उपापचयन विभव: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 5: Line 5:
[[जलीय घोल]] में, उपापचयन '''विभव''' किसी प्रतिक्रिया में इलेक्ट्रॉनों को प्राप्त करने अथवा लुप्त करने के समाधान की प्रवृत्ति का माप है। किसी अन्य अणु की तुलना में उच्च (अधिक धनात्मक) अपचयन विभव वाले समाधान में इस अन्य अणु से इलेक्ट्रॉनों को प्राप्त करने की प्रवृत्ति होगी (अर्थात इस अन्य अणु को ऑक्सीकरण विधि द्वारा कम किया जा सकता है) और कम (अधिक ऋणात्मक) अपचयन विभव वाले समाधान में अन्य पदार्थों के लिए इलेक्ट्रॉन को त्यागने की प्रवृत्ति होगी (अन्य पदार्थ को कम करके ऑक्सीकरण किया जाएगा)। यद्यपि पूर्ण विभवों को त्रुटिहीन रूप से मापना लगभग असंभव होता है तथा अपचयन विभवों को संदर्भ इलेक्ट्रोड के सापेक्ष परिभाषित किया जाता है। जलीय घोल के अपचयन विभव का निर्धारण घोल के संपर्क में अक्रिय संवेदन इलेक्ट्रोड और सॉल्ट ब्रिज द्वारा घोल से संयोजित स्थिर संदर्भ इलेक्ट्रोड के मध्य संभावित अंतर को मापकर किया जाता है।<ref name="Environmental Chemistry (vanLoon)">{{cite book|last=vanLoon|first=Gary|title=पर्यावरण रसायन विज्ञान - (* गैरी वालेस) एक वैश्विक परिप्रेक्ष्य|year=2011|publisher=Oxford University Press|isbn=978-0-19-922886-7|pages=235–248|edition=3rd|author2=Duffy, Stephen }}</ref>
[[जलीय घोल]] में, उपापचयन '''विभव''' किसी प्रतिक्रिया में इलेक्ट्रॉनों को प्राप्त करने अथवा लुप्त करने के समाधान की प्रवृत्ति का माप है। किसी अन्य अणु की तुलना में उच्च (अधिक धनात्मक) अपचयन विभव वाले समाधान में इस अन्य अणु से इलेक्ट्रॉनों को प्राप्त करने की प्रवृत्ति होगी (अर्थात इस अन्य अणु को ऑक्सीकरण विधि द्वारा कम किया जा सकता है) और कम (अधिक ऋणात्मक) अपचयन विभव वाले समाधान में अन्य पदार्थों के लिए इलेक्ट्रॉन को त्यागने की प्रवृत्ति होगी (अन्य पदार्थ को कम करके ऑक्सीकरण किया जाएगा)। यद्यपि पूर्ण विभवों को त्रुटिहीन रूप से मापना लगभग असंभव होता है तथा अपचयन विभवों को संदर्भ इलेक्ट्रोड के सापेक्ष परिभाषित किया जाता है। जलीय घोल के अपचयन विभव का निर्धारण घोल के संपर्क में अक्रिय संवेदन इलेक्ट्रोड और सॉल्ट ब्रिज द्वारा घोल से संयोजित स्थिर संदर्भ इलेक्ट्रोड के मध्य संभावित अंतर को मापकर किया जाता है।<ref name="Environmental Chemistry (vanLoon)">{{cite book|last=vanLoon|first=Gary|title=पर्यावरण रसायन विज्ञान - (* गैरी वालेस) एक वैश्विक परिप्रेक्ष्य|year=2011|publisher=Oxford University Press|isbn=978-0-19-922886-7|pages=235–248|edition=3rd|author2=Duffy, Stephen }}</ref>


संवेदन इलेक्ट्रोड इलेक्ट्रॉन हस्तांतरण के लिए या संदर्भ आधे सेल से मंच के रूप में कार्य करता है; यह आमतौर पर [[ प्लैटिनम |प्लैटिनम]] से बना होता है, हालांकि सोने और [[ग्रेफाइट]] का भी उपयोग किया जा सकता है। संदर्भ आधे सेल में ज्ञात क्षमता का रेडॉक्स मानक होता है। [[मानक हाइड्रोजन इलेक्ट्रोड]] (एसएचई) वह संदर्भ है जिससे सभी मानक रेडॉक्स क्षमता निर्धारित की जाती है, और इसे 0.0 वी की मनमाना [[आधा सेल]] क्षमता सौंपी गई है। हालांकि, यह नियमित प्रयोगशाला उपयोग के लिए नाजुक और अव्यवहारिक है। इसलिए, अन्य अधिक स्थिर संदर्भ इलेक्ट्रोड जैसे [[सिल्वर क्लोराइड इलेक्ट्रोड]] और [[संतृप्त कैलोमेल इलेक्ट्रोड]] (एससीई) आमतौर पर उनके अधिक विश्वसनीय प्रदर्शन के कारण उपयोग किए जाते हैं।
संवेदन इलेक्ट्रोड संदर्भ अर्ध सेल से इलेक्ट्रॉन स्थानांतरण के लिए मंच के रूप में कार्य करता है; यह सामान्यतः [[ प्लैटिनम |प्लैटिनम]] से बना होता है, यद्यपि स्वर्ण और [[ग्रेफाइट]] का भी उपयोग किया जा सकता है। संदर्भ अर्ध सेल में ज्ञात विभव का रेडॉक्स मानक होता है। [[मानक हाइड्रोजन इलेक्ट्रोड]] (एसएचई) वह संदर्भ है जिससे सभी मानक रेडॉक्स विभवों को निर्धारित किया जाता है, और इसे 0.0 वी का आरबिटरेरी [[आधा सेल|अर्ध सेल]] विभव प्रदान किया गया है। यद्यपि, यह नियमित प्रयोगशाला उपयोग के लिए सूक्ष्म और अव्यवहारिक है। इसलिए, अन्य अधिक स्थिर संदर्भ इलेक्ट्रोड जैसे [[सिल्वर क्लोराइड इलेक्ट्रोड]] और [[संतृप्त कैलोमेल इलेक्ट्रोड]] (एससीई) सामान्यतः उनके अधिक विश्वसनीय प्रदर्शन के कारण उपयोग किए जाते हैं।


हालांकि जलीय विलयनों में रेडॉक्स क्षमता का मापन अपेक्षाकृत सीधा है, कई कारक इसकी व्याख्या को सीमित करते हैं, जैसे समाधान तापमान और पीएच, [[प्रतिवर्ती प्रतिक्रिया]], धीमी इलेक्ट्रोड कैनेटीक्स, गैर-संतुलन, कई रेडॉक्स जोड़ों की उपस्थिति, इलेक्ट्रोड विषाक्तता, छोटे विनिमय धाराएँ, और अक्रिय रेडॉक्स युगल। नतीजतन, व्यावहारिक माप शायद ही कभी परिकलित मूल्यों के साथ सहसंबंधित होते हैं। फिर भी, संभावित माप में कमी उनके पूर्ण मूल्य (जैसे प्रक्रिया नियंत्रण और अनुमापन) को निर्धारित करने के बजाय प्रणाली में परिवर्तन की निगरानी में विश्लेषणात्मक उपकरण के रूप में उपयोगी साबित हुई है।
यद्यपि जलीय विलयनों में रेडॉक्स क्षमता का मापन अपेक्षाकृत सीधा है, कई कारक इसकी व्याख्या को सीमित करते हैं, जैसे समाधान तापमान और पीएच, [[प्रतिवर्ती प्रतिक्रिया]], धीमी इलेक्ट्रोड कैनेटीक्स, गैर-संतुलन, कई रेडॉक्स जोड़ों की उपस्थिति, इलेक्ट्रोड विषाक्तता, छोटे विनिमय धाराएँ, और अक्रिय रेडॉक्स युगल। नतीजतन, व्यावहारिक माप शायद ही कभी परिकलित मूल्यों के साथ सहसंबंधित होते हैं। फिर भी, संभावित माप में कमी उनके पूर्ण मूल्य (जैसे प्रक्रिया नियंत्रण और अनुमापन) को निर्धारित करने के बजाय प्रणाली में परिवर्तन की निगरानी में विश्लेषणात्मक उपकरण के रूप में उपयोगी साबित हुई है।


