस्याओं ने आगे के विकास को प्रेरित किया, जिसके कारण [[पारस्परिकता कानून (गणित)]] बने, और तीजी ताकागी, फिलिप फर्टवांग्लर, एमिल आर्टिन, [[हेल्मुट हस्से]] और कई अन्य लोगों द्वारा प्रमाण दिए गए। महत्वपूर्ण [[ताकागी अस्तित्व प्रमेय]] 1920 तक ज्ञात हो गयी थी और सभी मुख्य परिणाम लगभग 1930 तक ज्ञात हो गए थे। सिद्ध किए जाने वाले अंतिम क्लासिक अनुमानों में से एक सिद्धांतीकरण गुण थे। वर्ग क्षेत्र सिद्धांत के पहले प्रमाणों में पर्याप्त विश्लेषणात्मक तरीकों का उपयोग किया गया था। 1930 के दशक में और उसके पश्चात अनंत विस्तारों और [[वोल्फगैंग क्रुल]] के गैलोज़ समूहों के सिद्धांत का बढ़ता उपयोग देखा गया। इसने [[पोंट्रीगिन द्वंद्व]] के साथ मिलकर केंद्रीय परिणाम, आर्टिन पारस्परिकता | डेविड हिल्बर्ट की प्रसिद्ध समस्याओं ने आगे के विकास को प्रेरित किया, जिसके कारण [[पारस्परिकता कानून (गणित)|पारस्परिकता नियम(गणित)]] बने, और तीजी ताकागी, फिलिप फर्टवांग्लर, एमिल आर्टिन, [[हेल्मुट हस्से]] और कई अन्य लोगों द्वारा प्रमाण दिए गए। महत्वपूर्ण [[ताकागी अस्तित्व प्रमेय]] 1920 तक ज्ञात हो गयी थी और सभी मुख्य परिणाम लगभग 1930 तक ज्ञात हो गए थे। सिद्ध किए जाने वाले अंतिम क्लासिक अनुमानों में से एक सिद्धांतीकरण गुण थे। वर्ग क्षेत्र सिद्धांत के पहले प्रमाणों में पर्याप्त विश्लेषणात्मक तरीकों का उपयोग किया गया था। 1930 के दशक में और उसके पश्चात अनंत विस्तारों और [[वोल्फगैंग क्रुल]] के गैलोज़ समूहों के सिद्धांत का बढ़ता उपयोग देखा गया। इसने [[पोंट्रीगिन द्वंद्व]] के साथ मिलकर केंद्रीय परिणाम, आर्टिन पारस्परिकता नियमका एक स्पष्ट और अधिक सारगर्भित सूत्रीकरण दिया। 1930 के दशक में आदर्श वर्गों को प्रतिस्थापित करने के लिए क्लॉड शेवेल्ली द्वारा आइडेल्स की शुरूआत एक महत्वपूर्ण कदम था, जो अनिवार्य रूप से वैश्विक क्षेत्रों के एबेलियन विस्तार के विवरण को स्पष्ट और सरल बनाता था। अधिकांश केंद्रीय परिणाम 1940 तक सिद्ध हो चुके थे। | ||
पश्चात में परिणामों को समूह सह-समरूपता के संदर्भ में पुन: तैयार किया गया, जो संख्या सिद्धांतकारों की कई पीढ़ियों के लिए वर्ग क्षेत्र सिद्धांत सीखने का एक मानक तरीका बन गया। कोहोमोलॉजिकल पद्धति का एक दोष इसकी सापेक्ष अस्पष्टता है। [[बर्नार्ड डवर्क]], जॉन टेट (गणितज्ञ), [[माइकल हेज़विंकेल]] के स्थानीय योगदान और जुर्गन न्यूकिर्च द्वारा स्थानीय और वैश्विक पुनर्व्याख्या के परिणामस्वरूप और कई गणितज्ञों द्वारा स्पष्ट पारस्परिकता सूत्रों पर काम के संबंध में, वर्ग क्षेत्र सिद्धांत की एक बहुत ही स्पष्ट और कोहोलॉजी-मुक्त प्रस्तुति 1990 के दशक में स्थापित की गई थी। (उदाहरण के लिए, न्यूकिर्च द्वारा लिखित वर्ग क्षेत्र सिद्धांत देखें।) | पश्चात में परिणामों को समूह सह-समरूपता के संदर्भ में पुन: तैयार किया गया, जो संख्या सिद्धांतकारों की कई पीढ़ियों के लिए वर्ग क्षेत्र सिद्धांत सीखने का एक मानक तरीका बन गया। कोहोमोलॉजिकल पद्धति का एक दोष इसकी सापेक्ष अस्पष्टता है। [[बर्नार्ड डवर्क]], जॉन टेट (गणितज्ञ), [[माइकल हेज़विंकेल]] के स्थानीय योगदान और जुर्गन न्यूकिर्च द्वारा स्थानीय और वैश्विक पुनर्व्याख्या के परिणामस्वरूप और कई गणितज्ञों द्वारा स्पष्ट पारस्परिकता सूत्रों पर काम के संबंध में, वर्ग क्षेत्र सिद्धांत की एक बहुत ही स्पष्ट और कोहोलॉजी-मुक्त प्रस्तुति 1990 के दशक में स्थापित की गई थी। (उदाहरण के लिए, न्यूकिर्च द्वारा लिखित वर्ग क्षेत्र सिद्धांत देखें।) |
Revision as of 18:13, 22 July 2023
गणित में, वर्ग क्षेत्र सिद्धांत (सीएफटी) बीजगणितीय संख्या सिद्धांत की मूलभूत शाखा है जिसका लक्ष्य जमीनी क्षेत्र से जुड़ी वस्तुओं का उपयोग करके स्थानीय क्षेत्र और वैश्विक क्षेत्रों के सभी एबेलियन गैलोज़ विस्तार का वर्णन करना है।[1]
डेविड हिल्बर्ट को वर्ग क्षेत्र की धारणा के अग्रदूतों में से एक माना जाता है। चूंकि, इस धारणा से लियोपोल्ड क्रोनकर पहले से ही परिचित थे और यह वास्तव में एडवर्ड रिटर वॉन वेबर ही थे जिन्होंने हिल्बर्ट के मौलिक कागजात सामने आने से पहले इस शब्द को गढ़ा था।[2] प्रासंगिक विचारों को कई दशकों की अवधि में विकसित किया गया, जिससे हिल्बर्ट द्वारा अनुमानों के एक समूह को जन्म दिया गया, जिसे पश्चात में ताकागी और एमिल आर्टिन (चेबोतारेव के प्रमेय की मदद से) द्वारा सिद्ध किया गया।
प्रमुख परिणामों में से एक है: एक संख्या क्षेत्र F दिया गया है, और F के हिल्बर्ट वर्ग क्षेत्र विस्तार के लिए K लिखा गया है, F के ऊपर K का गैलोज़ समूह, F के आदर्श वर्ग समूह के लिए कैनोनिक रूप से आइसोमोर्फिक है। इस कथन को तथाकथित आर्टिन पारस्परिकता नियम के लिए सामान्यीकृत किया गया था; आदर्श भाषा में, F के आदर्श वर्ग समूह के लिए CF लिखना, और L को F का कोई भी परिमित एबेलियन विस्तार मानना, यह नियम एक विहित समरूपता देता है
जहां L से F तक आदर्श मानक मानचित्र को दर्शाता है। इस समरूपता को पारस्परिकता मानचित्र का नाम दिया गया है।
अस्तित्व प्रमेय में कहा गया है कि पारस्परिकता मानचित्र का उपयोग F के एबेलियन विस्तार के समूह और परिमित सूचकांक के संवृत उपसमूहों के समूहके बीच एक आपत्ति देने के लिए किया जा सकता है
1930 के दशक से वैश्विक वर्ग क्षेत्र सिद्धांत को विकसित करने के लिए एक मानक ढंग स्थानीय वर्ग क्षेत्र सिद्धांत का निर्माण करना था, जो स्थानीय क्षेत्रों के एबेलियन विस्तार का वर्णन करता है, और फिर इसका उपयोग वैश्विक वर्ग क्षेत्र सिद्धांत के निर्माण के लिए किया जाता है। यह पहली बार एमिल आर्टिन और जॉन टेट (गणितज्ञ) द्वारा समूह कोहोलॉजी के सिद्धांत का उपयोग करके और विशेष रूप से वर्ग संरचनाओं की धारणा विकसित करके किया गया था। पश्चात में, न्यूकिर्च को कोहोमोलॉजिकल विचारों का उपयोग किए बिना वैश्विक वर्ग क्षेत्र सिद्धांत के मुख्य कथनों का प्रमाण मिला। उनकी पद्धति स्पष्ट और एल्गोरिदमिक थी।
