कॉची समाकलन प्रमेय: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 8: Line 8:
==कथन==
==कथन==


=== जटिल रेखा समाकलननों के लिए मौलिक प्रमेय ===
=== जटिल रेखा समाकलनों के लिए मौलिक प्रमेय ===
अगर {{math|''f''(''z'')}} एक खुले क्षेत्र पर एक होलोमोर्फिक फलन है (गणितीय विश्लेषण) {{mvar|U}}, और <math>\gamma</math> में एक वक्र है {{mvar|U}} से <math>z_0</math> को <math>z_1</math> तब,
अगर {{math|''f''(''z'')}} एक खुले क्षेत्र {{mvar|U}} पर होलोमोर्फिक फलन है, और {{mvar|U}} में  <math>z_0</math> से<math>z_1</math> <math>\gamma</math> एक वक्र है तब,
<math display="block">\int_{\gamma}f'(z) \, dz = f(z_1)-f(z_0).</math>
<math display="block">\int_{\gamma}f'(z) \, dz = f(z_1)-f(z_0).</math>
इसके अलावा, कब {{math|''f''(''z'')}} एक खुले क्षेत्र में एकल-मूल्यवान प्रतिअवकलन है {{mvar|U}}, फिर पथ अभिन्न <math display="inline">\int_{\gamma}f'(z) \, dz</math> सभी पथों के लिए पथ स्वतंत्र है {{mvar|U}}.
इसके अतिरिक्त , जब {{math|''f''(''z'')}} एक खुले क्षेत्र {{mvar|U}} में एकल-मूल्यवान प्रतिअवकलन है , फिर पथ समाकलन <math display="inline">\int_{\gamma}f'(z) \, dz</math> सभी पथों {{mvar|U}} के लिए पथ स्वतंत्र है।


==== सरलता से जुड़े क्षेत्रों पर सूत्रीकरण ====
==== सरलता से जुड़े क्षेत्रों पर सूत्रीकरण ====


होने देना <math>U \subseteq \Complex</math> एक [[ बस जुड़ा हुआ स्थान ]] ओपन सब्मिट सेट बनें, और जाने दें <math>f: U \to \Complex</math> एक होलोमोर्फिक फलन बनें। होने देना <math>\gamma: [a,b] \to U</math> एक चिकना बंद वक्र बनें। तब:
माना की <math>U \subseteq \Complex</math> एक सरल रूप से जुड़ा हुआ खुला सेट हो, और माना की <math>f: U \to \Complex</math> एक होलोमोर्फिक फलन बनें। माना की <math>\gamma: [a,b] \to U</math> एक चिकना बंद वक्र बनें। तब<math display="block">\int_\gamma f(z)\,dz = 0. </math>
<math display="block">\int_\gamma f(z)\,dz = 0. </math>
 
(शर्त यह है कि <math>U</math> बस जुड़े रहने का मतलब है <math>U</math> इसमें कोई छेद नहीं है, या दूसरे शब्दों में, इसका मूल समूह है <math>U</math> तुच्छ है.)
 
(अनुबंध यह है कि <math>U</math> संयोजित रहने का तात्पर्य है <math>U</math> इसमें कोई ख़ाली स्थान नहीं है, या दूसरे शब्दों में कहें तो <math>U</math> का यह मूल समूह नगण्य है)


