प्रतीकात्मक गतिशीलता: Difference between revisions

From Vigyanwiki
(Created page with "{{Short description|Modeling a dynamical system's states as infinite sequences of symbols}} गणित में, प्रतीकात्मक गतिशीलता...")
 
No edit summary
Line 1: Line 1:
{{Short description|Modeling a dynamical system's states as infinite sequences of symbols}}
{{Short description|Modeling a dynamical system's states as infinite sequences of symbols}}
गणित में, प्रतीकात्मक गतिशीलता एक असतत स्थान द्वारा एक टोपोलॉजिकल या चिकनी [[गतिशील प्रणाली]] को मॉडलिंग करने का अभ्यास है जिसमें अमूर्त प्रतीकों के अनंत [[अनुक्रम]] होते हैं, जिनमें से प्रत्येक प्रणाली की गतिशील प्रणाली से मेल खाती है, जिसमें बदलाव द्वारा दी गई गतिशीलता (विकास) होती है। ऑपरेटर। औपचारिक रूप से, [[मार्कोव विभाजन]] का उपयोग सुचारू प्रणाली के लिए एक सीमित आवरण प्रदान करने के लिए किया जाता है; कवर का प्रत्येक सेट एक एकल प्रतीक के साथ जुड़ा हुआ है, और प्रतीकों के अनुक्रम के परिणामस्वरूप सिस्टम का एक प्रक्षेपवक्र एक कवरिंग सेट से दूसरे तक चलता है।
गणित में, प्रतीकात्मक गतिशीलता असतत स्थान द्वारा टोपोलॉजिकल या चिकनी [[गतिशील प्रणाली]] को मॉडलिंग करने का अभ्यास है जिसमें अमूर्त प्रतीकों के अनंत [[अनुक्रम]] होते हैं, जिनमें से प्रत्येक प्रणाली की गतिशील प्रणाली से मेल खाती है, जिसमें बदलाव द्वारा दी गई गतिशीलता (विकास) होती है। ऑपरेटर। औपचारिक रूप से, [[मार्कोव विभाजन]] का उपयोग सुचारू प्रणाली के लिए सीमित आवरण प्रदान करने के लिए किया जाता है; कवर का प्रत्येक सेट एकल प्रतीक के साथ जुड़ा हुआ है, और प्रतीकों के अनुक्रम के परिणामस्वरूप सिस्टम का प्रक्षेपवक्र कवरिंग सेट से दूसरे तक चलता है।


== इतिहास ==
== '''इतिहास''' ==
यह विचार नकारात्मक [[वक्रता]] की [[सतह (टोपोलॉजी)]] पर [[जियोडेसिक]]्स पर [[जैक्स हैडामर्ड]] के 1898 के पेपर पर आधारित है।<ref>{{cite journal |first=J. |last=Hadamard |title=Les surfaces à courbures opposées et leurs lignes géodésiques |journal=[[Journal de Mathématiques Pures et Appliquées|J. Math. Pures Appl.]] |volume=5 |issue=4 |year=1898 |pages=27–73 |url=http://sites.mathdoc.fr/JMPA/PDF/JMPA_1898_5_4_A3_0.pdf}}</ref> इसे 1921 में [[मार्स्टन मोर्स]] द्वारा एक गैर-आवधिक आवर्ती जियोडेसिक के निर्माण के लिए लागू किया गया था। संबंधित कार्य [[एमिल आर्टिन]] द्वारा 1924 में किया गया था (सिस्टम के लिए जिसे अब [[ बिलियर्ड्स की कला ]] कहा जाता है), [[पेक्का मायरबर्ग]], [[पॉल कोबे]], [[जैकब नीलसन (गणितज्ञ)]], जी ए हेडलंड।
यह विचार नकारात्मक [[वक्रता]] की [[सतह (टोपोलॉजी)]] पर [[जियोडेसिक]]्स पर [[जैक्स हैडामर्ड]] के 1898 के पेपर पर आधारित है।<ref>{{cite journal |first=J. |last=Hadamard |title=Les surfaces à courbures opposées et leurs lignes géodésiques |journal=[[Journal de Mathématiques Pures et Appliquées|J. Math. Pures Appl.]] |volume=5 |issue=4 |year=1898 |pages=27–73 |url=http://sites.mathdoc.fr/JMPA/PDF/JMPA_1898_5_4_A3_0.pdf}}</ref> इसे 1921 में [[मार्स्टन मोर्स]] द्वारा गैर-आवधिक आवर्ती जियोडेसिक के निर्माण के लिए लागू किया गया था। संबंधित कार्य [[एमिल आर्टिन]] द्वारा 1924 में किया गया था (सिस्टम के लिए जिसे अब [[ बिलियर्ड्स की कला |बिलियर्ड्स की कला]] कहा जाता है), [[पेक्का मायरबर्ग]], [[पॉल कोबे]], [[जैकब नीलसन (गणितज्ञ)]], जी ए हेडलंड।