वर्ग क्षेत्र सिद्धांत के अंदर कोई विशेष वर्ग क्षेत्र सिद्धांत और सामान्य वर्ग क्षेत्र सिद्धांत में अंतर कर सकता है।[3]
स्पष्ट वर्ग क्षेत्र सिद्धांत विभिन्न स्थितियों में एक संख्या क्षेत्र के अधिकतम एबेलियन विस्तार का स्पष्ट निर्माण प्रदान करता है। सिद्धांत के इस भाग में क्रोनकर-वेबर प्रमेय सम्मलित है, जिसका उपयोग एबेलियन विस्तार के निर्माण के लिए किया जा सकता है , और सीएम-क्षेत्र के एबेलियन विस्तार के निर्माण के लिए जटिल गुणन का सिद्धांत।
वर्ग क्षेत्र सिद्धांत के तीन मुख्य सामान्यीकरण हैं: उच्च वर्ग क्षेत्र सिद्धांत, लैंगलैंड्स कार्यक्रम (या 'लैंगलैंड्स पत्राचार'), और एनाबेलियन ज्यामिति।
समसामयिक भाषा में निरूपण
आधुनिक गणितीय भाषा में, वर्ग क्षेत्र सिद्धांत (सीएफटी) को निम्नानुसार तैयार किया जा सकता है। किसी स्थानीय या वैश्विक क्षेत्र K के अधिकतम एबेलियन विस्तार A पर विचार करें। यह K से अनंत डिग्री का है; K के ऊपर A का गैलोज़ समूह G एक अनंत अनंत समूह है, इसलिए एक कॉम्पैक्ट टोपोलॉजिकल समूह है, और यह एबेलियन है। वर्ग क्षेत्र सिद्धांत का केंद्रीय उद्देश्य हैं: K से जुड़े कुछ उपयुक्त टोपोलॉजिकल ऑब्जेक्ट के संदर्भ में G का वर्णन करना, K से जुड़े टोपोलॉजिकल ऑब्जेक्ट में परिमित सूचकांक के खुले उपसमूहों के संदर्भ में K के परिमित एबेलियन विस्तार का वर्णन करना। विशेष रूप से, कोई K के लिए इस टोपोलॉजिकल ऑब्जेक्ट में K के परिमित एबेलियन एक्सटेंशन और उनके मानक समूहों के बीच एक-से-एक पत्राचार स्थापित करना चाहता है। यह टोपोलॉजिकल ऑब्जेक्ट परिमित अवशेष क्षेत्र वाले स्थानीय क्षेत्रों के मामले में गुणक समूह है और वैश्विक क्षेत्रों के मामले में आदर्श वर्ग समूह है। परिमित सूचकांक के एक खुले उपसमूह के अनुरूप परिमित एबेलियन विस्तार को उस उपसमूह के लिए वर्ग क्षेत्र कहा जाता है, जिसने सिद्धांत को नाम दिया।
सामान्य वर्ग क्षेत्र सिद्धांत का मौलिक परिणाम बताता है कि समूह जी स्वाभाविक रूप से CK के अनंत समापन, स्थानीय क्षेत्र के गुणक समूह या वैश्विक क्षेत्र के आदर्श वर्ग समूह के लिए आइसोमोर्फिक है, क्षेत्र K की विशिष्ट संरचना से संबंधित CK पर प्राकृतिक टोपोलॉजी के संबंध में। समान रूप से, K के किसी भी परिमित गैलोज़ विस्तार L के लिए, एक समरूपता है (आर्टिन पारस्परिकता मानचित्र)
L के आदर्श वर्ग समूह के मानदंड की छवि द्वारा K के आदर्श वर्ग समूह के भागफल के साथ विस्तार के गैलोइस समूह के अबेलियनाइजेशन का।