== स्पष्टीकरण ==
== स्पष्टीकरण ==
Line 17: Line 17:
कहाँ, <math>V_T=\frac{RT}{F}</math> [[थर्मल वोल्टेज]] है, के साथ {{mvar|R}}, [[गैस स्थिरांक]] ({{val|8.314|u=J⋅K<sup>−1</sup>⋅mol<sup>−1</sup>}}), {{mvar|T}}, [[केल्विन]] में [[थर्मोडायनामिक तापमान]] (298.15 K = 25 °C = 77 °F), और {{mvar|F}}, [[फैराडे स्थिरांक]] (96 485 कूलम्ब/मोल of {{e-}}). लैम्ब्डा, λ = ln(10) ≈ 2.3026।
कहाँ, <math>V_T=\frac{RT}{F}</math> [[थर्मल वोल्टेज]] है, के साथ {{mvar|R}}, [[गैस स्थिरांक]] ({{val|8.314|u=J⋅K<sup>−1</sup>⋅mol<sup>−1</sup>}}), {{mvar|T}}, [[केल्विन]] में [[थर्मोडायनामिक तापमान]] (298.15 K = 25 °C = 77 °F), और {{mvar|F}}, [[फैराडे स्थिरांक]] (96 485 कूलम्ब/मोल of {{e-}}). लैम्ब्डा, λ = ln(10) ≈ 2.3026।


वास्तव में, <math>pe = -\log[e^-]</math> समाधान में मुक्त इलेक्ट्रॉन ाग्रता के नकारात्मक लघुगणक के रूप में परिभाषित किया गया है, और रेडॉक्स क्षमता के सीधे आनुपातिक है।<ref name="Environmental Chemistry (vanLoon)" /><ref>Stumm, W. and Morgan, J. J. (1981). Aquatic Chemistry, 2nd Ed., John Wiley & Sons, New York.</ref> कभी-कभी <math>pe</math> के बजाय कमी क्षमता की इकाई के रूप में उपयोग किया जाता है <math>E_h</math>, उदाहरण के लिए, पर्यावरण रसायन विज्ञान में।<ref name="Environmental Chemistry (vanLoon)" />यदि कोई सामान्य करता है <math>pe</math> हाइड्रोजन का शून्य से संबंध प्राप्त होता है <math>pe = 16.9\ E_h</math> कमरे के तापमान पर। रेडॉक्स क्षमता को समझने के लिए यह धारणा उपयोगी है, हालांकि थर्मल संतुलन में मुक्त इलेक्ट्रॉनों की पूर्ण ाग्रता के बजाय इलेक्ट्रॉनों का स्थानांतरण, आमतौर पर रेडॉक्स क्षमता के बारे में कैसे सोचता है। हालांकि, सैद्धांतिक रूप से, दो दृष्टिकोण समकक्ष हैं।
वास्तव में, <math>pe = -\log[e^-]</math> समाधान में मुक्त इलेक्ट्रॉन ाग्रता के नकारात्मक लघुगणक के रूप में परिभाषित किया गया है, और रेडॉक्स क्षमता के सीधे आनुपातिक है।<ref name="Environmental Chemistry (vanLoon)" /><ref>Stumm, W. and Morgan, J. J. (1981). Aquatic Chemistry, 2nd Ed., John Wiley & Sons, New York.</ref> कभी-कभी <math>pe</math> के बजाय कमी क्षमता की इकाई के रूप में उपयोग किया जाता है <math>E_h</math>, उदाहरण के लिए, पर्यावरण रसायन विज्ञान में।<ref name="Environmental Chemistry (vanLoon)" />यदि कोई सामान्य करता है <math>pe</math> हाइड्रोजन का शून्य से संबंध प्राप्त होता है <math>pe = 16.9\ E_h</math> कमरे के तापमान पर। रेडॉक्स क्षमता को समझने के लिए यह धारणा उपयोगी है, यद्यपि थर्मल संतुलन में मुक्त इलेक्ट्रॉनों की पूर्ण ाग्रता के बजाय इलेक्ट्रॉनों का स्थानांतरण, सामान्यतः रेडॉक्स क्षमता के बारे में कैसे सोचता है। यद्यपि, सैद्धांतिक रूप से, दो दृष्टिकोण समकक्ष हैं।


इसके विपरीत, कोई पीएच के अनुरूप क्षमता को विलेय और पीएच तटस्थ पानी के मध्य संभावित अंतर के रूप में परिभाषित कर सकता है, जो झरझरा झिल्ली (जो हाइड्रोजन आयनों के लिए पारगम्य है) द्वारा अलग किया गया है। इस तरह के संभावित अंतर वास्तव में जैविक झिल्लियों पर अम्लता के अंतर से उत्पन्न होते हैं। यह क्षमता (जहां पीएच तटस्थ पानी 0 V पर सेट है) रेडॉक्स क्षमता के अनुरूप है (जहां मानकीकृत हाइड्रोजन समाधान 0 V पर सेट है), लेकिन हाइड्रोजन आयनों के बजाय, इलेक्ट्रॉनों को रेडॉक्स मामले में स्थानांतरित किया जाता है। पीएच और रेडॉक्स क्षमता दोनों ही विलयन के गुण हैं, न कि स्वयं तत्वों या रासायनिक यौगिकों के, और सांद्रता, तापमान आदि पर निर्भर करते हैं।
इसके विपरीत, कोई पीएच के अनुरूप क्षमता को विलेय और पीएच तटस्थ पानी के मध्य संभावित अंतर के रूप में परिभाषित कर सकता है, जो झरझरा झिल्ली (जो हाइड्रोजन आयनों के लिए पारगम्य है) द्वारा अलग किया गया है। इस तरह के संभावित अंतर वास्तव में जैविक झिल्लियों पर अम्लता के अंतर से उत्पन्न होते हैं। यह क्षमता (जहां पीएच तटस्थ पानी 0 V पर सेट है) रेडॉक्स क्षमता के अनुरूप है (जहां मानकीकृत हाइड्रोजन समाधान 0 V पर सेट है), लेकिन हाइड्रोजन आयनों के बजाय, इलेक्ट्रॉनों को रेडॉक्स मामले में स्थानांतरित किया जाता है। पीएच और रेडॉक्स क्षमता दोनों ही विलयन के गुण हैं, न कि स्वयं तत्वों या रासायनिक यौगिकों के, और सांद्रता, तापमान आदि पर निर्भर करते हैं।
Line 37: Line 37:
== मानक कमी क्षमता ==
== मानक कमी क्षमता ==
{{See also|मानक इलेक्ट्रोड क्षमता|मानक हाइड्रोजन इलेक्ट्रोड|मानक इलेक्ट्रोड क्षमता (डेटा पृष्ठ)|जैव रसायन विज्ञान में महत्वपूर्ण अर्ध-प्रतिक्रियाओं के लिए मानक कमी संभावनाओं की तालिका}}
{{See also|मानक इलेक्ट्रोड क्षमता|मानक हाइड्रोजन इलेक्ट्रोड|मानक इलेक्ट्रोड क्षमता (डेटा पृष्ठ)|जैव रसायन विज्ञान में महत्वपूर्ण अर्ध-प्रतिक्रियाओं के लिए मानक कमी संभावनाओं की तालिका}}
[[मानक कमी क्षमता]] <math>E^{\ominus}_{red}</math> मानक परिस्थितियों में मापा जाता है: T = 298.15 K (25 celsius|°C, or 77 Fahrenheit|°F), इकाई [[गतिविधि (रसायन विज्ञान)]] ({{mvar|a {{=}} 1}}) [[रासायनिक प्रतिक्रिया]] में भाग लेने वाले प्रत्येक [[आयन]] के लिए, प्रतिक्रिया में भाग लेने वाली प्रत्येक [[गैस]] के लिए 1 एटीएम (बार (यूनिट) | 1.013 बार) का [[आंशिक दबाव]], और उनके शुद्ध अवस्था में [[धातु]]। मानक कमी क्षमता <math>E^{\ominus}_{red}</math> संदर्भ इलेक्ट्रोड के रूप में उपयोग किए जाने वाले मानक हाइड्रोजन इलेक्ट्रोड (SHE) के सापेक्ष परिभाषित किया गया है, जिसे मनमाने ढंग से 0.00 V की क्षमता दी जाती है। हालांकि, क्योंकि इन्हें रेडॉक्स क्षमता के रूप में भी संदर्भित किया जा सकता है, शर्तों में कमी की क्षमता और ऑक्सीकरण क्षमता को प्राथमिकता दी जाती है। आईयूपीएसी। दोनों को प्रतीकों द्वारा स्पष्ट रूप से अलग किया जा सकता है <math>E_{red}</math> और <math>E_{ox}</math>, साथ <math>E_{ox} = -E_{red}</math>.
[[मानक कमी क्षमता]] <math>E^{\ominus}_{red}</math> मानक परिस्थितियों में मापा जाता है: T = 298.15 K (25 celsius|°C, or 77 Fahrenheit|°F), इकाई [[गतिविधि (रसायन विज्ञान)]] ({{mvar|a {{=}} 1}}) [[रासायनिक प्रतिक्रिया]] में भाग लेने वाले प्रत्येक [[आयन]] के लिए, प्रतिक्रिया में भाग लेने वाली प्रत्येक [[गैस]] के लिए 1 एटीएम (बार (यूनिट) | 1.013 बार) का [[आंशिक दबाव]], और उनके शुद्ध अवस्था में [[धातु]]। मानक कमी क्षमता <math>E^{\ominus}_{red}</math> संदर्भ इलेक्ट्रोड के रूप में उपयोग किए जाने वाले मानक हाइड्रोजन इलेक्ट्रोड (SHE) के सापेक्ष परिभाषित किया गया है, जिसे मनमाने ढंग से 0.00 V की क्षमता दी जाती है। यद्यपि, क्योंकि इन्हें रेडॉक्स क्षमता के रूप में भी संदर्भित किया जा सकता है, शर्तों में कमी की क्षमता और ऑक्सीकरण क्षमता को प्राथमिकता दी जाती है। आईयूपीएसी। दोनों को प्रतीकों द्वारा स्पष्ट रूप से अलग किया जा सकता है <math>E_{red}</math> और <math>E_{ox}</math>, साथ <math>E_{ox} = -E_{red}</math>.