पहला औपचारिक उपचार मोर्स और हेडलंड ने अपने 1938 के पेपर में विकसित किया था।<ref>{{cite journal |jstor=2371264 |authorlink=Marston Morse |first1=M. |last1=Morse |authorlink2=G. A. Hedlund |first2=G. A. |last2=Hedlund |title=प्रतीकात्मक गतिशीलता|journal=American Journal of Mathematics |volume=60 |year=1938 |issue=4 |pages=815–866 |doi=10.2307/2371264 }}</ref> [[जॉर्ज बिरखॉफ़]], [[नॉर्मन लेविंसन]] और जोड़ी [[मैरी कार्टराईट]] और जे. ई. लिटिलवुड ने गैर-स्वायत्त दूसरे क्रम के [[अंतर समीकरण]]ों के गुणात्मक विश्लेषण के लिए समान तरीकों को लागू किया है।
पहला औपचारिक उपचार मोर्स और हेडलंड ने अपने 1938 के पेपर में विकसित किया था।<ref>{{cite journal |jstor=2371264 |authorlink=Marston Morse |first1=M. |last1=Morse |authorlink2=G. A. Hedlund |first2=G. A. |last2=Hedlund |title=प्रतीकात्मक गतिशीलता|journal=American Journal of Mathematics |volume=60 |year=1938 |issue=4 |pages=815–866 |doi=10.2307/2371264 }}</ref> [[जॉर्ज बिरखॉफ़]], [[नॉर्मन लेविंसन]] और जोड़ी [[मैरी कार्टराईट]] और जे. ई. लिटिलवुड ने गैर-स्वायत्त दूसरे क्रम के [[अंतर समीकरण]]ों के गुणात्मक विश्लेषण के लिए समान तरीकों को लागू किया है।
Line 9: Line 9:
[[क्लाउड शैनन]] ने अपने 1948 के पेपर संचार के गणितीय सिद्धांत में प्रतीकात्मक अनुक्रमों और परिमित प्रकार के बदलाव का उपयोग किया जिसने [[सूचना सिद्धांत]] को जन्म दिया।
[[क्लाउड शैनन]] ने अपने 1948 के पेपर संचार के गणितीय सिद्धांत में प्रतीकात्मक अनुक्रमों और परिमित प्रकार के बदलाव का उपयोग किया जिसने [[सूचना सिद्धांत]] को जन्म दिया।