कुछ छोटे क्षेत्रों के लिए, जैसे परिमेय संख्याओं का क्षेत्त्र या इसके द्विघात विस्तार में एक अधिक विस्तृत, बहुत स्पष्ट लेकिन बहुत विशिष्ट सिद्धांत है जो अधिक जानकारी प्रदान करता है। उदाहरण के लिए, एबेलियानाइज्ड एब्सोल्यूट गैलोज़ ग्रुप G का (स्वाभाविक रूप से समरूपी) सभी अभाज्य संख्याओं p पर लिए गए p-एडिक पूर्णांकों की इकाइयों के समूह का एक अनंत उत्पाद है, और परिमेय का संगत अधिकतम एबेलियन विस्तार के सभी मूलो द्वारा उत्पन्न क्षेत्र है। इसे क्रोनकर-वेबर प्रमेय के रूप में जाना जाता है, मूल रूप से लियोपोल्ड क्रोनकर द्वारा अनुमान लगाया गया था। इस मामले में वर्ग क्षेत्र सिद्धांत (या आर्टिन पारस्परिकता मानचित्र) की पारस्परिक समरूपता भी क्रोनेकर-वेबर प्रमेय के कारण एक स्पष्ट विवरण स्वीकार करती है। हालाँकि, छोटे बीजगणितीय संख्या क्षेत्रों के लिए ऐसे अधिक विस्तृत सिद्धांतों के प्रमुख निर्माण बीजगणितीय संख्या क्षेत्रों के सामान्य मामले में विस्तार योग्य नहीं हैं, और सामान्य वर्ग क्षेत्र सिद्धांत में विभिन्न वैचारिक सिद्धांत उपयोग में हैं।
पारस्परिक समरूपता का निर्माण करने की मानक विधि पहले वैश्विक क्षेत्र के पूर्ण होने के गुणक समूह से उसके अधिकतम एबेलियन विस्तार के गैलोइस समूह तक स्थानीय पारस्परिक समरूपता का निर्माण करना है (यह स्थानीय वर्ग क्षेत्र सिद्धांत के अंदर किया जाता है) और फिर सिद्ध करना करें कि वैश्विक क्षेत्र के आदर्श समूह पर परिभाषित होने पर ऐसे सभी स्थानीय पारस्परिक मानचित्रों का उत्पाद वैश्विक क्षेत्र के गुणक समूह की छवि पर तुच्छ होता है। पश्चात वाली संपत्ति को वैश्विक पारस्परिकता नियमकहा जाता है और यह गॉस द्विघात पारस्परिकता नियमका दूरगामी सामान्यीकरण है।
पारस्परिक समरूपता के निर्माण के तरीकों में से एक वर्ग गठन का उपयोग करता है जो वर्ग क्षेत्र सिद्धांत को वर्ग क्षेत्र सिद्धांत के सिद्धांतों से प्राप्त करता है। यह व्युत्पत्ति विशुद्ध रूप से टोपोलॉजिकल समूह सैद्धांतिक है, जबकि स्वयंसिद्धों को स्थापित करने के लिए जमीनी क्षेत्र की रिंग संरचना का उपयोग करना पड़ता है।[4]
ऐसी विधियाँ हैं जो कोहोमोलॉजी समूहों का उपयोग करती हैं, विशेष रूप से ब्रौअर समूह का, और ऐसी विधियाँ भी हैं जो कोहोमोलॉजी समूहों का उपयोग नहीं करती हैं और अनुप्रयोगों के लिए बहुत स्पष्ट और उपयोगी हैं।
इतिहास
वर्ग क्षेत्र सिद्धांत की उत्पत्ति गॉस द्वारा सिद्ध किए गए द्विघात पारस्परिकता नियममें निहित है। सामान्यीकरण एक दीर्घकालिक ऐतिहासिक परियोजना के रूप मे हुआ, जिसमें द्विघात रूप और उनके 'जीनस सिद्धांत', आदर्शों और पूर्णताओं पर अर्न्स्ट कुमेर और लियोपोल्ड क्रोनकर/कर्ट हेंसल का काम, साइक्लोटोमिक और कुमेर विस्तार का सिद्धांत सम्मलित था।
