विहित रूपान्तरण संबंध: Difference between revisions
No edit summary |
No edit summary |
||
Line 23: | Line 23: | ||
\dot{p} = -\frac{\partial H}{\partial q} = \{p, H\}. | \dot{p} = -\frac{\partial H}{\partial q} = \{p, H\}. | ||
\end{cases}</math> | \end{cases}</math> | ||
क्वांटम यांत्रिकी में हैमिल्टनियन <math>\hat{H}</math>, (सामान्यीकृत) समन्वय <math>\hat{Q}</math> और (सामान्यीकृत) गति <math>\hat{P}</math> सभी रैखिक | क्वांटम यांत्रिकी में हैमिल्टनियन <math>\hat{H}</math>, (सामान्यीकृत) समन्वय <math>\hat{Q}</math> और (सामान्यीकृत) गति <math>\hat{P}</math> सभी रैखिक संचालक हैं। | ||
क्वांटम अवस्था का समय व्युत्पन्न है - <math>i\hat{H}/\hbar</math> (श्रोडिंगर समीकरण द्वारा)। समान रूप से, चूंकि | क्वांटम अवस्था का समय व्युत्पन्न है - <math>i\hat{H}/\hbar</math> (श्रोडिंगर समीकरण द्वारा)। समान रूप से, चूंकि संचालक स्पष्ट रूप से समय-निर्भर नहीं हैं, इसलिए उन्हें हैमिल्टनियन के साथ उनके कम्यूटेशन संबंध के अनुसार समय में विकसित होते देखा जा सकता है ([[हाइजेनबर्ग चित्र]] देखें): | ||
<math display="block">\frac {d\hat{Q}}{dt} = \frac {i}{\hbar} [\hat{H},\hat{Q}]</math> | <math display="block">\frac {d\hat{Q}}{dt} = \frac {i}{\hbar} [\hat{H},\hat{Q}]</math> | ||
<math display="block">\frac {d\hat{P}}{dt} = \frac {i}{\hbar} [\hat{H},\hat{P}] \,\, .</math> | <math display="block">\frac {d\hat{P}}{dt} = \frac {i}{\hbar} [\hat{H},\hat{P}] \,\, .</math> | ||
हैमिल्टन की गति के समीकरणों के साथ शास्त्रीय सीमा में सामंजस्य स्थापित करने के लिए, <math> [\hat{H},\hat{Q}]</math> की उपस्थिति पर | हैमिल्टन की गति के समीकरणों के साथ शास्त्रीय सीमा में सामंजस्य स्थापित करने के लिए, <math> [\hat{H},\hat{Q}]</math> की उपस्थिति पर पूर्ण रूप से निर्भर होनी चाहिए, <math>\hat{P}</math> हैमिल्टनियन में और <math>[\hat{H},\hat{P}]</math> की उपस्थिति पर पूर्ण रूप से निर्भर होनी चाहिए, <math>\hat{Q}</math> हैमिल्टनियन में, इसके अतिरिक्त चूंकि हैमिल्टनियन संचालक (सामान्यीकृत) समन्वय और गति संचालको पर निर्भर करता है, इसे कार्यात्मक के रूप में देखा जा सकता है, और हम लिख सकते हैं ([[कार्यात्मक व्युत्पन्न]] का उपयोग करके): | ||
<math display="block">[\hat{H},\hat{Q}] = \frac {\delta \hat{H}}{\delta \hat{P}} \cdot [\hat{P},\hat{Q}]</math> | <math display="block">[\hat{H},\hat{Q}] = \frac {\delta \hat{H}}{\delta \hat{P}} \cdot [\hat{P},\hat{Q}]</math> | ||
<math display="block">[\hat{H},\hat{P}] = \frac {\delta \hat{H}}{\delta \hat{Q}} \cdot [\hat{Q},\hat{P}] \, \, . </math> | <math display="block">[\hat{H},\hat{P}] = \frac {\delta \hat{H}}{\delta \hat{Q}} \cdot [\hat{Q},\hat{P}] \, \, . </math> | ||