1960 के दशक के उत्तरार्ध के दौरान [[रॉय एडलर]] और [[बेंजामिन वीस]] द्वारा हाइपरबोलिक टोरल ऑटोमोर्फिज्म के लिए प्रतीकात्मक गतिशीलता की पद्धति विकसित की गई थी,<ref>{{Cite journal | title = एन्ट्रॉपी, टोरस के ऑटोमोर्फिज्म के लिए एक पूर्ण मीट्रिक अपरिवर्तनीय| journal = [[Proceedings of the National Academy of Sciences of the United States of America|PNAS]] | volume = 57| pages = 1573–1576 | year = 1967| last1 = Adler | first1 = R. | last2 = Weiss | first2 = B. | issue = 6 |jstor=57985 | bibcode = 1967PNAS...57.1573A | doi=10.1073/pnas.57.6.1573| pmc = 224513 | pmid=16591564| doi-access = free }}</ref> और [[ जैकब सिनाई ]] द्वारा [[एनोसोव भिन्नता]] के लिए जिन्होंने गिब्स उपायों के निर्माण के लिए प्रतीकात्मक मॉडल का उपयोग किया था।<ref>{{Cite journal | title = मार्कोव विभाजन का निर्माण| journal = Funkcional. Anal. I Priložen. | volume = 2| issue = 3 | pages = 70–80 | year = 1968 | last1 = Sinai | first1 = Y.}}</ref> 1970 के दशक की शुरुआत में इस सिद्धांत को [[मरीना रैटनर]] द्वारा एनोसोव प्रवाह तक और [[रूफस बोवेन]] द्वारा [[एक्सिओम ए]] डिफियोमोर्फिज्म और प्रवाह तक विस्तारित किया गया था।
1960 के दशक के उत्तरार्ध के दौरान [[रॉय एडलर]] और [[बेंजामिन वीस]] द्वारा हाइपरबोलिक टोरल ऑटोमोर्फिज्म के लिए प्रतीकात्मक गतिशीलता की पद्धति विकसित की गई थी,<ref>{{Cite journal | title = एन्ट्रॉपी, टोरस के ऑटोमोर्फिज्म के लिए एक पूर्ण मीट्रिक अपरिवर्तनीय| journal = [[Proceedings of the National Academy of Sciences of the United States of America|PNAS]] | volume = 57| pages = 1573–1576 | year = 1967| last1 = Adler | first1 = R. | last2 = Weiss | first2 = B. | issue = 6 |jstor=57985 | bibcode = 1967PNAS...57.1573A | doi=10.1073/pnas.57.6.1573| pmc = 224513 | pmid=16591564| doi-access = free }}</ref> और [[ जैकब सिनाई |जैकब सिनाई]] द्वारा [[एनोसोव भिन्नता]] के लिए जिन्होंने गिब्स उपायों के निर्माण के लिए प्रतीकात्मक मॉडल का उपयोग किया था।<ref>{{Cite journal | title = मार्कोव विभाजन का निर्माण| journal = Funkcional. Anal. I Priložen. | volume = 2| issue = 3 | pages = 70–80 | year = 1968 | last1 = Sinai | first1 = Y.}}</ref> 1970 के दशक की शुरुआत में इस सिद्धांत को [[मरीना रैटनर]] द्वारा एनोसोव प्रवाह तक और [[रूफस बोवेन]] द्वारा [[एक्सिओम ए]] डिफियोमोर्फिज्म और प्रवाह तक विस्तारित किया गया था।


प्रतीकात्मक गतिशीलता के तरीकों का एक शानदार अनुप्रयोग एक अंतराल के निरंतर मानचित्र की [[आवधिक कक्षा]]ओं के बारे में शारकोव्स्की का प्रमेय है (1964)।
प्रतीकात्मक गतिशीलता के तरीकों का शानदार अनुप्रयोग अंतराल के निरंतर मानचित्र की [[आवधिक कक्षा]]ओं के बारे में शारकोव्स्की का प्रमेय है (1964)।


==उदाहरण==
=='''उदाहरण'''==
[[हेटरोक्लिनिक कक्षा]]एँ और [[होमोक्लिनिक कक्षा]]एँ जैसी अवधारणाओं का प्रतीकात्मक गतिशीलता में विशेष रूप से सरल प्रतिनिधित्व है।
[[हेटरोक्लिनिक कक्षा]]एँ और [[होमोक्लिनिक कक्षा]]एँ जैसी अवधारणाओं का प्रतीकात्मक गतिशीलता में विशेष रूप से सरल प्रतिनिधित्व है।