== आधा सेल ==
== आधा सेल ==
इलेक्ट्रॉन प्रवाह की दिशा की भविष्यवाणी करने के लिए विभिन्न आधे कोशिकाओं की सापेक्ष [[प्रतिक्रियाशीलता (रसायन विज्ञान)]] की तुलना की जा सकती है। उच्च <math>E^{\ominus}_{red}</math> इसका मतलब है कि घटने की प्रवृत्ति अधिक है, जबकि कम होने का मतलब है कि ऑक्सीकरण होने की प्रवृत्ति अधिक है।
इलेक्ट्रॉन प्रवाह की दिशा की भविष्यवाणी करने के लिए विभिन्न आधे कोशिकाओं की सापेक्ष [[प्रतिक्रियाशीलता (रसायन विज्ञान)]] की तुलना की जा सकती है। उच्च <math>E^{\ominus}_{red}</math> इसका मतलब है कि घटने की प्रवृत्ति अधिक है, जबकि कम होने का मतलब है कि ऑक्सीकरण होने की प्रवृत्ति अधिक है।


कोई भी प्रणाली या वातावरण जो सामान्य हाइड्रोजन इलेक्ट्रोड से इलेक्ट्रॉनों को स्वीकार करता है, आधा सेल है जिसे सकारात्मक रेडॉक्स क्षमता के रूप में परिभाषित किया गया है; हाइड्रोजन इलेक्ट्रोड को इलेक्ट्रॉन दान करने वाली किसी भी प्रणाली को नकारात्मक रेडॉक्स क्षमता के रूप में परिभाषित किया गया है। <math>E_{h}</math> आमतौर पर वोल्ट (V) या [[millivolts]] (मिलीवोल्ट) में व्यक्त किया जाता है। उच्च सकारात्मक <math>E_{h}</math> ऐसे वातावरण को इंगित करता है जो मुक्त [[ऑक्सीजन]] जैसे ऑक्सीकरण प्रतिक्रिया का समर्थन करता है। कम नकारात्मक <math>E_{h}</math> मजबूत कम करने वाले वातावरण को इंगित करता है, जैसे मुक्त धातु।
कोई भी प्रणाली या वातावरण जो सामान्य हाइड्रोजन इलेक्ट्रोड से इलेक्ट्रॉनों को स्वीकार करता है, आधा सेल है जिसे सकारात्मक रेडॉक्स क्षमता के रूप में परिभाषित किया गया है; हाइड्रोजन इलेक्ट्रोड को इलेक्ट्रॉन दान करने वाली किसी भी प्रणाली को नकारात्मक रेडॉक्स क्षमता के रूप में परिभाषित किया गया है। <math>E_{h}</math> सामान्यतः वोल्ट (V) या [[millivolts]] (मिलीवोल्ट) में व्यक्त किया जाता है। उच्च सकारात्मक <math>E_{h}</math> ऐसे वातावरण को इंगित करता है जो मुक्त [[ऑक्सीजन]] जैसे ऑक्सीकरण प्रतिक्रिया का समर्थन करता है। कम नकारात्मक <math>E_{h}</math> मजबूत कम करने वाले वातावरण को इंगित करता है, जैसे मुक्त धातु।


कभी-कभी जब जलीय घोल में [[इलेक्ट्रोलीज़]] किया जाता है, तो विलेय के बजाय पानी ऑक्सीकृत या कम हो जाता है। उदाहरण के लिए, यदि [[सोडियम क्लोराइड]] का जलीय घोल इलेक्ट्रोलाइज़ किया जाता है, तो हाइड्रोजन का उत्पादन करने के लिए [[कैथोड]] पर पानी कम किया जा सकता है।<sub>2(g)</sub>और हाइड्रॉक्साइड | ओह<sup>−</sup> आयन, Na के स्थान पर<sup>+</sup> सोडियम में अपचयित होना<sub>(s)</sub>, जैसा कि पानी के अभाव में होता है। यह उपस्थित प्रत्येक प्रजाति की कमी क्षमता है जो यह निर्धारित करेगी कि कौन सी प्रजाति ऑक्सीकरण या कम हो जाएगी।
कभी-कभी जब जलीय घोल में [[इलेक्ट्रोलीज़]] किया जाता है, तो विलेय के बजाय पानी ऑक्सीकृत या कम हो जाता है। उदाहरण के लिए, यदि [[सोडियम क्लोराइड]] का जलीय घोल इलेक्ट्रोलाइज़ किया जाता है, तो हाइड्रोजन का उत्पादन करने के लिए [[कैथोड]] पर पानी कम किया जा सकता है।<sub>2(g)</sub>और हाइड्रॉक्साइड | ओह<sup>−</sup> आयन, Na के स्थान पर<sup>+</sup> सोडियम में अपचयित होना<sub>(s)</sub>, जैसा कि पानी के अभाव में होता है। यह उपस्थित प्रत्येक प्रजाति की कमी क्षमता है जो यह निर्धारित करेगी कि कौन सी प्रजाति ऑक्सीकरण या कम हो जाएगी।
Line 51: Line 51:


== नर्नस्ट समीकरण ==
== नर्नस्ट समीकरण ==
{{Main|नर्नस्ट समीकरण}}<nowiki> </nowiki><math>E_h</math> h> और किसी विलयन का pH, Nernst समीकरण द्वारा संबंधित होते हैं, जैसा कि आमतौर पर Poorbaix आरेख द्वारा दर्शाया जाता है {{nowrap|(<math>E_h</math> – [[pH]] plot)}}. आधे सेल समीकरण के लिए, पारंपरिक रूप से कमी प्रतिक्रिया के रूप में लिखा जाता है (अर्थात, बाईं ओर ऑक्सीडेंट द्वारा इलेक्ट्रॉनों को स्वीकार किया जाता है):
{{Main|नर्नस्ट समीकरण}}<nowiki> </nowiki><math>E_h</math> h> और किसी विलयन का pH, Nernst समीकरण द्वारा संबंधित होते हैं, जैसा कि सामान्यतः Poorbaix आरेख द्वारा दर्शाया जाता है {{nowrap|(<math>E_h</math> – [[pH]] plot)}}. अर्ध सेल समीकरण के लिए, पारंपरिक रूप से कमी प्रतिक्रिया के रूप में लिखा जाता है (अर्थात, बाईं ओर ऑक्सीडेंट द्वारा इलेक्ट्रॉनों को स्वीकार किया जाता है):