Line 35: | Line 35: | ||
== <math display="block"> [\hat{Q},\hat{P}] = i \hbar ~ \mathbb{I}.</math>वेइल संबंध == | == <math display="block"> [\hat{Q},\hat{P}] = i \hbar ~ \mathbb{I}.</math>वेइल संबंध == | ||
[[झूठ समूह]] <math>H_3(\mathbb{R})</math> रूपान्तरण संबंध द्वारा निर्धारित 3-आयामी [[झूठ बीजगणित]] के [[घातीय मानचित्र (झूठ सिद्धांत)]] द्वारा उत्पन्न <math>[\hat{x},\hat{p}]=i\hbar</math> [[हाइजेनबर्ग समूह]] कहलाता है। इस समूह को समूह के रूप में महसूस किया जा सकता है <math>3\times 3</math> विकर्ण पर स्थित ऊपरी त्रिकोणीय आव्यूह।<ref>{{harvnb|Hall|2015}} Section 1.2.6 and Proposition 3.26</ref> | [[झूठ समूह]] <math>H_3(\mathbb{R})</math> रूपान्तरण संबंध द्वारा निर्धारित 3-आयामी [[झूठ बीजगणित]] के [[घातीय मानचित्र (झूठ सिद्धांत)]] द्वारा उत्पन्न <math>[\hat{x},\hat{p}]=i\hbar</math> [[हाइजेनबर्ग समूह]] कहलाता है। इस समूह को समूह के रूप में महसूस किया जा सकता है <math>3\times 3</math> विकर्ण पर स्थित ऊपरी त्रिकोणीय आव्यूह।<ref>{{harvnb|Hall|2015}} Section 1.2.6 and Proposition 3.26</ref> | ||
क्वांटम यांत्रिकी के मानक गणितीय सूत्रीकरण के अनुसार, क्वांटम वेधशालाएँ जैसे <math>\hat{x}</math> और <math>\hat{p}</math> कुछ [[हिल्बर्ट स्थान]] पर स्व-सहायक संचालको के रूप में प्रतिनिधित्व किया जाना चाहिए। यह देखना अपेक्षाकृत आसान है कि उपरोक्त विहित कम्यूटेशन संबंधों को संतुष्ट करने वाले दो [[ऑपरेटर (गणित)]] दोनों परिबद्ध | क्वांटम यांत्रिकी के मानक गणितीय सूत्रीकरण के अनुसार, क्वांटम वेधशालाएँ जैसे <math>\hat{x}</math> और <math>\hat{p}</math> कुछ [[हिल्बर्ट स्थान]] पर स्व-सहायक संचालको के रूप में प्रतिनिधित्व किया जाना चाहिए। यह देखना अपेक्षाकृत आसान है कि उपरोक्त विहित कम्यूटेशन संबंधों को संतुष्ट करने वाले दो [[ऑपरेटर (गणित)|संचालक (गणित)]] दोनों परिबद्ध संचालक नहीं हो सकते हैं। निश्चित रूप से, यदि <math>\hat{x}</math> और <math>\hat{p}</math> [[ट्रेस क्लास]] संचालक थे, संबंध <math>\operatorname{Tr}(AB)=\operatorname{Tr}(BA)</math> दाईं ओर शून्येतर संख्या और बाईं ओर शून्य देता है। | ||
वैकल्पिक रूप से, यदि <math>\hat{x}</math> और <math>\hat{p}</math> बाउंडेड | वैकल्पिक रूप से, यदि <math>\hat{x}</math> और <math>\hat{p}</math> बाउंडेड संचालक थे, ध्यान दें <math>[\hat{x}^n,\hat{p}]=i\hbar n \hat{x}^{n-1}</math>, इसलिए संचालक मानदंड संतुष्ट होंगे | ||
<math display="block">2 \left\|\hat{p}\right\| \left\|\hat{x}^{n-1}\right\| \left\|\hat{x}\right\| \geq n \hbar \left\|\hat{x}^{n-1}\right\|,</math> ताकि, किसी भी n के लिए, | <math display="block">2 \left\|\hat{p}\right\| \left\|\hat{x}^{n-1}\right\| \left\|\hat{x}\right\| \geq n \hbar \left\|\hat{x}^{n-1}\right\|,</math> ताकि, किसी भी n के लिए, | ||