===यात्रा कार्यक्रम===
===यात्रा कार्यक्रम===
विभाजन के संबंध में बिंदु का यात्रा कार्यक्रम प्रतीकों का एक क्रम है। यह बिंदु की गतिशीलता का वर्णन करता है। <ref>Mathematics of Complexity and Dynamical Systems by Robert A. Meyers. Springer Science & Business Media, 2011, {{ISBN|1461418054}}, 9781461418054</ref>
विभाजन के संबंध में बिंदु का यात्रा कार्यक्रम प्रतीकों का क्रम है। यह बिंदु की गतिशीलता का वर्णन करता है। <ref>Mathematics of Complexity and Dynamical Systems by Robert A. Meyers. Springer Science & Business Media, 2011, {{ISBN|1461418054}}, 9781461418054</ref>
 
 
== अनुप्रयोग ==
== अनुप्रयोग ==
प्रतीकात्मक गतिशीलता की उत्पत्ति सामान्य गतिशील प्रणालियों का अध्ययन करने की एक विधि के रूप में हुई; अब इसकी तकनीकों और विचारों को [[डेटा भंडारण उपकरण]] और [[डेटा ट्रांसमिशन]], रैखिक बीजगणित, ग्रहों की गति और कई अन्य क्षेत्रों में महत्वपूर्ण अनुप्रयोग मिल गए हैं।{{Citation needed|date=June 2021}}. प्रतीकात्मक गतिशीलता में विशिष्ट विशेषता यह है कि समय को अलग-अलग समय अंतरालों में मापा जाता है। इसलिए प्रत्येक समय अंतराल पर सिस्टम एक विशेष स्थिति में होता है। प्रत्येक राज्य एक प्रतीक के साथ जुड़ा हुआ है और सिस्टम के विकास को प्रतीकों के एक अनंत अनुक्रम द्वारा वर्णित किया गया है - जिसे [[स्ट्रिंग (कंप्यूटर विज्ञान)]] के रूप में प्रभावी ढंग से दर्शाया गया है। यदि सिस्टम की स्थिति स्वाभाविक रूप से अलग नहीं है, तो [[जितना राज्य]] को अलग किया जाना चाहिए, ताकि सिस्टम का मोटे तौर पर विवरण प्राप्त किया जा सके।
प्रतीकात्मक गतिशीलता की उत्पत्ति सामान्य गतिशील प्रणालियों का अध्ययन करने की विधि के रूप में हुई; अब इसकी तकनीकों और विचारों को [[डेटा भंडारण उपकरण]] और [[डेटा ट्रांसमिशन]], रैखिक बीजगणित, ग्रहों की गति और कई अन्य क्षेत्रों में महत्वपूर्ण अनुप्रयोग मिल गए हैं।. प्रतीकात्मक गतिशीलता में विशिष्ट विशेषता यह है कि समय को अलग-अलग समय अंतरालों में मापा जाता है। इसलिए प्रत्येक समय अंतराल पर सिस्टम विशेष स्थिति में होता है। प्रत्येक राज्य प्रतीक के साथ जुड़ा हुआ है और सिस्टम के विकास को प्रतीकों के अनंत अनुक्रम द्वारा वर्णित किया गया है - जिसे [[स्ट्रिंग (कंप्यूटर विज्ञान)]] के रूप में प्रभावी ढंग से दर्शाया गया है। यदि सिस्टम की स्थिति स्वाभाविक रूप से अलग नहीं है, तो [[जितना राज्य]] को अलग किया जाना चाहिए, ताकि सिस्टम का मोटे तौर पर विवरण प्राप्त किया जा सके।