:<math chem>a \, A + b \, B + h \, \ce{H+} + z \, e^{-} \quad \ce{<=>} \quad c \, C + d \, D</math>
:<math chem>a \, A + b \, B + h \, \ce{H+} + z \, e^{-} \quad \ce{<=>} \quad c \, C + d \, D</math>
Line 75: Line 75:
: {{chem|O|2-}} + {{chem|H|2|O}} ⇌ 2 {{chem|OH|-}}
: {{chem|O|2-}} + {{chem|H|2|O}} ⇌ 2 {{chem|OH|-}}


यही कारण है कि प्रोटॉन हमेशा कमी प्रतिक्रियाओं के बाईं ओर अभिकर्मक के रूप में लगे रहते हैं जैसा कि आमतौर पर [[मानक कमी क्षमता (डेटा पृष्ठ)]] की तालिका में देखा जा सकता है।
यही कारण है कि प्रोटॉन हमेशा कमी प्रतिक्रियाओं के बाईं ओर अभिकर्मक के रूप में लगे रहते हैं जैसा कि सामान्यतः [[मानक कमी क्षमता (डेटा पृष्ठ)]] की तालिका में देखा जा सकता है।


यदि, कमी प्रतिक्रियाओं के बहुत ही दुर्लभ उदाहरणों में, एच<sup>+</sup> कमी प्रतिक्रिया द्वारा गठित उत्पाद थे और इस प्रकार समीकरण के दाईं ओर दिखाई देने पर, रेखा का ढलान व्युत्क्रम होगा और इस प्रकार धनात्मक (उच्च <math>E_h</math> उच्च पीएच पर)।
यदि, कमी प्रतिक्रियाओं के बहुत ही दुर्लभ उदाहरणों में, एच<sup>+</sup> कमी प्रतिक्रिया द्वारा गठित उत्पाद थे और इस प्रकार समीकरण के दाईं ओर दिखाई देने पर, रेखा का ढलान व्युत्क्रम होगा और इस प्रकार धनात्मक (उच्च <math>E_h</math> उच्च पीएच पर)।
Line 92: Line 92:
कई [[एंजाइम]] प्रतिक्रियाएं ऑक्सीकरण-कमी प्रतिक्रियाएं होती हैं, जिसमें यौगिक ऑक्सीकरण होता है और दूसरा यौगिक कम हो जाता है। किसी जीव की ऑक्सीकरण-अपचयन अभिक्रियाओं को पूरा करने की क्षमता पर्यावरण की ऑक्सीकरण-अपचयन अवस्था या इसकी अपचयन क्षमता पर निर्भर करती है (<math>E_h</math>).
कई [[एंजाइम]] प्रतिक्रियाएं ऑक्सीकरण-कमी प्रतिक्रियाएं होती हैं, जिसमें यौगिक ऑक्सीकरण होता है और दूसरा यौगिक कम हो जाता है। किसी जीव की ऑक्सीकरण-अपचयन अभिक्रियाओं को पूरा करने की क्षमता पर्यावरण की ऑक्सीकरण-अपचयन अवस्था या इसकी अपचयन क्षमता पर निर्भर करती है (<math>E_h</math>).


सख्ती से [[एरोबियन]] आम तौर पर सकारात्मक पर सक्रिय होते हैं <math>E_h</math> मूल्य, जबकि सख्त [[अवायवीय]] आमतौर पर नकारात्मक पर सक्रिय होते हैं <math>E_h</math> मान। रेडॉक्स पोषक तत्वों, विशेष रूप से धातु आयनों की घुलनशीलता को प्रभावित करता है।<ref>{{Cite journal |title = Solubility of heavy metals in a contaminated soil: Effects of redox potential and pH |date = 1996 |journal = Water, Air, & Soil Pollution |doi = 10.1007/BF00282668 |last1 = Chuan |first1 = M. |last2 = Liu |first2 = G. Shu. J. |volume=90 |issue = 3–4 |pages=543–556 |bibcode = 1996WASP...90..543C|s2cid = 93256604 }}</ref>
सख्ती से [[एरोबियन]] आम तौर पर सकारात्मक पर सक्रिय होते हैं <math>E_h</math> मूल्य, जबकि सख्त [[अवायवीय]] सामान्यतः नकारात्मक पर सक्रिय होते हैं <math>E_h</math> मान। रेडॉक्स पोषक तत्वों, विशेष रूप से धातु आयनों की घुलनशीलता को प्रभावित करता है।<ref>{{Cite journal |title = Solubility of heavy metals in a contaminated soil: Effects of redox potential and pH |date = 1996 |journal = Water, Air, & Soil Pollution |doi = 10.1007/BF00282668 |last1 = Chuan |first1 = M. |last2 = Liu |first2 = G. Shu. J. |volume=90 |issue = 3–4 |pages=543–556 |bibcode = 1996WASP...90..543C|s2cid = 93256604 }}</ref>
ऐसे जीव हैं जो अपने चयापचय को अपने वातावरण में समायोजित कर सकते हैं, जैसे वैकल्पिक अवायवीय। वैकल्पिक एनारोबेस सकारात्मक ई पर सक्रिय हो सकते हैं<sub>h</sub>मान, और नकारात्मक ई पर<sub>h</sub>नाइट्रेट्स और सल्फेट्स जैसे ऑक्सीजन युक्त अकार्बनिक यौगिकों की उपस्थिति में मूल्य।{{Citation needed|date=April 2012}}
ऐसे जीव हैं जो अपने चयापचय को अपने वातावरण में समायोजित कर सकते हैं, जैसे वैकल्पिक अवायवीय। वैकल्पिक एनारोबेस सकारात्मक ई पर सक्रिय हो सकते हैं<sub>h</sub>मान, और नकारात्मक ई पर<sub>h</sub>नाइट्रेट्स और सल्फेट्स जैसे ऑक्सीजन युक्त अकार्बनिक यौगिकों की उपस्थिति में मूल्य।{{Citation needed|date=April 2012}}


Line 101: Line 101:
पर्यावरण रसायन विज्ञान के क्षेत्र में, कमी की क्षमता का उपयोग यह निर्धारित करने के लिए किया जाता है कि पानी या मिट्टी में ऑक्सीकरण या कम करने की स्थिति प्रचलित है, और पौरबैक्स आरेख, जैसे भंग धातुएं। पानी में पीई मान -12 से 25 तक होता है; वे स्तर जहाँ पानी स्वयं कम या ऑक्सीकृत हो जाता है, क्रमशः।<ref name="Environmental Chemistry (vanLoon)" />
पर्यावरण रसायन विज्ञान के क्षेत्र में, कमी की क्षमता का उपयोग यह निर्धारित करने के लिए किया जाता है कि पानी या मिट्टी में ऑक्सीकरण या कम करने की स्थिति प्रचलित है, और पौरबैक्स आरेख, जैसे भंग धातुएं। पानी में पीई मान -12 से 25 तक होता है; वे स्तर जहाँ पानी स्वयं कम या ऑक्सीकृत हो जाता है, क्रमशः।<ref name="Environmental Chemistry (vanLoon)" />


प्राकृतिक प्रणालियों में कमी की क्षमता अक्सर पानी के स्थिरता क्षेत्र की सीमाओं में से के पास तुलनात्मक रूप से होती है। वातित सतही जल, नदियों, झीलों, महासागरों, वर्षा जल और अम्ल खान जल में आमतौर पर ऑक्सीकरण की स्थिति (सकारात्मक क्षमता) होती है। वायु आपूर्ति की सीमाओं वाले स्थानों में, जैसे जलमग्न मिट्टी, दलदल और समुद्री तलछट, कम करने की स्थिति (नकारात्मक क्षमता) आदर्श हैं। मध्यवर्ती मान दुर्लभ होते हैं और आमतौर पर अस्थायी स्थिति होती है जो सिस्टम में उच्च या निम्न पीई मानों पर चलती है।<ref name="Environmental Chemistry (vanLoon)" />
प्राकृतिक प्रणालियों में कमी की क्षमता अक्सर पानी के स्थिरता क्षेत्र की सीमाओं में से के पास तुलनात्मक रूप से होती है। वातित सतही जल, नदियों, झीलों, महासागरों, वर्षा जल और अम्ल खान जल में सामान्यतः ऑक्सीकरण की स्थिति (सकारात्मक क्षमता) होती है। वायु आपूर्ति की सीमाओं वाले स्थानों में, जैसे जलमग्न मिट्टी, दलदल और समुद्री तलछट, कम करने की स्थिति (नकारात्मक क्षमता) आदर्श हैं। मध्यवर्ती मान दुर्लभ होते हैं और सामान्यतः अस्थायी स्थिति होती है जो सिस्टम में उच्च या निम्न पीई मानों पर चलती है।<ref name="Environmental Chemistry (vanLoon)" />