==== सामान्य सूत्रीकरण ====
==== सामान्य सूत्रीकरण ====
Line 23: Line 24:
होने देना <math>U \subseteq \Complex</math> एक खुला उपसमुच्चय बनें, और रहने दें <math>f: U \to \Complex</math> एक होलोमोर्फिक फलन बनें। होने देना <math>\gamma: [a,b] \to U</math> एक चिकना बंद वक्र बनें। अगर  <math>\gamma</math> एक स्थिर वक्र की समरूपता है, तो:
होने देना <math>U \subseteq \Complex</math> एक खुला उपसमुच्चय बनें, और रहने दें <math>f: U \to \Complex</math> एक होलोमोर्फिक फलन बनें। होने देना <math>\gamma: [a,b] \to U</math> एक चिकना बंद वक्र बनें। अगर  <math>\gamma</math> एक स्थिर वक्र की समरूपता है, तो:
<math display="block">\int_\gamma f(z)\,dz = 0. </math>
<math display="block">\int_\gamma f(z)\,dz = 0. </math>
(याद रखें कि एक वक्र एक स्थिर वक्र का समरूप है यदि उसके भीतर एक चिकनी समरूपता मौजूद है <math>U</math>) वक्र से स्थिर वक्र तक। सहज रूप से, इसका मतलब यह है कि कोई व्यक्ति अंतरिक्ष से बाहर निकले बिना वक्र को एक बिंदु में सिकोड़ सकता है।) पहला संस्करण इसका एक विशेष मामला है क्योंकि सरल रूप से जुड़े स्थान सेट पर, प्रत्येक बंद वक्र एक स्थिर वक्र का समरूप है।
(याद रखें कि एक वक्र एक स्थिर वक्र का समरूप है यदि उसके भीतर एक चिकनी समरूपता मौजूद है <math>U</math>) वक्र से स्थिर वक्र तक। सहज रूप से, इसका तात्पर्य यह है कि कोई व्यक्ति अंतरिक्ष से बाहर निकले बिना वक्र को एक बिंदु में सिकोड़ सकता है।) पहला संस्करण इसका एक विशेष मामला है क्योंकि सरल रूप से जुड़े स्थान सेट पर, प्रत्येक बंद वक्र एक स्थिर वक्र का समरूप है।


==== मुख्य उदाहरण ====
==== मुख्य उदाहरण ====


दोनों ही मामलों में, यह याद रखना महत्वपूर्ण है कि वक्र <math>\gamma</math> डोमेन में कोई छेद नहीं घेरता है, अन्यथा प्रमेय लागू नहीं होता है। एक प्रसिद्ध उदाहरण निम्नलिखित वक्र है:
दोनों ही मामलों में, यह याद रखना महत्वपूर्ण है कि वक्र <math>\gamma</math> डोमेन में कोई ख़ाली स्थान नहीं घेरता है, अन्यथा प्रमेय लागू नहीं होता है। एक प्रसिद्ध उदाहरण निम्नलिखित वक्र है:
<math display="block">\gamma(t) = e^{it} \quad t \in \left[0, 2\pi\right] ,</math>
<math display="block">\gamma(t) = e^{it} \quad t \in \left[0, 2\pi\right] ,</math>
जो यूनिट सर्कल का पता लगाता है। यहाँ निम्नलिखित अभिन्न है:
जो यूनिट सर्कल का पता लगाता है। यहाँ निम्नलिखित समाकलन है:
<math display="block">\int_{\gamma} \frac{1}{z}\,dz = 2\pi i \neq 0 , </math>
<math display="block">\int_{\gamma} \frac{1}{z}\,dz = 2\pi i \neq 0 , </math>
शून्येतर है. कॉची समाकलन प्रमेय यहां लागू नहीं होता है <math>f(z) = 1/z</math> पर परिभाषित नहीं है <math>z = 0</math>. सहजता से, <math>\gamma</math> के क्षेत्र में एक छिद्र को घेर लेता है <math>f</math>, इसलिए <math>\gamma</math> स्थान से बाहर निकले बिना किसी बिंदु तक सिकुड़ा नहीं जा सकता। इस प्रकार, प्रमेय लागू नहीं होता है।
शून्येतर है. कॉची समाकलन प्रमेय यहां लागू नहीं होता है <math>f(z) = 1/z</math> पर परिभाषित नहीं है <math>z = 0</math>. सहजता से, <math>\gamma</math> के क्षेत्र में एक छिद्र को घेर लेता है <math>f</math>, इसलिए <math>\gamma</math> स्थान से बाहर निकले बिना किसी बिंदु तक सिकुड़ा नहीं जा सकता। इस प्रकार, प्रमेय लागू नहीं होता है।