==यह भी देखें==
==यह भी देखें==
Line 33: Line 31:
==संदर्भ==
==संदर्भ==
{{reflist}}
{{reflist}}
==अग्रिम पठन==
==अग्रिम पठन==
*{{Cite book
*{{Cite book
Line 40: Line 36:
   | first = Bailin
   | first = Bailin
   | authorlink = Bailin Hao
   | authorlink = Bailin Hao
   | title = Elementary Symbolic Dynamics and Chaos in Dissipative Systems
   | title = विघटनकारी प्रणालियों में प्राथमिक प्रतीकात्मक गतिशीलता और अराजकता
   | publisher = [[World Scientific]]
   | publisher = [[विश्व वैज्ञानिक]]
   | date = 1989
   | date = 1989
   | location =  
   | location =  
Line 52: Line 48:
   | archive-url = https://web.archive.org/web/20091205014855/http://power.itp.ac.cn/~hao/
   | archive-url = https://web.archive.org/web/20091205014855/http://power.itp.ac.cn/~hao/
   | archive-date = 2009-12-05
   | archive-date = 2009-12-05
   | url-status = dead
   | url-status = मृत
   }}
   }}
* Bruce Kitchens, ''Symbolic dynamics. One-sided, two-sided and countable state Markov shifts''.  Universitext, [[Springer-Verlag]], Berlin, 1998. x+252 pp. {{isbn|3-540-62738-3}} {{MathSciNet|id=1484730}}
* ब्रूस किचन, प्रतीकात्मक गतिशीलता। एक तरफा, दो तरफा और गणनीय राज्य मार्कोव बदलाव। यूनिवर्सिटेक्ट, [[Springer-Verlag|स्प्रिंगर-वेरलाग]], बर्लिन, 1998. x+252 pp. {{isbn|3-540-62738-3}} {{MathSciNet|id=1484730}}
* {{cite book | first1=Douglas | last1=Lind | first2=Brian | last2=Marcus | title=An introduction to symbolic dynamics and coding | publisher=[[Cambridge University Press]] | year=1995 | isbn=0-521-55124-2 | zbl=1106.37301 | mr=1369092 | url=http://www.math.washington.edu/SymbolicDynamics/ }}
* {{cite book | first1=डगलस | last1=लिंड | first2=ब्रायन | last2=मार्कस | title=प्रतीकात्मक गतिशीलता और कोडिंग का परिचय | publisher=[[कैम्ब्रिज यूनिवर्सिटी प्रेस]] | year=1995 | isbn=0-521-55124-2 | zbl=1106.37301 | mr=1369092 | url=http://www.math.washington.edu/SymbolicDynamics/ }}
* G. A. Hedlund, ''[https://doi.org/10.1007%2FBF01691062 Endomorphisms and automorphisms of the shift dynamical system]''. Math. Systems Theory, Vol. 3, No. 4 (1969) 320&ndash;3751
* जी. . हेडलंड, ''[https://doi.org/10.1007%2FBF01691062 शिफ्ट डायनामिकल सिस्टम की एंडोमोर्फिज्म और ऑटोमोर्फिज्म]''. गणित। सिस्टम सिद्धांत, Vol. 3, No. 4 (1969) 320&ndash;3751
* {{cite book| last = Teschl| given = Gerald|authorlink=Gerald Teschl| title = Ordinary Differential Equations and Dynamical Systems| publisher=[[American Mathematical Society]]| place = [[Providence, Rhode Island|Providence]]| year = 2012| isbn= 978-0-8218-8328-0| url = https://www.mat.univie.ac.at/~gerald/ftp/book-ode/}}
* {{cite book| last = Teschl| given = गेराल्ड|authorlink=जेराल्ड टेस्चल| title = साधारण विभेदक समीकरण और गतिशील प्रणालियाँ| publisher=[[अमेरिकन गणितीय सोसायटी]]| place = [[प्रोविडेंस, रोड आइलैंड|प्रोविडेंस]]| year = 2012| isbn= 978-0-8218-8328-0| url = https://www.mat.univie.ac.at/~gerald/ftp/book-ode/}}
*{{scholarpedia|title=Symbolic dynamics|urlname=Symbolic_dynamics}}
*{{scholarpedia|title=प्रतीकात्मक गतिशीलता|urlname=Symbolic_dynamics}}
 