पर्यावरणीय स्थितियों में, बड़ी संख्या में प्रजातियों के मध्य जटिल गैर-संतुलन की स्थिति होना आम बात है, जिसका अर्थ है कि कमी क्षमता का सटीक और सटीक माप करना अक्सर संभव नहीं होता है। हालांकि, आमतौर पर अनुमानित मूल्य प्राप्त करना संभव है और शर्तों को ऑक्सीकरण या कम करने वाले शासन के रूप में परिभाषित करना संभव है।<ref name="Environmental Chemistry (vanLoon)" />
पर्यावरणीय स्थितियों में, बड़ी संख्या में प्रजातियों के मध्य जटिल गैर-संतुलन की स्थिति होना आम बात है, जिसका अर्थ है कि कमी क्षमता का सटीक और सटीक माप करना अक्सर संभव नहीं होता है। यद्यपि, सामान्यतः अनुमानित मूल्य प्राप्त करना संभव है और शर्तों को ऑक्सीकरण या कम करने वाले शासन के रूप में परिभाषित करना संभव है।<ref name="Environmental Chemistry (vanLoon)" />


मिट्टी में दो मुख्य रेडॉक्स घटक होते हैं: 1) अकार्बनिक रेडॉक्स सिस्टम (मुख्य रूप से Fe और Mn के ऑक्स/लाल यौगिक) और पानी के अर्क में माप; 2) प्रत्यक्ष विधि द्वारा सभी माइक्रोबियल और रूट घटकों और माप के साथ प्राकृतिक मिट्टी के नमूने।<ref name="Hudson_2016">हसन ओ एट अल। (2016)। मृदा रेडॉक्स क्षमता में व्यावहारिक सुधार (ई<sub>h</sub>) मिट्टी के गुणों के लक्षण वर्णन के लिए माप। पारंपरिक और संरक्षण कृषि फसल प्रणालियों की तुलना के लिए आवेदन। एनालिटिका चिमिका एक्टा 906, 98–109।</ref>
मिट्टी में दो मुख्य रेडॉक्स घटक होते हैं: 1) अकार्बनिक रेडॉक्स सिस्टम (मुख्य रूप से Fe और Mn के ऑक्स/लाल यौगिक) और पानी के अर्क में माप; 2) प्रत्यक्ष विधि द्वारा सभी माइक्रोबियल और रूट घटकों और माप के साथ प्राकृतिक मिट्टी के नमूने।<ref name="Hudson_2016">हसन ओ एट अल। (2016)। मृदा रेडॉक्स क्षमता में व्यावहारिक सुधार (ई<sub>h</sub>) मिट्टी के गुणों के लक्षण वर्णन के लिए माप। पारंपरिक और संरक्षण कृषि फसल प्रणालियों की तुलना के लिए आवेदन। एनालिटिका चिमिका एक्टा 906, 98–109।</ref>
Line 115: Line 115:
== भूविज्ञान ==
== भूविज्ञान ==
{{See also|पोरबैक्स आरेख}}
{{See also|पोरबैक्स आरेख}}
और<sub>h</sub>-pH (पौरबैक्स) आरेखों का उपयोग आमतौर पर खनिजों और भंग प्रजातियों के स्थिरता क्षेत्रों के आकलन के लिए खनन और भूविज्ञान में किया जाता है। उन स्थितियों के तहत जहां खनिज (ठोस) चरण को किसी तत्व का सबसे स्थिर रूप होने की भविष्यवाणी की जाती है, ये चित्र उस खनिज को दिखाते हैं। जैसा कि अनुमानित परिणाम थर्मोडायनामिक (संतुलन अवस्था में) मूल्यांकन से हैं, इन आरेखों का सावधानी से उपयोग किया जाना चाहिए। यद्यपि किसी खनिज के बनने या उसके घुलने की परिस्थितियों के सेट के तहत होने की भविष्यवाणी की जा सकती है, प्रक्रिया व्यावहारिक रूप से नगण्य हो सकती है क्योंकि इसकी दर बहुत धीमी है। नतीजतन, गतिज मूल्यांकन ही समय में आवश्यक हैं। फिर भी, सहज परिवर्तनों की दिशा और उनके पीछे प्रेरक शक्ति के परिमाण का मूल्यांकन करने के लिए संतुलन की स्थितियों का उपयोग किया जा सकता है।
और<sub>h</sub>-pH (पौरबैक्स) आरेखों का उपयोग सामान्यतः खनिजों और भंग प्रजातियों के स्थिरता क्षेत्रों के आकलन के लिए खनन और भूविज्ञान में किया जाता है। उन स्थितियों के तहत जहां खनिज (ठोस) चरण को किसी तत्व का सबसे स्थिर रूप होने की भविष्यवाणी की जाती है, ये चित्र उस खनिज को दिखाते हैं। जैसा कि अनुमानित परिणाम थर्मोडायनामिक (संतुलन अवस्था में) मूल्यांकन से हैं, इन आरेखों का सावधानी से उपयोग किया जाना चाहिए। यद्यपि किसी खनिज के बनने या उसके घुलने की परिस्थितियों के सेट के तहत होने की भविष्यवाणी की जा सकती है, प्रक्रिया व्यावहारिक रूप से नगण्य हो सकती है क्योंकि इसकी दर बहुत धीमी है। नतीजतन, गतिज मूल्यांकन ही समय में आवश्यक हैं। फिर भी, सहज परिवर्तनों की दिशा और उनके पीछे प्रेरक शक्ति के परिमाण का मूल्यांकन करने के लिए संतुलन की स्थितियों का उपयोग किया जा सकता है।


== यह भी देखें ==
== यह भी देखें ==

Revision as of 00:45, 27 July 2023

उपापचयन विभव (जिसे आक्सीकरण/अपचयन विभव ओआरपी, पीई, , अथवा के रूप में भी जाना जाता है) रासायनिक प्रजाति के इलेक्ट्रोड से इलेक्ट्रॉन को प्राप्त करने अथवा इलेक्ट्रॉनों को लुप्त करने की प्रवृत्ति का माप है और इस प्रकार यह क्रमशः कम अथवा ऑक्सीकृत हो जाता है। उपापचयन विभव वाल्ट (वी) में व्यक्त किया जाता है। प्रत्येक प्रजाति का अपना आंतरिक उपापचयन विभव होता है; उदाहरण के लिए, अपचयन विभव जितना अधिक सकारात्मक होगा (विद्युत्-रसायन में सामान्य औपचारिकता के कारण अपचयन विभव का अधिक उपयोग किया जाता है), इलेक्ट्रॉनों के लिए प्रजातियों की आत्मीयता और कम होने की प्रवृत्ति उतनी ही अधिक होगी।

मापन और व्याख्या

जलीय घोल में, उपापचयन विभव किसी प्रतिक्रिया में इलेक्ट्रॉनों को प्राप्त करने अथवा लुप्त करने के समाधान की प्रवृत्ति का माप है। किसी अन्य अणु की तुलना में उच्च (अधिक धनात्मक) अपचयन विभव वाले समाधान में इस अन्य अणु से इलेक्ट्रॉनों को प्राप्त करने की प्रवृत्ति होगी (अर्थात इस अन्य अणु को ऑक्सीकरण विधि द्वारा कम किया जा सकता है) और कम (अधिक ऋणात्मक) अपचयन विभव वाले समाधान में अन्य पदार्थों के लिए इलेक्ट्रॉन को त्यागने की प्रवृत्ति होगी (अन्य पदार्थ को कम करके ऑक्सीकरण किया जाएगा)। यद्यपि पूर्ण विभवों को त्रुटिहीन रूप से मापना लगभग असंभव होता है तथा अपचयन विभवों को संदर्भ इलेक्ट्रोड के सापेक्ष परिभाषित किया जाता है। जलीय घोल के अपचयन विभव का निर्धारण घोल के संपर्क में अक्रिय संवेदन इलेक्ट्रोड और सॉल्ट ब्रिज द्वारा घोल से संयोजित स्थिर संदर्भ इलेक्ट्रोड के मध्य संभावित अंतर को मापकर किया जाता है।[1]

