लेलॉन्ग संख्या: Difference between revisions
No edit summary |
m (added Category:Vigyan Ready using HotCat) |
||
Line 15: | Line 15: | ||
[[Category: Machine Translated Page]] | [[Category: Machine Translated Page]] | ||
[[Category:Created On 14/07/2023]] | [[Category:Created On 14/07/2023]] | ||
[[Category:Vigyan Ready]] |
Revision as of 17:04, 28 July 2023
गणित में, लेलॉन्ग संख्या एक सम्मिश्र विश्लेषणात्मक विविधता के एक बिंदु का एक अपरिवर्तनीय होता है जो कुछ अर्थों में उस बिंदु पर स्थानीय घनत्व को मापता है। इसे लेलॉन्ग (1957) द्वारा प्रस्तुत किया गया था। अधिक सामान्यतः एक सम्मिश्र मैनिफोल्ड पर एक संवृत धनात्मक (p,p) धारा u में मैनिफोल्ड के प्रत्येक बिंदु x के लिए एक लेलॉन्ग संख्या n(u,x) होती है। इसी प्रकार प्लुरिसुबार्मोनिक फलन में भी एक बिंदु पर एक लेलॉन्ग संख्या होती है।
Cn के एक बिंदु x पर प्लुरिसुबार्मोनिक फलन φ की लेलॉन्ग संख्या निम्न प्रकार है
शुद्ध आयाम k के एक विश्लेषणात्मक उपसमुच्चय A के एक बिंदु x के लिए, लेलॉन्ग संख्या ν(A,x) A ∩ B(r,x) के क्षेत्रों और Ck में त्रिज्या r की एक गेंद के अनुपात की सीमा होती है क्योंकि त्रिज्या शून्य होती जाती है। (यहाँ B(r,x) x पर केन्द्रित त्रिज्या r की एक गेंद है।) दूसरे शब्दों में लेलॉन्ग संख्या x के निकट A के स्थानीय घनत्व का एक प्रकार होता है। यदि x उपवर्ग A में नहीं है तो लेलॉन्ग संख्या 0 होती है, और यदि x एक नियमित बिंदु है तो लेलॉन्ग संख्या 1होती है। यह सिद्ध किया जा सकता है कि लेलॉन्ग संख्या ν(A,x) हमेशा एक पूर्णांक होती है।
संदर्भ
- Lelong, Pierre (1957), "Intégration sur un ensemble analytique complexe", Bulletin de la Société Mathématique de France, 85: 239–262, ISSN 0037-9484, MR 0095967
- Lelong, Pierre (1968), Fonctions plurisousharmoniques et formes différentielles positives, Paris: Gordon & Breach, MR 0243112
- Varolin, Dror (2010), "Three variations on a theme in complex analytic geometry", in McNeal, Jeffery; Mustaţă, Mircea (eds.), Analytic and algebraic geometry, IAS/Park City Math. Ser., vol. 17, Providence, R.I.: American Mathematical Society, pp. 183–294, ISBN 978-0-8218-4908-8, MR 2743817