==चर्चा==
==चर्चा==
जैसा कि एडौर्ड गौरसैट ने दिखाया, कॉची के अभिन्न प्रमेय को केवल यह मानते हुए सिद्ध किया जा सकता है कि जटिल व्युत्पन्न <math>f'(z)</math> में हर जगह मौजूद है <math>U</math>. यह महत्वपूर्ण है क्योंकि तब कोई इन कार्यों के लिए कॉची के अभिन्न सूत्र को सिद्ध कर सकता है, और उससे यह निष्कर्ष निकाल सकता है कि ये कार्य [[असीम रूप से भिन्न]] हैं।
जैसा कि एडौर्ड गौरसैट ने दिखाया, कॉची के समाकलन प्रमेय को केवल यह मानते हुए सिद्ध किया जा सकता है कि जटिल व्युत्पन्न <math>f'(z)</math> में हर जगह मौजूद है <math>U</math>. यह महत्वपूर्ण है क्योंकि तब कोई इन कार्यों के लिए कॉची के समाकलन सूत्र को सिद्ध कर सकता है, और उससे यह निष्कर्ष निकाल सकता है कि ये कार्य [[असीम रूप से भिन्न]] हैं।


शर्त यह है कि <math>U</math> बस जुड़े रहने का मतलब है <math>U</math> इसमें कोई छेद नहीं है या, समरूप शब्दों में, इसका मूल समूह है <math>U</math> तुच्छ है; उदाहरण के लिए, प्रत्येक खुली डिस्क <math>U_{z_0} = \{ z : \left|z-z_{0}\right| < r\}</math>, के लिए <math>z_0 \in \Complex</math>, अर्हता प्राप्त करता है। स्थिति महत्वपूर्ण है; विचार करना
शर्त यह है कि <math>U</math> बस जुड़े रहने का तात्पर्य है <math>U</math> इसमें कोई ख़ाली स्थान नहीं है या, समरूप शब्दों में, इसका मूल समूह है <math>U</math> तुच्छ है; उदाहरण के लिए, प्रत्येक खुली डिस्क <math>U_{z_0} = \{ z : \left|z-z_{0}\right| < r\}</math>, के लिए <math>z_0 \in \Complex</math>, अर्हता प्राप्त करता है। स्थिति महत्वपूर्ण है; विचार करना
<math display="block">\gamma(t) = e^{it} \quad t \in \left[0, 2\pi\right]</math>
<math display="block">\gamma(t) = e^{it} \quad t \in \left[0, 2\pi\right]</math>
जो यूनिट सर्कल और फिर पथ समाकलन का पता लगाता है
जो यूनिट सर्कल और फिर पथ समाकलन का पता लगाता है
Line 56: Line 57:
इस मामले में हमारे पास है
इस मामले में हमारे पास है
<math display="block">\oint_\gamma f(z)\,dz = \oint_\gamma (u+iv)(dx+i\,dy) = \oint_\gamma (u\,dx-v\,dy) +i\oint_\gamma (v\,dx+u\,dy)</math>
<math display="block">\oint_\gamma f(z)\,dz = \oint_\gamma (u+iv)(dx+i\,dy) = \oint_\gamma (u\,dx-v\,dy) +i\oint_\gamma (v\,dx+u\,dy)</math>
ग्रीन के प्रमेय के अनुसार, हम बंद समोच्च के चारों ओर अभिन्नों को प्रतिस्थापित कर सकते हैं <math>\gamma</math> पूरे डोमेन में एक अभिन्न क्षेत्र के साथ <math>D</math> जो कि संलग्न है <math>\gamma</math> निम्नलिखित नुसार:
ग्रीन के प्रमेय के अनुसार, हम बंद समोच्च के चारों ओर समाकलनों को प्रतिस्थापित कर सकते हैं <math>\gamma</math> पूरे डोमेन में एक समाकलन क्षेत्र के साथ <math>D</math> जो कि संलग्न है <math>\gamma</math> निम्नलिखित नुसार:


<math display="block">\oint_\gamma (u\,dx-v\,dy) = \iint_D \left( -\frac{\partial v}{\partial x} -\frac{\partial u}{\partial y} \right) \,dx\,dy </math>
<math display="block">\oint_\gamma (u\,dx-v\,dy) = \iint_D \left( -\frac{\partial v}{\partial x} -\frac{\partial u}{\partial y} \right) \,dx\,dy </math>