पहले दो वर्ग क्षेत्र सिद्धांत बहुत स्पष्ट साइक्लोटोमिक और जटिल गुणन वर्ग क्षेत्र सिद्धांत थे। उन्होंने अतिरिक्त संरचनाओं का उपयोग किया: परिमेय संख्याओं के क्षेत्र के मामले में वे एकता की जड़ों (डी मोइवर संख्या) का उपयोग करते हैं, परिमेय संख्याओं के क्षेत्र के काल्पनिक द्विघात विस्तार के मामले में वे जटिल गुणन के साथ अण्डाकार वक्रों और उनके परिमित क्रम के बिंदुओं का उपयोग करते हैं। बहुत पश्चात में,ग्राउंडर शिमुरा के सिद्धांत ने बीजगणितीय संख्या क्षेत्रों के एक वर्ग के लिए एक और बहुत स्पष्ट वर्ग क्षेत्र सिद्धांत प्रदान किया। सकारात्मक विशेषता में , युकियोशी कवाडा और इचिरो सातके ने इसका बहुत आसान विवरण प्राप्त करने के लिए विट द्वैत का उपयोग किया पारस्परिक समरूपता का -भाग।
हालाँकि, इन अत्यंत स्पष्ट सिद्धांतों को अधिक सामान्य संख्या क्षेत्रों तक विस्तारित नहीं किया जा सका। सामान्य वर्ग क्षेत्र सिद्धांत ने विभिन्न अवधारणाओं और निर्माणों का उपयोग किया जो हर वैश्विक क्षेत्र पर काम करते हैं।
डेविड हिल्बर्ट की प्रसिद्ध समस्याओं ने आगे के विकास को प्रेरित किया, जिसके कारण पारस्परिकता नियम(गणित) बने, और तीजी ताकागी, फिलिप फर्टवांग्लर, एमिल आर्टिन, हेल्मुट हस्से और कई अन्य लोगों द्वारा प्रमाण दिए गए। महत्वपूर्ण ताकागी अस्तित्व प्रमेय 1920 तक ज्ञात हो गयी थी और सभी मुख्य परिणाम लगभग 1930 तक ज्ञात हो गए थे। सिद्ध किए जाने वाले अंतिम क्लासिक अनुमानों में से एक सिद्धांतीकरण गुण थे। वर्ग क्षेत्र सिद्धांत के पहले प्रमाणों में पर्याप्त विश्लेषणात्मक तरीकों का उपयोग किया गया था। 1930 के दशक में और उसके पश्चात अनंत विस्तारों और वोल्फगैंग क्रुल के गैलोज़ समूहों के सिद्धांत का बढ़ता उपयोग देखा गया। इसने पोंट्रीगिन द्वंद्व के साथ मिलकर केंद्रीय परिणाम, आर्टिन पारस्परिकता नियमका एक स्पष्ट और अधिक सारगर्भित सूत्रीकरण दिया। 1930 के दशक में आदर्श वर्गों को प्रतिस्थापित करने के लिए क्लॉड शेवेल्ली द्वारा आइडेल्स की शुरूआत एक महत्वपूर्ण कदम था, जो अनिवार्य रूप से वैश्विक क्षेत्रों के एबेलियन विस्तार के विवरण को स्पष्ट और सरल बनाता था। अधिकांश केंद्रीय परिणाम 1940 तक सिद्ध हो चुके थे।
पश्चात में परिणामों को समूह सह-समरूपता के संदर्भ में पुन: तैयार किया गया, जो संख्या सिद्धांतकारों की कई पीढ़ियों के लिए वर्ग क्षेत्र सिद्धांत सीखने का एक मानक तरीका बन गया। कोहोमोलॉजिकल पद्धति का एक दोष इसकी सापेक्ष अस्पष्टता है। बर्नार्ड डवर्क, जॉन टेट (गणितज्ञ), माइकल हेज़विंकेल के स्थानीय योगदान और जुर्गन न्यूकिर्च द्वारा स्थानीय और वैश्विक पुनर्व्याख्या के परिणामस्वरूप और कई गणितज्ञों द्वारा स्पष्ट पारस्परिकता सूत्रों पर काम के संबंध में, वर्ग क्षेत्र सिद्धांत की एक बहुत ही स्पष्ट और कोहोलॉजी-मुक्त प्रस्तुति 1990 के दशक में स्थापित की गई थी। (उदाहरण के लिए, न्यूकिर्च द्वारा लिखित वर्ग क्षेत्र सिद्धांत देखें।)
अनुप्रयोग