<math display="block">2 \left\|\hat{p}\right\| \left\|\hat{x}\right\| \geq n \hbar</math> | <math display="block">2 \left\|\hat{p}\right\| \left\|\hat{x}\right\| \geq n \hbar</math> | ||
चूंकि, {{mvar|n}} मनमाने ढंग से बड़ा हो सकता है, इसलिए कम से कम | चूंकि, {{mvar|n}} मनमाने ढंग से बड़ा हो सकता है, इसलिए कम से कम संचालक को सीमित नहीं किया जा सकता है, और अंतर्निहित हिल्बर्ट स्थान का आयाम सीमित नहीं हो सकता है। [[एकात्मक संचालक|ात्मक संचालक]] वेइल संबंधों (नीचे वर्णित विहित रूपान्तरण संबंधों का घातांकित संस्करण) को संतुष्ट करते हैं, तो स्टोन-वॉन न्यूमैन प्रमेय के परिणामस्वरूप, दोनों संचालको को असीमित होना चाहिए। | ||
फिर भी, इन विहित रूपान्तरण संबंधों को (परिबद्ध) ात्मक संचालको के संदर्भ में लिखकर कुछ हद तक नियंत्रित किया जा सकता है <math>\exp(it\hat{x})</math> और <math>\exp(is\hat{p})</math>. इन संचालको के लिए परिणामी ब्रेडिंग संबंध तथाकथित स्टोन-वॉन न्यूमैन प्रमेय हैं | फिर भी, इन विहित रूपान्तरण संबंधों को (परिबद्ध) ात्मक संचालको के संदर्भ में लिखकर कुछ हद तक नियंत्रित किया जा सकता है <math>\exp(it\hat{x})</math> और <math>\exp(is\hat{p})</math>. इन संचालको के लिए परिणामी ब्रेडिंग संबंध तथाकथित स्टोन-वॉन न्यूमैन प्रमेय हैं | ||
Line 48: | Line 48: | ||
वेइल संबंधों के रूप में विहित रूपान्तरण संबंधों की विशिष्टता की गारंटी स्टोन-वॉन न्यूमैन प्रमेय द्वारा दी जाती है। | वेइल संबंधों के रूप में विहित रूपान्तरण संबंधों की विशिष्टता की गारंटी स्टोन-वॉन न्यूमैन प्रमेय द्वारा दी जाती है। | ||
यह ध्यान रखना महत्वपूर्ण है कि तकनीकी कारणों से, वेइल संबंध सख्ती से विहित रूपान्तरण संबंध के बराबर नहीं हैं <math>[\hat{x},\hat{p}]=i\hbar</math>. अगर <math>\hat{x}</math> और <math>\hat{p}</math> बंधे हुए | यह ध्यान रखना महत्वपूर्ण है कि तकनीकी कारणों से, वेइल संबंध सख्ती से विहित रूपान्तरण संबंध के बराबर नहीं हैं <math>[\hat{x},\hat{p}]=i\hbar</math>. अगर <math>\hat{x}</math> और <math>\hat{p}</math> बंधे हुए संचालक थे, तो बेकर-कैंपबेल-हॉसडॉर्फ फॉर्मूला का विशेष मामला किसी को वेइल संबंधों के विहित कम्यूटेशन संबंधों को घातांकित करने की अनुमति देगा।<ref>See Section 5.2 of {{harvnb|Hall|2015}} for an elementary derivation</ref> चूंकि, जैसा कि हमने नोट किया है, विहित कम्यूटेशन संबंधों को संतुष्ट करने वाले किसी भी संचालक को असीमित होना चाहिए, बेकर-कैंपबेल-हॉसडॉर्फ फॉर्मूला अतिरिक्त डोमेन मान्यताओं के बिना प्रारम्भ नहीं होता है। वास्तव में, प्रति उदाहरण विहित रूपान्तरण संबंधों को संतुष्ट करने वाले उपस्थित हैं लेकिन वेइल संबंधों को नहीं।<ref>{{harvnb|Hall|2013}} Example 14.5</ref> (ये वही संचालक अनिश्चितता सिद्धांत देते हैं#अनिश्चितता सिद्धांत के अनुभवहीन रूप का प्रति उदाहरण।) ये तकनीकी मुद्दे ही कारण हैं कि स्टोन-वॉन न्यूमैन प्रमेय को वेइल संबंधों के संदर्भ में तैयार किया गया है। | ||