Revision as of 23:12, 23 July 2023

गणित में, जटिल विश्लेषण में कॉची समाकलन प्रमेय (जिसे कॉची-गॉरसैट प्रमेय के रूप में भी जाना जाता है), जिसका नाम ऑगस्टिन-लुई कॉची (और एडौर्ड गौरसैट) के नाम पर रखा गया है, जटिल संख्या में होलोमोर्फिक फलन के लिए रेखीय समाकलन के बारे में एक महत्वपूर्ण कथन है। मूलतः यह कहता है कि यदि किसी सरल रूप से जुड़े डोमेन Ω में होलोमोर्फिक है, फिर किसी भी सरल रूप से बंद समोच्च के लिए Ω में , वह समोच्च समाकलन शून्य है।

कथन

जटिल रेखा समाकलनों के लिए मौलिक प्रमेय

अगर f(z) एक खुले क्षेत्र U पर होलोमोर्फिक फलन है, और U में से एक वक्र है तब,

इसके अतिरिक्त , जब f(z) एक खुले क्षेत्र U में एकल-मूल्यवान प्रतिअवकलन है , फिर पथ समाकलन सभी पथों U के लिए पथ स्वतंत्र है।

सरलता से जुड़े क्षेत्रों पर सूत्रीकरण

माना की एक सरल रूप से जुड़ा हुआ खुला सेट हो, और माना की एक होलोमोर्फिक फलन बनें। माना की एक चिकना बंद वक्र बनें। तब


(अनुबंध यह है कि संयोजित रहने का तात्पर्य है इसमें कोई ख़ाली स्थान नहीं है, या दूसरे शब्दों में कहें तो का यह मूल समूह नगण्य है)

सामान्य सूत्रीकरण

होने देना एक खुला उपसमुच्चय बनें, और रहने दें एक होलोमोर्फिक फलन बनें। होने देना एक चिकना बंद वक्र बनें। अगर एक स्थिर वक्र की समरूपता है, तो:

(याद रखें कि एक वक्र एक स्थिर वक्र का समरूप है यदि उसके भीतर एक चिकनी समरूपता मौजूद है ) वक्र से स्थिर वक्र तक। सहज रूप से, इसका तात्पर्य यह है कि कोई व्यक्ति अंतरिक्ष से बाहर निकले बिना वक्र को एक बिंदु में सिकोड़ सकता है।) पहला संस्करण इसका एक विशेष मामला है क्योंकि सरल रूप से जुड़े स्थान सेट पर, प्रत्येक बंद वक्र एक स्थिर वक्र का समरूप है।

मुख्य उदाहरण

दोनों ही मामलों में, यह याद रखना महत्वपूर्ण है कि वक्र डोमेन में कोई ख़ाली स्थान नहीं घेरता है, अन्यथा प्रमेय लागू नहीं होता है। एक प्रसिद्ध उदाहरण निम्नलिखित वक्र है:

जो यूनिट सर्कल का पता लगाता है। यहाँ निम्नलिखित समाकलन है:
शून्येतर है. कॉची समाकलन प्रमेय यहां लागू नहीं होता है पर परिभाषित नहीं है . सहजता से, के क्षेत्र में एक छिद्र को घेर लेता है , इसलिए स्थान से बाहर निकले बिना किसी बिंदु तक सिकुड़ा नहीं जा सकता। इस प्रकार, प्रमेय लागू नहीं होता है।

चर्चा

जैसा कि एडौर्ड गौरसैट ने दिखाया, कॉची के समाकलन प्रमेय को केवल यह मानते हुए सिद्ध किया जा सकता है कि जटिल व्युत्पन्न में हर जगह मौजूद है . यह महत्वपूर्ण है क्योंकि तब कोई इन कार्यों के लिए कॉची के समाकलन सूत्र को सिद्ध कर सकता है, और उससे यह निष्कर्ष निकाल सकता है कि ये कार्य असीम रूप से भिन्न हैं।