आर्टिन-वर्डियर द्वैत ( प्रमेय) को सिद्ध करने के लिए वर्ग क्षेत्र सिद्धांत का उपयोग किया जाता है।[5] बहुत स्पष्ट वर्ग क्षेत्र सिद्धांत का उपयोग बीजगणितीय संख्या सिद्धांत के कई उपक्षेत्रों जैसे इवासावा सिद्धांत और गैलोज़ मॉड्यूल सिद्धांत में किया जाता है।
संख्या क्षेत्रों के लिए लैंगलैंड्स पत्राचार, संख्या क्षेत्रों के लिए बीएसडी अनुमान और संख्या क्षेत्रों के लिए इवासावा सिद्धांत की अधिकांश मुख्य उपलब्धियाँ बहुत स्पष्ट लेकिन संकीर्ण वर्ग क्षेत्र सिद्धांत विधियों या उनके सामान्यीकरण का उपयोग करती हैं। इसलिए विवृत प्रश्न इन तीन दिशाओं में सामान्य वर्ग क्षेत्र सिद्धांत के सामान्यीकरण का उपयोग करना है।
वर्ग क्षेत्र सिद्धांत का सामान्यीकरण
तीन मुख्य सामान्यीकरण हैं, जिनमें से प्रत्येक अत्यंत रुचिकर है। वे हैं: लैंग्लैंड्स प्रोग्राम, एनाबेलियन ज्यामिति, और उच्च वर्ग क्षेत्र सिद्धांत।
अधिकांशतः, लैंगलैंड्स पत्राचार को नॉनबेलियन वर्ग क्षेत्र सिद्धांत के रूप में देखा जाता है। यदि और जब यह पूरी तरह से स्थापित हो जाता है, तो इसमें वैश्विक क्षेत्रों के नॉनबेलियन गैलोज़ एक्सटेंशन का एक निश्चित सिद्धांत सम्मलित होगा। हालाँकि, लैंगलैंड्स पत्राचार में परिमित गैलोज़ एक्सटेंशन के बारे में उतनी अंकगणितीय जानकारी सम्मलित नहीं है जितनी एबेलियन मामले में वर्ग क्षेत्र सिद्धांत में है। इसमें वर्ग क्षेत्र सिद्धांत में अस्तित्व प्रमेय का एक एनालॉग भी सम्मलित नहीं है: लैंग्लैंड्स पत्राचार में वर्ग क्षेत्रों की अवधारणा अनुपस्थित है। स्थानीय और वैश्विक कई अन्य नॉनबेलियन सिद्धांत हैं, जो लैंगलैंड्स पत्राचार दृष्टिकोण के विकल्प प्रदान करते हैं।
वर्ग क्षेत्र सिद्धांत का एक और सामान्यीकरण एनाबेलियन ज्यामिति है, जो अपने पूर्ण निरपेक्ष गैलोज़ समूह या बीजगणितीय मौलिक समूह के ज्ञान से मूल वस्तु (उदाहरण के लिए एक संख्या क्षेत्र या उसके ऊपर एक अतिशयोक्तिपूर्ण वक्र) को पुनर्स्थापित करने के लिए एल्गोरिदम का अध्ययन करता है।[6][7]
एक अन्य प्राकृतिक सामान्यीकरण उच्च वर्ग क्षेत्र सिद्धांत है, जो उच्च स्थानीय वर्ग क्षेत्र सिद्धांत और उच्च वैश्विक वर्ग क्षेत्र सिद्धांत में विभाजित है। यह उच्च स्थानीय क्षेत्रों और उच्च वैश्विक क्षेत्रों के एबेलियन विस्तार का वर्णन करता है। उत्तरार्द्ध पूर्णांकों और उनके उपयुक्त स्थानीयकरणों और पूर्णताओं पर परिमित प्रकार की योजना (गणित) के फ़ंक्शन क्षेत्र के रूप में आते हैं। यह बीजगणितीय K-सिद्धांत का उपयोग करता है, और उपयुक्त मिल्नोर K-समूह सामान्यीकरण करते हैं का उपयोग एक-आयामी वर्ग क्षेत्र सिद्धांत में किया जाता है।
यह भी देखें
- गैर-एबेलियन वर्ग क्षेत्र सिद्धांत
- एनाबेलियन ज्यामिति
- फ्रोबेनियोइड
- लैंग्लैंड्स प्रोग्राम
उद्धरण
- ↑ Milne 2020, p. 1, Introduction.