वेइल संबंधों का अलग संस्करण, जिसमें पैरामीटर एस और टी की सीमा होती है <math>\mathbb{Z}/n</math>, पाउली मैट्रिसेस के सामान्यीकरण के माध्यम से परिमित-आयामी हिल्बर्ट स्थान पर महसूस किया जा सकता है#निर्माण: घड़ी और शिफ्ट मैट्रिसेस। | वेइल संबंधों का अलग संस्करण, जिसमें पैरामीटर एस और टी की सीमा होती है <math>\mathbb{Z}/n</math>, पाउली मैट्रिसेस के सामान्यीकरण के माध्यम से परिमित-आयामी हिल्बर्ट स्थान पर महसूस किया जा सकता है#निर्माण: घड़ी और शिफ्ट मैट्रिसेस। | ||
Line 63: | Line 63: | ||
कहाँ {{math|''δ''<sub>''ij''</sub>}} क्रोनकर डेल्टा है। | कहाँ {{math|''δ''<sub>''ij''</sub>}} क्रोनकर डेल्टा है। | ||
इसके | इसके अतिरिक्त यह आसानी से दिखाया जा सकता है | ||
<math display="block">[F(\vec{x}),p_i] = i\hbar\frac{\partial F(\vec{x})}{\partial x_i}; \qquad [x_i, F(\vec{p})] = i\hbar\frac{\partial F(\vec{p})}{\partial p_i}.</math> | <math display="block">[F(\vec{x}),p_i] = i\hbar\frac{\partial F(\vec{x})}{\partial x_i}; \qquad [x_i, F(\vec{p})] = i\hbar\frac{\partial F(\vec{p})}{\partial p_i}.</math> | ||
का उपयोग करते हुए <math>C_{n+1}^{k} = C_{n}^{k} + C_{n}^{k-1}</math>, इसे [[गणितीय प्रेरण]] द्वारा आसानी से दिखाया जा सकता है | का उपयोग करते हुए <math>C_{n+1}^{k} = C_{n}^{k} + C_{n}^{k-1}</math>, इसे [[गणितीय प्रेरण]] द्वारा आसानी से दिखाया जा सकता है | ||
Line 103: | Line 103: | ||
==अनिश्चितता संबंध और कम्यूटेटर == | ==अनिश्चितता संबंध और कम्यूटेटर == | ||
संचालको के जोड़े के लिए ऐसे सभी गैर-तुच्छ कम्यूटेशन संबंध संबंधित अनिश्चितता सिद्धांत की ओर ले जाते हैं,<ref name="robertson">{{cite journal |first=H. P. |last=Robertson |title=अनिश्चितता सिद्धांत|journal=[[Physical Review]] |volume=34 |issue=1 |year=1929 |pages=163–164 |doi=10.1103/PhysRev.34.163 |bibcode = 1929PhRv...34..163R }}</ref> उनके संबंधित कम्यूटेटर और एंटीकम्यूटेटर द्वारा सकारात्मक अर्ध-निश्चित अपेक्षा योगदान शामिल है। सामान्यतः, दो स्व-सहायक | संचालको के जोड़े के लिए ऐसे सभी गैर-तुच्छ कम्यूटेशन संबंध संबंधित अनिश्चितता सिद्धांत की ओर ले जाते हैं,<ref name="robertson">{{cite journal |first=H. P. |last=Robertson |title=अनिश्चितता सिद्धांत|journal=[[Physical Review]] |volume=34 |issue=1 |year=1929 |pages=163–164 |doi=10.1103/PhysRev.34.163 |bibcode = 1929PhRv...34..163R }}</ref> उनके संबंधित कम्यूटेटर और एंटीकम्यूटेटर द्वारा सकारात्मक अर्ध-निश्चित अपेक्षा योगदान शामिल है। सामान्यतः, दो स्व-सहायक संचालक के लिए {{mvar|A}} और {{mvar|B}}, राज्य में प्रणाली में अपेक्षा मूल्यों पर विचार करें {{mvar|ψ}}, संगत अपेक्षा मूल्यों के आसपास भिन्नताएं हैं {{math|1=(Δ''A'')<sup>2</sup> ≡ {{langle}}(''A'' − {{langle}}''A''{{rangle}})<sup>2</sup>{{rangle}}}}, वगैरह। | ||