शर्त यह है कि बस जुड़े रहने का तात्पर्य है इसमें कोई ख़ाली स्थान नहीं है या, समरूप शब्दों में, इसका मूल समूह है तुच्छ है; उदाहरण के लिए, प्रत्येक खुली डिस्क , के लिए , अर्हता प्राप्त करता है। स्थिति महत्वपूर्ण है; विचार करना

जो यूनिट सर्कल और फिर पथ समाकलन का पता लगाता है
शून्येतर है; कॉची समाकलन प्रमेय यहां लागू नहीं होता है परिभाषित नहीं है (और निश्चित रूप से होलोमोर्फिक नहीं है)। .

प्रमेय का एक महत्वपूर्ण परिणाम यह है कि बस जुड़े हुए डोमेन पर होलोमोर्फिक कार्यों के पथ समाकलन्स की गणना कैलकुलस के मौलिक प्रमेय से परिचित तरीके से की जा सकती है: चलो का एक सरल रूप से जुड़ा हुआ खुला उपसमुच्चय बनें , होने देना एक होलोमोर्फिक फलन बनें, और चलो एक टुकड़े में लगातार अलग-अलग पथ बनें प्रारंभ बिंदु के साथ और अंत बिंदु . अगर का एक जटिल प्रतिव्युत्पन्न है , तब

कॉची समाकलन प्रमेय ऊपर दी गई परिकल्पना से कमजोर परिकल्पना के साथ मान्य है, उदाहरण के लिए दिया गया , एक सरल रूप से जुड़ा हुआ खुला उपसमुच्चय , हम धारणाओं को कमजोर कर सकते हैं पर होलोमोर्फिक होना और निरंतर बंद होने पर (टोपोलॉजी)|और एक सुधार योग्य वक्र जॉर्डन वक्र प्रमेय .[1] कॉची समाकलन प्रमेय कॉची के समाकलन सूत्र और अवशेष प्रमेय की ओर ले जाता है।

प्रमाण

यदि कोई मानता है कि होलोमोर्फिक फलन के आंशिक व्युत्पन्न निरंतर हैं, तो कॉची समाकलन प्रमेय को ग्रीन के प्रमेय के प्रत्यक्ष परिणाम के रूप में सिद्ध किया जा सकता है और यह तथ्य कि वास्तविक और काल्पनिक भाग से घिरे क्षेत्र में कॉची-रीमैन समीकरणों को संतुष्ट करना होगा , और इसके अलावा खुले पड़ोस में Uइस क्षेत्र का. कॉची ने यह प्रमाण प्रदान किया, लेकिन बाद में इसे वेक्टर कैलकुलस, या आंशिक डेरिवेटिव की निरंतरता की तकनीकों की आवश्यकता के बिना गौरसैट द्वारा सिद्ध किया गया।

हम एकीकरण को तोड़ सकते हैं , साथ ही अंतर भी उनके वास्तविक और काल्पनिक घटकों में:

इस मामले में हमारे पास है
ग्रीन के प्रमेय के अनुसार, हम बंद समोच्च के चारों ओर समाकलनों को प्रतिस्थापित कर सकते हैं पूरे डोमेन में एक समाकलन क्षेत्र के साथ जो कि संलग्न है निम्नलिखित नुसार:

लेकिन डोमेन में फलन होलोमोर्फिक के वास्तविक और काल्पनिक भागों के रूप में , और वहां कॉची-रीमैन समीकरणों को संतुष्ट करना होगा:
इसलिए हम पाते हैं कि दोनों समाकलनन (और इसलिए उनके समाकलनन) शून्य हैं

इससे वांछित परिणाम मिलता है


यह भी देखें

संदर्भ

  1. Walsh, J. L. (1933-05-01). "रेक्टिफ़िएबल जॉर्डन कर्व्स के लिए कॉची-गॉरसैट प्रमेय". Proceedings of the National Academy of Sciences. 19 (5): 540–541. doi:10.1073/pnas.19.5.540. ISSN 0027-8424. PMC 1086062. PMID 16587781.


बाहरी संबंध