न्यूमैन परिसीमा प्रतिबंध: Difference between revisions
No edit summary |
No edit summary |
||
Line 28: | Line 28: | ||
:<math>\frac{\partial y}{\partial \mathbf{n}}(\mathbf{x}) = \nabla y(\mathbf{x}) \cdot \mathbf{\hat{n}}(\mathbf{x}),</math> | :<math>\frac{\partial y}{\partial \mathbf{n}}(\mathbf{x}) = \nabla y(\mathbf{x}) \cdot \mathbf{\hat{n}}(\mathbf{x}),</math> | ||
'''कहाँ {{math|∇''y''('''x''')}} के [[ ग्रेडियेंट |ग्रेडियेंट]] वेक्टर का प्रतिनिधित्व करता है {{math|''y''('''x''')}}, {{math|'''n̂'''}} इकाई सामान्य है, और {{math|⋅}} आंतरिक उत्पाद ऑपरेटर का प्रतिनिधित्व करता है।''' | ''''''कहाँ {{math|∇''y''('''x''')}} के [[ ग्रेडियेंट |ग्रेडियेंट]] वेक्टर का प्रतिनिधित्व करता है {{math|''y''('''x''')}}, {{math|'''n̂'''}} इकाई सामान्य है, और {{math|⋅}} आंतरिक उत्पाद ऑपरेटर का प्रतिनिधित्व करता है।'''''' | ||
यह स्पष्ट हो जाता है कि सीमा पर्याप्त रूप से स्मूथ होनी चाहिए जिससे सामान्य व्युत्पन्न उपस्तिथ हो सके, उदाहरण के लिए, सीमा पर कोने बिंदुओं पर सामान्य सदिश अच्छी तरह से परिभाषित नहीं होते है। | |||
===अनुप्रयोग=== | ===अनुप्रयोग=== | ||
निम्नलिखित अनुप्रयोगों में न्यूमैन सीमा स्थितियाँ का उपयोग | निम्नलिखित अनुप्रयोगों में न्यूमैन सीमा स्थितियाँ का उपयोग सम्मिलित है | | ||
* [[ ऊष्मप्रवैगिकी | ऊष्मप्रवैगिकी]] में, किसी सतह से निर्धारित ऊष्मा प्रवाह सीमा स्थिति के रूप में | * [[ ऊष्मप्रवैगिकी | ऊष्मप्रवैगिकी]] में, किसी सतह से निर्धारित ऊष्मा प्रवाह सीमा स्थिति के रूप में कार्य करता हैं। उदाहरण के लिए, आदर्श इन्सुलेटर में कोई प्रवाह नहीं होगा जबकि विद्युत घटक ज्ञात शक्ति पर नष्ट हो सकता है। | ||
* [[magnetostatics]] में, | * [[magnetostatics|मैग्नेटोस्टैटिक्स]] में, स्पेस चुंबक सरणी में चुंबकीय प्रवाह घनत्व वितरण को खोजने के लिए [[चुंबकीय क्षेत्र]] की तीव्रता को सीमा स्थिति के रूप में निर्धारित किया जा सकता है | उदाहरण के लिए स्थायी चुंबक मोटर में होता हैं। चूंकि मैग्नेटोस्टैटिक्स में समस्याओं में चुंबकीय अदिश क्षमता के लिए लाप्लास के समीकरण या पॉइसन के समीकरण का समाधान करना सम्मिलित होता है और सीमा स्थिति न्यूमैन स्थिति होती है। | ||
* [[स्थानिक पारिस्थितिकी]] में, प्रतिक्रिया-प्रसार प्रणाली पर न्यूमैन सीमा स्थिति, जैसे कि फिशर समीकरण, | *[[स्थानिक पारिस्थितिकी]] में, प्रतिक्रिया-प्रसार प्रणाली पर न्यूमैन सीमा स्थिति होती हैं, जैसे कि फिशर समीकरण, की प्रतिबिंबित सीमा के रूप में व्याख्या की जा सकती है,और जैसे कि {{math|∂Ω}} का सामना करने वाले सभी व्यक्ति {{math|Ω}} पर पीछे की ओर प्रतिबिंबित होते हैं।<ref>{{cite book |first=Robert Stephen |last=Cantrell |first2=Chris |last2=Cosner |title=Spatial Ecology via Reaction–Diffusion Equations |location= |publisher=Wiley |year=2003 |isbn=0-471-49301-5 |pages=30–31 }}</ref> | ||
==यह भी देखें== | ==यह भी देखें== | ||
*द्रव गतिकी में सीमा स्थितियाँ | *द्रव गतिकी में सीमा स्थितियाँ |
Revision as of 00:33, 26 July 2023