- ↑ Cassels & Fröhlich 1967, p. 266, Ch. XI by Helmut Hasse.
- ↑ Fesenko, Ivan (2021-08-31). "वर्ग क्षेत्र सिद्धांत, इसके तीन मुख्य सामान्यीकरण और अनुप्रयोग". EMS Surveys in Mathematical Sciences (in English). 8 (1): 107–133. doi:10.4171/emss/45. ISSN 2308-2151. S2CID 239667749.
- ↑ Reciprocity and IUT, talk at RIMS workshop on IUT Summit, July 2016, Ivan Fesenko
- ↑ Milne, J. S. Arithmetic duality theorems. Charleston, SC: BookSurge, LLC 2006
- ↑ Fesenko, Ivan (2015), Arithmetic deformation theory via arithmetic fundamental groups and nonarchimedean theta functions, notes on the work of Shinichi Mochizuki, Eur. J. Math., 2015 (PDF)
- ↑ Fesenko, Ivan (2021), Class field theory, its three main generalisations, and applications, May 2021, EMS Surveys 8(2021) 107-133 (PDF)
संदर्भ
- आर्टिन, एमिल; टेट, जॉन (1990), वर्ग क्षेत्र सिद्धांत, रेडवुड सिटी, कैलिफ़ोर्निया।: एडिसन-वेस्ले, ISBN 978-0-201-51011-9
- कैसल्स, जे.डब्ल्यू.एस.; फ्रोलिच, अल्ब्रेक्ट, eds. (1967), बीजगणितीय संख्या सिद्धांत, अकादमिक प्रेस, Zbl 0153.07403
- कॉनरोड, कीथ, वर्ग क्षेत्र सिद्धांत का इतिहास (PDF)
- फ़्रेसेंको, इवान बी; वोस्तोकोव, सर्गेई वी. (2002), स्थानीय क्षेत्र और उनके विस्तार, गणितीय मोनोग्राफ का अनुवाद, vol. 121 (द्वितीय ed.), प्रोविडेंस, आरआई: American Mathematical Society, ISBN 978-0-8218-3259-2, MR 1915966
- Gras, Georges (2003). Class Field Theory: from theory to practice. Springer-Verlag. ISBN 978-3-540-44133-5.
- इवासावा, केनकिची (1986), स्थानीय वर्ग क्षेत्र सिद्धांत, ऑक्सफोर्ड गणितीय मोनोग्राफ, क्लेरेंडन प्रेस ऑक्सफोर्ड यूनिवर्सिटी प्रेस, ISBN 978-0-19-504030-2, MR 0863740, Zbl 0604.12014
- कवाड़ा, युकियोसी (1955), "वर्ग निर्माण", ड्यूक मठ. जे।, 22 (2): 165–177, doi:10.1215/s0012-7094-55-02217-1, Zbl 0067.01904
- कवाड़ा, युकियोसी; सटाके, I. (1956), "वर्ग निर्माण. द्वितीय", जे.फैक. विज्ञान विश्वविद्यालय। टोक्यो संप्रदाय 1A, 7: 353–389, Zbl 0101.02902
- मिलन, जेम्स एस. (2020), वर्ग क्षेत्र सिद्धांत (4.03 ed.)
- न्यूकिर्च, जुर्गन (1986), वर्ग क्षेत्र सिद्धांत, बर्लिन, न्यूयॉर्क: स्प्रिंगर-वेरलाग, ISBN 978-3-540-15251-4
- Neukirch, Jürgen (1999). Algebraische Zahlentheorie. Grundlehren der mathematischen Wissenschaften. Vol. 322. Berlin: Springer-Verlag. ISBN 978-3-540-65399-8. MR 1697859. Zbl 0956.11021.