तब | तब |
Revision as of 22:30, 25 July 2023
क्वांटम यांत्रिकी में, विहित रूपान्तरण संबंध विहित संयुग्म मात्राओं (मात्राएं जो परिभाषा से संबंधित होती हैं जैसे कि दूसरे का फूरियर रूपांतरण है) के मध्य मौलिक संबंध है। उदाहरण के लिए,
इस संबंध का श्रेय वर्नर हाइजेनबर्ग, मैक्स बोर्न और पास्कल जॉर्डन (1925) को दिया जाता है।[1][2] जिन्होंने इसे सिद्धांत के अभिधारणा के रूप में कार्य करने वाली क्वांटम स्थिति कहा; इसे अर्ले हेस्से केनार्ड|ई द्वारा नोट किया गया था। केनार्ड (1927)[3] वर्नर हाइजेनबर्ग अनिश्चितता सिद्धांत को प्रारम्भ करने के लिए स्टोन-वॉन न्यूमैन प्रमेय विहित कम्यूटेशन संबंध को संतुष्ट करने वाले संचालको के लिए एक विशिष्टता परिणाम देता है।
शास्त्रीय यांत्रिकी से संबंध
इसके विपरीत, शास्त्रीय भौतिकी में, सभी अवलोकन योग्य वस्तुएँ आवागमन करती हैं और दिक्परिवर्तक शून्य होगा। चूंकि, अनुरूप संबंध उपस्थित है, जो कम्यूटेटर को पॉइसन ब्रैकेट से गुणा करके प्रतिस्थापित करके प्राप्त किया जाता है iℏ,
हैमिल्टनियन यांत्रिकी से व्युत्पत्ति
पत्राचार सिद्धांत के अनुसार, कुछ सीमाओं में राज्यों के क्वांटम समीकरणों को पॉइसन ब्रैकेट हैमिल्टन की गति के समीकरणों के निकट आना चाहिए। उत्तरार्द्ध सामान्यीकृत समन्वय q (जैसे स्थिति) और सामान्यीकृत गति p के मध्य निम्नलिखित संबंध बताता है:
क्वांटम अवस्था का समय व्युत्पन्न है - (श्रोडिंगर समीकरण द्वारा)। समान रूप से, चूंकि संचालक स्पष्ट रूप से समय-निर्भर नहीं हैं, इसलिए उन्हें हैमिल्टनियन के साथ उनके कम्यूटेशन संबंध के अनुसार समय में विकसित होते देखा जा सकता है (हाइजेनबर्ग चित्र देखें):
वेइल संबंध
झूठ समूह रूपान्तरण संबंध द्वारा निर्धारित 3-आयामी झूठ बीजगणित के घातीय मानचित्र (झूठ सिद्धांत) द्वारा उत्पन्न हाइजेनबर्ग समूह कहलाता है। इस समूह को समूह के रूप में महसूस किया जा सकता है विकर्ण पर स्थित ऊपरी त्रिकोणीय आव्यूह।[7] क्वांटम यांत्रिकी के मानक गणितीय सूत्रीकरण के अनुसार, क्वांटम वेधशालाएँ जैसे और कुछ हिल्बर्ट स्थान पर स्व-सहायक संचालको के रूप में प्रतिनिधित्व किया जाना चाहिए। यह देखना अपेक्षाकृत आसान है कि उपरोक्त विहित कम्यूटेशन संबंधों को संतुष्ट करने वाले दो संचालक (गणित) दोनों परिबद्ध संचालक नहीं हो सकते हैं। निश्चित रूप से, यदि और ट्रेस क्लास संचालक थे, संबंध दाईं ओर शून्येतर संख्या और बाईं ओर शून्य देता है।
वैकल्पिक रूप से, यदि और बाउंडेड संचालक थे, ध्यान दें , इसलिए संचालक मानदंड संतुष्ट होंगे