गणित में, न्यूमैन (या दूसरे प्रकार की) सीमा स्थिति प्रकार की सीमा स्थिति है, जिसका नाम कार्ल न्यूमैन के नाम पर रखा गया है।[1] जब साधारण या आंशिक अंतर समीकरण पर लगाया जाता है, तो स्थिति डोमेन (गणितीय विश्लेषण) की सीमा (टोपोलॉजी) पर प्रयुक्त व्युत्पन्न के मूल्यों को निर्दिष्ट करती है।
अन्य सीमा स्थितियाँ का उपयोग करके समस्या का वर्णन करना संभव होता है | डिरिचलेट सीमा स्थिति सीमा पर स्वयं समाधान के मूल्यों को निर्दिष्ट करती है (इसके व्युत्पन्न के विपरीत), जबकि कॉची सीमा स्थिति, मिश्रित सीमा स्थिति और रॉबिन सीमा स्थिति सभी न्यूमैन और डिरिचलेट सीमा स्थितियों के विभिन्न प्रकार के संयोजन हैं।
उदाहरण
ओडीई
उदाहरण के लिए, साधारण अंतर समीकरण के लिए,
अंतराल [a,b] पर न्यूमैन सीमा स्थितियां रूप लेती हैं
जहां αऔर β संख्याएं दी गई हैं।
पीडीई
उदाहरण के लिए, आंशिक अंतर समीकरण के लिए,
जहां ∇2 लाप्लास संचालक, को दर्शाता है, यह डोमेन पर न्यूमैन सीमा स्थितियां Ω ⊂ Rn का रूप लेती हैं |
जहां n सीमा (टोपोलॉजी) के लिए ∂Ω के (सामान्यतः बाहरी) सामान्य सदिश को दर्शाता है, और f अदिश फलन दिया गया है।
सामान्य व्युत्पन्न, जो बाईं ओर दिखाई देता है, को इस प्रकार परिभाषित किया गया है
'कहाँ ∇y(x) के ग्रेडियेंट वेक्टर का प्रतिनिधित्व करता है y(x), n̂ इकाई सामान्य है, और ⋅ आंतरिक उत्पाद ऑपरेटर का प्रतिनिधित्व करता है।'
यह स्पष्ट हो जाता है कि सीमा पर्याप्त रूप से स्मूथ होनी चाहिए जिससे सामान्य व्युत्पन्न उपस्तिथ हो सके, उदाहरण के लिए, सीमा पर कोने बिंदुओं पर सामान्य सदिश अच्छी तरह से परिभाषित नहीं होते है।
अनुप्रयोग
निम्नलिखित अनुप्रयोगों में न्यूमैन सीमा स्थितियाँ का उपयोग सम्मिलित है |
- ऊष्मप्रवैगिकी में, किसी सतह से निर्धारित ऊष्मा प्रवाह सीमा स्थिति के रूप में कार्य करता हैं। उदाहरण के लिए, आदर्श इन्सुलेटर में कोई प्रवाह नहीं होगा जबकि विद्युत घटक ज्ञात शक्ति पर नष्ट हो सकता है।
- मैग्नेटोस्टैटिक्स में, स्पेस चुंबक सरणी में चुंबकीय प्रवाह घनत्व वितरण को खोजने के लिए चुंबकीय क्षेत्र की तीव्रता को सीमा स्थिति के रूप में निर्धारित किया जा सकता है | उदाहरण के लिए स्थायी चुंबक मोटर में होता हैं। चूंकि मैग्नेटोस्टैटिक्स में समस्याओं में चुंबकीय अदिश क्षमता के लिए लाप्लास के समीकरण या पॉइसन के समीकरण का समाधान करना सम्मिलित होता है और सीमा स्थिति न्यूमैन स्थिति होती है।
- स्थानिक पारिस्थितिकी में, प्रतिक्रिया-प्रसार प्रणाली पर न्यूमैन सीमा स्थिति होती हैं, जैसे कि फिशर समीकरण, की प्रतिबिंबित सीमा के रूप में व्याख्या की जा सकती है,और जैसे कि ∂Ω का सामना करने वाले सभी व्यक्ति Ω पर पीछे की ओर प्रतिबिंबित होते हैं।[2]
यह भी देखें
- द्रव गतिकी में सीमा स्थितियाँ
- डिरिचलेट सीमा स्थिति
- रॉबिन सीमा स्थिति
संदर्भ
- ↑ Cheng, A. H.-D.; Cheng, D. T. (2005). "सीमा तत्व विधि की विरासत और प्रारंभिक इतिहास". Engineering Analysis with Boundary Elements. 29 (3): 268. doi:10.1016/j.enganabound.2004.12.001.
- ↑ Cantrell, Robert Stephen; Cosner, Chris (2003). Spatial Ecology via Reaction–Diffusion Equations. Wiley. pp. 30–31. ISBN 0-471-49301-5.