संवेदन इलेक्ट्रोड संदर्भ अर्ध सेल से इलेक्ट्रॉन स्थानांतरण के लिए मंच के रूप में कार्य करता है; यह सामान्यतः प्लैटिनम से बना होता है, यद्यपि स्वर्ण और ग्रेफाइट का भी उपयोग किया जा सकता है। संदर्भ अर्ध सेल में ज्ञात विभव का रेडॉक्स मानक होता है। मानक हाइड्रोजन इलेक्ट्रोड (एसएचई) वह संदर्भ है जिससे सभी मानक रेडॉक्स विभवों को निर्धारित किया जाता है, और इसे 0.0 वी का आरबिटरेरी अर्ध सेल विभव प्रदान किया गया है। यद्यपि, यह नियमित प्रयोगशाला उपयोग के लिए सूक्ष्म और अव्यवहारिक है। इसलिए, अन्य अधिक स्थिर संदर्भ इलेक्ट्रोड जैसे सिल्वर क्लोराइड इलेक्ट्रोड और संतृप्त कैलोमेल इलेक्ट्रोड (एससीई) सामान्यतः उनके अधिक विश्वसनीय प्रदर्शन के कारण उपयोग किए जाते हैं।

यद्यपि जलीय विलयनों में रेडॉक्स क्षमता का मापन अपेक्षाकृत सीधा है, कई कारक इसकी व्याख्या को सीमित करते हैं, जैसे समाधान तापमान और पीएच, प्रतिवर्ती प्रतिक्रिया, धीमी इलेक्ट्रोड कैनेटीक्स, गैर-संतुलन, कई रेडॉक्स जोड़ों की उपस्थिति, इलेक्ट्रोड विषाक्तता, छोटे विनिमय धाराएँ, और अक्रिय रेडॉक्स युगल। नतीजतन, व्यावहारिक माप शायद ही कभी परिकलित मूल्यों के साथ सहसंबंधित होते हैं। फिर भी, संभावित माप में कमी उनके पूर्ण मूल्य (जैसे प्रक्रिया नियंत्रण और अनुमापन) को निर्धारित करने के बजाय प्रणाली में परिवर्तन की निगरानी में विश्लेषणात्मक उपकरण के रूप में उपयोगी साबित हुई है।

स्पष्टीकरण

हाइड्रोजन आयन की सांद्रता जलीय घोल की अम्लता या पीएच को कैसे निर्धारित करती है, उसी तरह रासायनिक प्रजाति और इलेक्ट्रोड के मध्य इलेक्ट्रॉन हस्तांतरण की प्रवृत्ति इलेक्ट्रोड जोड़े की रेडॉक्स क्षमता को निर्धारित करती है। पीएच की तरह, रेडॉक्स क्षमता दर्शाती है कि इलेक्ट्रॉनों को समाधान में या प्रजातियों से कितनी आसानी से स्थानांतरित किया जाता है। रेडॉक्स क्षमता ऑक्सीकरण या कमी के लिए उपलब्ध इलेक्ट्रॉनों की मात्रा के बजाय इलेक्ट्रॉनों को खोने या प्राप्त करने के लिए रासायनिक प्रजातियों की विशिष्ट स्थिति के तहत क्षमता को दर्शाती है।

की अवधारणा pe का प्रयोग पौरबैक्स आरेखों के साथ किया जाता है। pe विमा रहित संख्या है और इसे आसानी से E से जोड़ा जा सकता हैH निम्नलिखित संबंध द्वारा:

कहाँ, थर्मल वोल्टेज है, के साथ R, गैस स्थिरांक (8.314 J⋅K−1⋅mol−1), T, केल्विन में थर्मोडायनामिक तापमान (298.15 K = 25 °C = 77 °F), और F, फैराडे स्थिरांक (96 485 कूलम्ब/मोल of e). लैम्ब्डा, λ = ln(10) ≈ 2.3026।

वास्तव में, समाधान में मुक्त इलेक्ट्रॉन ाग्रता के नकारात्मक लघुगणक के रूप में परिभाषित किया गया है, और रेडॉक्स क्षमता के सीधे आनुपातिक है।[1][2] कभी-कभी के बजाय कमी क्षमता की इकाई के रूप में उपयोग किया जाता है , उदाहरण के लिए, पर्यावरण रसायन विज्ञान में।[1]यदि कोई सामान्य करता है हाइड्रोजन का शून्य से संबंध प्राप्त होता है कमरे के तापमान पर। रेडॉक्स क्षमता को समझने के लिए यह धारणा उपयोगी है, यद्यपि थर्मल संतुलन में मुक्त इलेक्ट्रॉनों की पूर्ण ाग्रता के बजाय इलेक्ट्रॉनों का स्थानांतरण, सामान्यतः रेडॉक्स क्षमता के बारे में कैसे सोचता है। यद्यपि, सैद्धांतिक रूप से, दो दृष्टिकोण समकक्ष हैं।

इसके विपरीत, कोई पीएच के अनुरूप क्षमता को विलेय और पीएच तटस्थ पानी के मध्य संभावित अंतर के रूप में परिभाषित कर सकता है, जो झरझरा झिल्ली (जो हाइड्रोजन आयनों के लिए पारगम्य है) द्वारा अलग किया गया है। इस तरह के संभावित अंतर वास्तव में जैविक झिल्लियों पर अम्लता के अंतर से उत्पन्न होते हैं। यह क्षमता (जहां पीएच तटस्थ पानी 0 V पर सेट है) रेडॉक्स क्षमता के अनुरूप है (जहां मानकीकृत हाइड्रोजन समाधान 0 V पर सेट है), लेकिन हाइड्रोजन आयनों के बजाय, इलेक्ट्रॉनों को रेडॉक्स मामले में स्थानांतरित किया जाता है। पीएच और रेडॉक्स क्षमता दोनों ही विलयन के गुण हैं, न कि स्वयं तत्वों या रासायनिक यौगिकों के, और सांद्रता, तापमान आदि पर निर्भर करते हैं।

नीचे दी गई तालिका में कुछ अपचयन विभव दर्शाए गए हैं, जिन्हें चिह्न उलट कर ऑक्सीकरण विभव में बदला जा सकता है। कम करने वाला एजेंट ऑक्सीकरण एजेंटों को इलेक्ट्रॉनों का दान (या कम) करता है, जिसे रेड्यूसर द्वारा कम किया जाता है। रिड्यूसर तब मजबूत होता है जब उसमें अधिक नकारात्मक कमी क्षमता होती है और कमजोर तब होता है जब उसमें अधिक सकारात्मक कमी क्षमता होती है। अपचयन क्षमता जितनी अधिक सकारात्मक होगी, इलेक्ट्रॉनों के लिए प्रजातियों की बंधुता और कम होने की प्रवृत्ति उतनी ही अधिक होगी। निम्न तालिका 25 डिग्री सेल्सियस पर संकेतित कम करने वाले एजेंट की कमी क्षमता प्रदान करती है। उदाहरण के लिए, सोडियम (Na) धातु, क्रोमियम (Cr) धातु, कपनुमा (Cu+) आयन और क्लोराइड (Cl) आयन, यह Na धातु है जो सबसे मजबूत कम करने वाला एजेंट है जबकि Cl आयन सबसे कमजोर है; अलग ढंग से कहा, ना+ आयन इस सूची में सबसे कमजोर ऑक्सीकरण एजेंट है जबकि Cl2 अणु सबसे प्रबल होता है।