फिर भी, इन विहित रूपान्तरण संबंधों को (परिबद्ध) ात्मक संचालको के संदर्भ में लिखकर कुछ हद तक नियंत्रित किया जा सकता है और . इन संचालको के लिए परिणामी ब्रेडिंग संबंध तथाकथित स्टोन-वॉन न्यूमैन प्रमेय हैं
वेइल संबंधों के रूप में विहित रूपान्तरण संबंधों की विशिष्टता की गारंटी स्टोन-वॉन न्यूमैन प्रमेय द्वारा दी जाती है।
यह ध्यान रखना महत्वपूर्ण है कि तकनीकी कारणों से, वेइल संबंध सख्ती से विहित रूपान्तरण संबंध के बराबर नहीं हैं . अगर और बंधे हुए संचालक थे, तो बेकर-कैंपबेल-हॉसडॉर्फ फॉर्मूला का विशेष मामला किसी को वेइल संबंधों के विहित कम्यूटेशन संबंधों को घातांकित करने की अनुमति देगा।[8] चूंकि, जैसा कि हमने नोट किया है, विहित कम्यूटेशन संबंधों को संतुष्ट करने वाले किसी भी संचालक को असीमित होना चाहिए, बेकर-कैंपबेल-हॉसडॉर्फ फॉर्मूला अतिरिक्त डोमेन मान्यताओं के बिना प्रारम्भ नहीं होता है। वास्तव में, प्रति उदाहरण विहित रूपान्तरण संबंधों को संतुष्ट करने वाले उपस्थित हैं लेकिन वेइल संबंधों को नहीं।[9] (ये वही संचालक अनिश्चितता सिद्धांत देते हैं#अनिश्चितता सिद्धांत के अनुभवहीन रूप का प्रति उदाहरण।) ये तकनीकी मुद्दे ही कारण हैं कि स्टोन-वॉन न्यूमैन प्रमेय को वेइल संबंधों के संदर्भ में तैयार किया गया है।
वेइल संबंधों का अलग संस्करण, जिसमें पैरामीटर एस और टी की सीमा होती है , पाउली मैट्रिसेस के सामान्यीकरण के माध्यम से परिमित-आयामी हिल्बर्ट स्थान पर महसूस किया जा सकता है#निर्माण: घड़ी और शिफ्ट मैट्रिसेस।
सामान्यीकरण
सरल सूत्र
इसके अतिरिक्त यह आसानी से दिखाया जा सकता है
गेज अपरिवर्तन
कैनोनिकल परिमाणीकरण, परिभाषा के अनुसार, कैनोनिकल निर्देशांक पर प्रारम्भ किया जाता है। चूंकि, विद्युत चुम्बकीय क्षेत्र की उपस्थिति में, विहित गति p गेज अपरिवर्तनीय नहीं है. सही गेज-अपरिवर्तनीय गति (या गतिज गति) है
- (एस.आई. युवा) (गाऊसी इकाइयाँ),
कहाँ q कण का विद्युत आवेश है, A चुंबकीय वेक्टर क्षमता है, और c प्रकाश की गति है. यद्यपि मात्रा pkin भौतिक गति है, इसमें प्रयोगशाला प्रयोगों में गति के साथ पहचानी जाने वाली मात्रा है, यह विहित रूपान्तरण संबंधों को संतुष्ट नहीं करती है; केवल विहित गति ही ऐसा करती है। इस प्रकार इसे देखा जा सकता है।
द्रव्यमान के परिमाणित आवेशित कण के लिए गैर-सापेक्षवादी हैमिल्टनियन (क्वांटम यांत्रिकी)। m शास्त्रीय विद्युत चुम्बकीय क्षेत्र में (सीजीएस इकाइयों में) है
कोणीय संवेग संचालक है
अनिश्चितता संबंध और कम्यूटेटर
संचालको के जोड़े के लिए ऐसे सभी गैर-तुच्छ कम्यूटेशन संबंध संबंधित अनिश्चितता सिद्धांत की ओर ले जाते हैं,[12] उनके संबंधित कम्यूटेटर और एंटीकम्यूटेटर द्वारा सकारात्मक अर्ध-निश्चित अपेक्षा योगदान शामिल है। सामान्यतः, दो स्व-सहायक संचालक के लिए A और B, राज्य में प्रणाली में अपेक्षा मूल्यों पर विचार करें ψ, संगत अपेक्षा मूल्यों के आसपास भिन्नताएं हैं (ΔA)2 ≡ ⟨(A − ⟨A⟩)2⟩, वगैरह।
तब