 
==बाहरी संबंध==
==बाहरी संबंध==
* [http://chaosbook.org/ ChaosBook.org] Chapter "Transition graphs"
* [http://chaosbook.org/ ChaosBook.org] अध्याय "संक्रमण ग्राफ़"
* [https://www.chaos-math.org/en/chaos-v-billiards.html A simulation of the three-bumper billiard system and its symbolic dynamics, from Chaos V: Duhem's Bull]
* [https://www.chaos-math.org/en/chaos-v-billiards.html कैओस वी: ड्यूहेम्स बुल से तीन-बम्पर बिलियर्ड प्रणाली और इसकी प्रतीकात्मक गतिशीलता का अनुकरण]
[[Category: प्रतीकात्मक गतिशीलता| प्रतीकात्मक गतिशीलता]] [[Category: गतिशील प्रणालियाँ]] [[Category: शब्दों पर संयोजकता]]  
[[Category: प्रतीकात्मक गतिशीलता| प्रतीकात्मक गतिशीलता]] [[Category: गतिशील प्रणालियाँ]] [[Category: शब्दों पर संयोजकता]]  



Revision as of 00:03, 26 July 2023

गणित में, प्रतीकात्मक गतिशीलता असतत स्थान द्वारा टोपोलॉजिकल या चिकनी गतिशील प्रणाली को मॉडलिंग करने का अभ्यास है जिसमें अमूर्त प्रतीकों के अनंत अनुक्रम होते हैं, जिनमें से प्रत्येक प्रणाली की गतिशील प्रणाली से मेल खाती है, जिसमें बदलाव द्वारा दी गई गतिशीलता (विकास) होती है। ऑपरेटर। औपचारिक रूप से, मार्कोव विभाजन का उपयोग सुचारू प्रणाली के लिए सीमित आवरण प्रदान करने के लिए किया जाता है; कवर का प्रत्येक सेट एकल प्रतीक के साथ जुड़ा हुआ है, और प्रतीकों के अनुक्रम के परिणामस्वरूप सिस्टम का प्रक्षेपवक्र कवरिंग सेट से दूसरे तक चलता है।

इतिहास

यह विचार नकारात्मक वक्रता की सतह (टोपोलॉजी) पर जियोडेसिक्स पर जैक्स हैडामर्ड के 1898 के पेपर पर आधारित है।[1] इसे 1921 में मार्स्टन मोर्स द्वारा गैर-आवधिक आवर्ती जियोडेसिक के निर्माण के लिए लागू किया गया था। संबंधित कार्य एमिल आर्टिन द्वारा 1924 में किया गया था (सिस्टम के लिए जिसे अब बिलियर्ड्स की कला कहा जाता है), पेक्का मायरबर्ग, पॉल कोबे, जैकब नीलसन (गणितज्ञ), जी ए हेडलंड।

पहला औपचारिक उपचार मोर्स और हेडलंड ने अपने 1938 के पेपर में विकसित किया था।[2] जॉर्ज बिरखॉफ़, नॉर्मन लेविंसन और जोड़ी मैरी कार्टराईट और जे. ई. लिटिलवुड ने गैर-स्वायत्त दूसरे क्रम के अंतर समीकरणों के गुणात्मक विश्लेषण के लिए समान तरीकों को लागू किया है।

क्लाउड शैनन ने अपने 1948 के पेपर संचार के गणितीय सिद्धांत में प्रतीकात्मक अनुक्रमों और परिमित प्रकार के बदलाव का उपयोग किया जिसने सूचना सिद्धांत को जन्म दिया।