यह कॉची-श्वार्ज़ असमानता के उपयोग के बाद से होता है |⟨A2⟩| |⟨B2⟩| ≥ |⟨A B⟩|2, और A B = ([A, B] + {A, B})/2 ; और इसी तरह स्थानांतरित संचालको के लिए भी A − ⟨A⟩ और B − ⟨B⟩. (सीएफ. अनिश्चितता सिद्धांत व्युत्पत्तियाँ।)
के लिए स्थानापन्न A और B (और विश्लेषण का ध्यान रखते हुए) हेइज़ेनबर्ग के परिचित अनिश्चितता संबंध को प्राप्त करें x और p, हमेशा की तरह।
कोणीय संवेग परिचालकों के लिए अनिश्चितता संबंध
कोणीय संवेग परिचालकों के लिए Lx = y pz − z py, आदि, किसी के पास वह है
लिए यहाँ Lx और Ly ,[12]कोणीय गति गुणकों में ψ = |ℓ,m⟩, किसी के पास कासिमिर अपरिवर्तनीय के अनुप्रस्थ घटकों के लिए है Lx2 + Ly2+ Lz2, द z-सममितीय संबंध
- ⟨Lx2⟩ = ⟨Ly2⟩ = (ℓ (ℓ + 1) − m2) ℏ2/2 ,
साथ ही ⟨Lx⟩ = ⟨Ly⟩ = 0 .
नतीजतन, इस रूपान्तरण संबंध पर प्रारम्भ उपरोक्त असमानता निर्दिष्ट करती है
यह भी देखें
- विहित परिमाणीकरण
- सीसीआर और सीएआर बीजगणित
- संरूपस्थिक स्पेसटाइम
- झूठ व्युत्पन्न
- मोयल ब्रैकेट
- स्टोन-वॉन न्यूमैन प्रमेय
संदर्भ
- ↑ "क्वांटम यांत्रिकी का विकास".
- ↑ Born, M.; Jordan, P. (1925). "क्वांटम यांत्रिकी पर". Zeitschrift für Physik. 34 (1): 858–888. Bibcode:1925ZPhy...34..858B. doi:10.1007/BF01328531. S2CID 186114542.
- ↑ Kennard, E. H. (1927). "सरल प्रकार की गति के क्वांटम यांत्रिकी पर". Zeitschrift für Physik. 44 (4–5): 326–352. Bibcode:1927ZPhy...44..326K. doi:10.1007/BF01391200. S2CID 121626384.
- ↑ 4.0 4.1 Groenewold, H. J. (1946). "प्राथमिक क्वांटम यांत्रिकी के सिद्धांतों पर". Physica. 12 (7): 405–460. Bibcode:1946Phy....12..405G. doi:10.1016/S0031-8914(46)80059-4.
- ↑ Hall 2013 Theorem 13.13
- ↑ Curtright, T. L.; Zachos, C. K. (2012). "चरण अंतरिक्ष में क्वांटम यांत्रिकी". Asia Pacific Physics Newsletter. 01: 37–46. arXiv:1104.5269. doi:10.1142/S2251158X12000069. S2CID 119230734.
- ↑ Hall 2015 Section 1.2.6 and Proposition 3.26
- ↑ See Section 5.2 of Hall 2015 for an elementary derivation
- ↑ Hall 2013 Example 14.5
- ↑ Townsend, J. S. (2000). क्वांटम यांत्रिकी के लिए एक आधुनिक दृष्टिकोण. Sausalito, CA: University Science Books. ISBN 1-891389-13-0.
- ↑ McCoy, N. H. (1929), "On commutation formulas in the algebra of quantum mechanics", Transactions of the American Mathematical Society 31 (4), 793-806 online
- ↑ 12.0 12.1 Robertson, H. P. (1929). "अनिश्चितता सिद्धांत". Physical Review. 34 (1): 163–164. Bibcode:1929PhRv...34..163R. doi:10.1103/PhysRev.34.163.
- Hall, Brian C. (2013), Quantum Theory for Mathematicians, Graduate Texts in Mathematics, vol. 267, Springer.
- Hall, Brian C. (2015), Lie Groups, Lie Algebras and Representations, An Elementary Introduction, Graduate Texts in Mathematics, vol. 222 (2nd ed.), Springer.