1960 के दशक के उत्तरार्ध के दौरान रॉय एडलर और बेंजामिन वीस द्वारा हाइपरबोलिक टोरल ऑटोमोर्फिज्म के लिए प्रतीकात्मक गतिशीलता की पद्धति विकसित की गई थी,[3] और जैकब सिनाई द्वारा एनोसोव भिन्नता के लिए जिन्होंने गिब्स उपायों के निर्माण के लिए प्रतीकात्मक मॉडल का उपयोग किया था।[4] 1970 के दशक की शुरुआत में इस सिद्धांत को मरीना रैटनर द्वारा एनोसोव प्रवाह तक और रूफस बोवेन द्वारा एक्सिओम ए डिफियोमोर्फिज्म और प्रवाह तक विस्तारित किया गया था।

प्रतीकात्मक गतिशीलता के तरीकों का शानदार अनुप्रयोग अंतराल के निरंतर मानचित्र की आवधिक कक्षाओं के बारे में शारकोव्स्की का प्रमेय है (1964)।

उदाहरण

हेटरोक्लिनिक कक्षाएँ और होमोक्लिनिक कक्षाएँ जैसी अवधारणाओं का प्रतीकात्मक गतिशीलता में विशेष रूप से सरल प्रतिनिधित्व है।

यात्रा कार्यक्रम

विभाजन के संबंध में बिंदु का यात्रा कार्यक्रम प्रतीकों का क्रम है। यह बिंदु की गतिशीलता का वर्णन करता है। [5]

अनुप्रयोग

प्रतीकात्मक गतिशीलता की उत्पत्ति सामान्य गतिशील प्रणालियों का अध्ययन करने की विधि के रूप में हुई; अब इसकी तकनीकों और विचारों को डेटा भंडारण उपकरण और डेटा ट्रांसमिशन, रैखिक बीजगणित, ग्रहों की गति और कई अन्य क्षेत्रों में महत्वपूर्ण अनुप्रयोग मिल गए हैं।. प्रतीकात्मक गतिशीलता में विशिष्ट विशेषता यह है कि समय को अलग-अलग समय अंतरालों में मापा जाता है। इसलिए प्रत्येक समय अंतराल पर सिस्टम विशेष स्थिति में होता है। प्रत्येक राज्य प्रतीक के साथ जुड़ा हुआ है और सिस्टम के विकास को प्रतीकों के अनंत अनुक्रम द्वारा वर्णित किया गया है - जिसे स्ट्रिंग (कंप्यूटर विज्ञान) के रूप में प्रभावी ढंग से दर्शाया गया है। यदि सिस्टम की स्थिति स्वाभाविक रूप से अलग नहीं है, तो जितना राज्य को अलग किया जाना चाहिए, ताकि सिस्टम का मोटे तौर पर विवरण प्राप्त किया जा सके।

यह भी देखें

संदर्भ

  1. Hadamard, J. (1898). "Les surfaces à courbures opposées et leurs lignes géodésiques" (PDF). J. Math. Pures Appl. 5 (4): 27–73.
  2. Morse, M.; Hedlund, G. A. (1938). "प्रतीकात्मक गतिशीलता". American Journal of Mathematics. 60 (4): 815–866. doi:10.2307/2371264. JSTOR 2371264.
  3. Adler, R.; Weiss, B. (1967). "एन्ट्रॉपी, टोरस के ऑटोमोर्फिज्म के लिए एक पूर्ण मीट्रिक अपरिवर्तनीय". PNAS. 57 (6): 1573–1576. Bibcode:1967PNAS...57.1573A. doi:10.1073/pnas.57.6.1573. JSTOR 57985. PMC 224513. PMID 16591564.
  4. Sinai, Y. (1968). "मार्कोव विभाजन का निर्माण". Funkcional. Anal. I Priložen. 2 (3): 70–80.
  5. Mathematics of Complexity and Dynamical Systems by Robert A. Meyers. Springer Science & Business Media, 2011, ISBN 1461418054, 9781461418054

अग्रिम पठन

बाहरी संबंध