Reduction potentials of various reactions[3] v
Oxidizing agent Reducing agent Reduction
Potential (V)
Li+ + e Li −3.04
Na+ + e Na −2.71
Mg2+ + 2 e Mg −2.38
Al3+ + 3 e Al −1.66
2 H2O (l) + 2 e H2 (g) + 2 OH −0.83
Cr3+ + 3 e Cr −0.74
Fe2+ + 2 e Fe −0.44
2 H+ + 2 e H2 0.00
Sn4+ + 2 e Sn2+ +0.15
Cu2+ + e Cu+ +0.16
Ag+ + e Ag +0.80
Br2 + 2 e 2 Br +1.07
Cl2 + 2 e 2 Cl +1.36
MnO4 + 8 H+ + 5 e Mn2+ + 4 H2O +1.49
F2 + 2 e 2 F +2.87

कुछ तत्व और यौगिक अपचायक या ऑक्सीकारक दोनों हो सकते हैं। जब यह गैर-धातुओं के साथ प्रतिक्रिया करता है तो हाइड्रोजन गैस कम करने वाला एजेंट होता है और जब यह धातुओं के साथ प्रतिक्रिया करता है तो ऑक्सीकरण एजेंट होता है।

2 Li (s) + H2 (g) → 2 LiH (s)[lower-alpha 1]

हाइड्रोजन (जिसकी कमी क्षमता 0.0 है) ऑक्सीकरण एजेंट के रूप में कार्य करता है क्योंकि यह कम करने वाले एजेंट लिथियम (जिसकी कमी क्षमता -3.04 है) से इलेक्ट्रॉन दान स्वीकार करता है, जिसके कारण ली को ऑक्सीकरण किया जाता है और हाइड्रोजन को कम किया जाता है।

H2 (g) + F2 (g) → 2 HF (g)[lower-alpha 2]

हाइड्रोजन कम करने वाले एजेंट के रूप में कार्य करता है क्योंकि यह अपने इलेक्ट्रॉनों को फ्लोरीन को दान करता है, जो फ्लोरीन को कम करने की अनुमति देता है।

मानक कमी क्षमता

मानक कमी क्षमता मानक परिस्थितियों में मापा जाता है: T = 298.15 K (25 celsius|°C, or 77 Fahrenheit|°F), इकाई गतिविधि (रसायन विज्ञान) (a = 1) रासायनिक प्रतिक्रिया में भाग लेने वाले प्रत्येक आयन के लिए, प्रतिक्रिया में भाग लेने वाली प्रत्येक गैस के लिए 1 एटीएम (बार (यूनिट) | 1.013 बार) का आंशिक दबाव, और उनके शुद्ध अवस्था में धातु। मानक कमी क्षमता संदर्भ इलेक्ट्रोड के रूप में उपयोग किए जाने वाले मानक हाइड्रोजन इलेक्ट्रोड (SHE) के सापेक्ष परिभाषित किया गया है, जिसे मनमाने ढंग से 0.00 V की क्षमता दी जाती है। यद्यपि, क्योंकि इन्हें रेडॉक्स क्षमता के रूप में भी संदर्भित किया जा सकता है, शर्तों में कमी की क्षमता और ऑक्सीकरण क्षमता को प्राथमिकता दी जाती है। आईयूपीएसी। दोनों को प्रतीकों द्वारा स्पष्ट रूप से अलग किया जा सकता है और , साथ .

आधा सेल

इलेक्ट्रॉन प्रवाह की दिशा की भविष्यवाणी करने के लिए विभिन्न आधे कोशिकाओं की सापेक्ष प्रतिक्रियाशीलता (रसायन विज्ञान) की तुलना की जा सकती है। उच्च इसका मतलब है कि घटने की प्रवृत्ति अधिक है, जबकि कम होने का मतलब है कि ऑक्सीकरण होने की प्रवृत्ति अधिक है।

कोई भी प्रणाली या वातावरण जो सामान्य हाइड्रोजन इलेक्ट्रोड से इलेक्ट्रॉनों को स्वीकार करता है, आधा सेल है जिसे सकारात्मक रेडॉक्स क्षमता के रूप में परिभाषित किया गया है; हाइड्रोजन इलेक्ट्रोड को इलेक्ट्रॉन दान करने वाली किसी भी प्रणाली को नकारात्मक रेडॉक्स क्षमता के रूप में परिभाषित किया गया है। सामान्यतः वोल्ट (V) या millivolts (मिलीवोल्ट) में व्यक्त किया जाता है। उच्च सकारात्मक ऐसे वातावरण को इंगित करता है जो मुक्त ऑक्सीजन जैसे ऑक्सीकरण प्रतिक्रिया का समर्थन करता है। कम नकारात्मक मजबूत कम करने वाले वातावरण को इंगित करता है, जैसे मुक्त धातु।

कभी-कभी जब जलीय घोल में इलेक्ट्रोलीज़ किया जाता है, तो विलेय के बजाय पानी ऑक्सीकृत या कम हो जाता है। उदाहरण के लिए, यदि सोडियम क्लोराइड का जलीय घोल इलेक्ट्रोलाइज़ किया जाता है, तो हाइड्रोजन का उत्पादन करने के लिए कैथोड पर पानी कम किया जा सकता है।2(g)और हाइड्रॉक्साइड | ओह आयन, Na के स्थान पर+ सोडियम में अपचयित होना(s), जैसा कि पानी के अभाव में होता है। यह उपस्थित प्रत्येक प्रजाति की कमी क्षमता है जो यह निर्धारित करेगी कि कौन सी प्रजाति ऑक्सीकरण या कम हो जाएगी।

यदि कोई किसी प्रतिक्रिया के लिए इलेक्ट्रोड और इलेक्ट्रोलाइट के मध्य वास्तविक क्षमता को जानता है, तो पूर्ण कमी की क्षमता निर्धारित की जा सकती है। भूतल ध्रुवीकरण मापन के साथ हस्तक्षेप करता है, लेकिन विभिन्न स्रोत[citation needed] 4.4 V से 4.6 V (इलेक्ट्रोलाइट सकारात्मक होने) के मानक हाइड्रोजन इलेक्ट्रोड के लिए अनुमानित क्षमता दें।

अर्ध-सेल समीकरणों को संयोजित किया जा सकता है यदि ऑक्सीकरण से संबंधित को उल्टा कर दिया जाए ताकि रिडक्टेंट द्वारा दिए गए प्रत्येक इलेक्ट्रॉन को ऑक्सीडेंट द्वारा स्वीकार किया जा सके। इस तरह, वैश्विक संयुक्त समीकरण में अब इलेक्ट्रॉन नहीं होते हैं।

नर्नस्ट समीकरण

h> और किसी विलयन का pH, Nernst समीकरण द्वारा संबंधित होते हैं, जैसा कि सामान्यतः Poorbaix आरेख द्वारा दर्शाया जाता है (pH plot). अर्ध सेल समीकरण के लिए, पारंपरिक रूप से कमी प्रतिक्रिया के रूप में लिखा जाता है (अर्थात, बाईं ओर ऑक्सीडेंट द्वारा इलेक्ट्रॉनों को स्वीकार किया जाता है):

आधा सेल मानक कमी क्षमता द्वारा दिया गया है

कहाँ मानक गिब्स मुक्त ऊर्जा परिवर्तन है, z शामिल इलेक्ट्रॉनों की संख्या है, और F फैराडे स्थिरांक है। नर्नस्ट समीकरण पीएच और से संबंधित है :

 [citation needed]

जहां घुंघराले कोष्ठक गतिविधि (रसायन विज्ञान) को इंगित करते हैं, और घातांक पारंपरिक तरीके से दिखाए जाते हैं।
यह समीकरण सीधी रेखा का समीकरण है की ढलान के साथ पीएच के समारोह के रूप में वोल्ट (पीएच की कोई इकाई नहीं है)।

यह समीकरण कम भविष्यवाणी करता है उच्च पीएच मान पर। यह ओ की कमी के लिए मनाया जाता है2 एच में2ओ, या ओह-, और H को कम करने के लिए+ एच में2:

O2 + 4 H+ + 4 e ⇌ 2 H2O
O2 + 2 H2O + 4 e ⇌ 4 OH
2 H+ + 2 e ⇌ H2

केंद्रीय रेडॉक्स-सक्रिय परमाणु, ऑक्साइड आयनों के साथ ऑक्सीजन को शामिल करने वाली अधिकांश (यदि सभी नहीं) प्रतिक्रियाओं में (O2−
) अधिक मात्रा में होने पर मुक्त हो जाते हैं जब केंद्रीय परमाणु कम हो जाता है। प्रत्येक ऑक्साइड आयन का अम्ल-क्षार निराकरण 2 की खपत करता है H+ या H2O अणु इस प्रकार है:

O2−
+ 2 H+
H
2
O
O2−
+ H
2
O
⇌ 2 OH

यही कारण है कि प्रोटॉन हमेशा कमी प्रतिक्रियाओं के बाईं ओर अभिकर्मक के रूप में लगे रहते हैं जैसा कि सामान्यतः मानक कमी क्षमता (डेटा पृष्ठ) की तालिका में देखा जा सकता है।

यदि, कमी प्रतिक्रियाओं के बहुत ही दुर्लभ उदाहरणों में, एच+ कमी प्रतिक्रिया द्वारा गठित उत्पाद थे और इस प्रकार समीकरण के दाईं ओर दिखाई देने पर, रेखा का ढलान व्युत्क्रम होगा और इस प्रकार धनात्मक (उच्च उच्च पीएच पर)।

इसका उदाहरण मैग्नेटाइट का रिडक्टिव विघटन होगा (Fe3O4Fe2O3·FeO 2 के साथ Fe3+
और 1 Fe2+
) 3 HFeO बनाने के लिए
2 (aq)
(जिसमें घुला लोहा, Fe(II), द्विसंयोजक है और Fe(III) की तुलना में बहुत अधिक घुलनशील है), जबकि जारी करते हुए H+:[4]

Fe
3
O
4
+ 2 H
2
O
+ 2 e 3 HFeO
2
+ H+

कहाँ:

Eh = −1.1819 − 0.0885 log [HFeO
2
]3 + 0.0296 pH

ध्यान दें कि लाइन का स्लोप 0.0296 ऊपर दिए गए -0.05916 मान का -1/2 है, क्योंकि h/z = −1/2. यह भी ध्यान दें कि मान -0.0885 -0.05916 × 3/2 से मेल खाता है।

जैव रसायन

कई एंजाइम प्रतिक्रियाएं ऑक्सीकरण-कमी प्रतिक्रियाएं होती हैं, जिसमें यौगिक ऑक्सीकरण होता है और दूसरा यौगिक कम हो जाता है। किसी जीव की ऑक्सीकरण-अपचयन अभिक्रियाओं को पूरा करने की क्षमता पर्यावरण की ऑक्सीकरण-अपचयन अवस्था या इसकी अपचयन क्षमता पर निर्भर करती है ().

सख्ती से एरोबियन आम तौर पर सकारात्मक पर सक्रिय होते हैं मूल्य, जबकि सख्त अवायवीय सामान्यतः नकारात्मक पर सक्रिय होते हैं मान। रेडॉक्स पोषक तत्वों, विशेष रूप से धातु आयनों की घुलनशीलता को प्रभावित करता है।[5] ऐसे जीव हैं जो अपने चयापचय को अपने वातावरण में समायोजित कर सकते हैं, जैसे वैकल्पिक अवायवीय। वैकल्पिक एनारोबेस सकारात्मक ई पर सक्रिय हो सकते हैंhमान, और नकारात्मक ई परhनाइट्रेट्स और सल्फेट्स जैसे ऑक्सीजन युक्त अकार्बनिक यौगिकों की उपस्थिति में मूल्य।[citation needed]

जैव रसायन में, स्पष्ट मानक कमी क्षमता, या औपचारिक क्षमता, (, प्राइम के साथ नोट किया गया' मार्क इन सुपरस्क्रिप्ट) जैविक और इंट्रा-सेलुलर तरल पदार्थों के पीएच 7 के करीब पीएच 7 पर गणना की जाती है, यदि किसी जैव रासायनिक रेडॉक्स प्रतिक्रिया संभव है तो अधिक आसानी से आकलन करने के लिए उपयोग किया जाता है। उन्हें सामान्य मानक कटौती क्षमता के साथ भ्रमित नहीं होना चाहिए () मानक शर्तों के तहत निर्धारित (T = 298.15 K = 25 °C = 77 °F; Pgas = 1 atm = 1.013 bar) प्रत्येक विघटित प्रजाति की सांद्रता को 1 M के रूप में लिया जा रहा है, और इस प्रकार [H+] = 1 M and pH = 0.

पर्यावरण रसायन

पर्यावरण रसायन विज्ञान के क्षेत्र में, कमी की क्षमता का उपयोग यह निर्धारित करने के लिए किया जाता है कि पानी या मिट्टी में ऑक्सीकरण या कम करने की स्थिति प्रचलित है, और पौरबैक्स आरेख, जैसे भंग धातुएं। पानी में पीई मान -12 से 25 तक होता है; वे स्तर जहाँ पानी स्वयं कम या ऑक्सीकृत हो जाता है, क्रमशः।[1]

प्राकृतिक प्रणालियों में कमी की क्षमता अक्सर पानी के स्थिरता क्षेत्र की सीमाओं में से के पास तुलनात्मक रूप से होती है। वातित सतही जल, नदियों, झीलों, महासागरों, वर्षा जल और अम्ल खान जल में सामान्यतः ऑक्सीकरण की स्थिति (सकारात्मक क्षमता) होती है। वायु आपूर्ति की सीमाओं वाले स्थानों में, जैसे जलमग्न मिट्टी, दलदल और समुद्री तलछट, कम करने की स्थिति (नकारात्मक क्षमता) आदर्श हैं। मध्यवर्ती मान दुर्लभ होते हैं और सामान्यतः अस्थायी स्थिति होती है जो सिस्टम में उच्च या निम्न पीई मानों पर चलती है।[1]

पर्यावरणीय स्थितियों में, बड़ी संख्या में प्रजातियों के मध्य जटिल गैर-संतुलन की स्थिति होना आम बात है, जिसका अर्थ है कि कमी क्षमता का सटीक और सटीक माप करना अक्सर संभव नहीं होता है। यद्यपि, सामान्यतः अनुमानित मूल्य प्राप्त करना संभव है और शर्तों को ऑक्सीकरण या कम करने वाले शासन के रूप में परिभाषित करना संभव है।[1]

मिट्टी में दो मुख्य रेडॉक्स घटक होते हैं: 1) अकार्बनिक रेडॉक्स सिस्टम (मुख्य रूप से Fe और Mn के ऑक्स/लाल यौगिक) और पानी के अर्क में माप; 2) प्रत्यक्ष विधि द्वारा सभी माइक्रोबियल और रूट घटकों और माप के साथ प्राकृतिक मिट्टी के नमूने।[6]

पानी की गुणवत्ता

ऑक्सीडो-रिडक्शन पोटेंशिअल (ORP) का उपयोग कीटाणुशोधन क्षमता के लिए ल-मूल्य माप के लाभ के साथ पानी की गुणवत्ता की निगरानी करने वाली प्रणालियों के लिए किया जा सकता है, जो लागू खुराक के बजाय कीटाणुनाशक की प्रभावी गतिविधि को दर्शाता है।[7] उदाहरण के लिए, ई. कोलाई, साल्मोनेला, लिस्टेरिया और अन्य रोगजनकों का जीवित रहने का समय 30 सेकंड से कम होता है जब ORP 665 mV से ऊपर होता है, जबकि ORP 485 mV से कम होने पर 300 सेकंड से अधिक होता है।[7]

हेन्नेपिन काउंटी, मिनेसोटा में पारंपरिक भागों-प्रति संकेतन (पीपीएम) जल क्लोरीनीकरण रीडिंग और ओआरपी की तुलना करते हुए अध्ययन किया गया था। इस अध्ययन के परिणाम स्थानीय स्वास्थ्य विनियमन कोड में 650 mV से ऊपर ORP को शामिल करने के पक्ष में तर्क प्रस्तुत करते हैं।[8]

भूविज्ञान

औरh-pH (पौरबैक्स) आरेखों का उपयोग सामान्यतः खनिजों और भंग प्रजातियों के स्थिरता क्षेत्रों के आकलन के लिए खनन और भूविज्ञान में किया जाता है। उन स्थितियों के तहत जहां खनिज (ठोस) चरण को किसी तत्व का सबसे स्थिर रूप होने की भविष्यवाणी की जाती है, ये चित्र उस खनिज को दिखाते हैं। जैसा कि अनुमानित परिणाम थर्मोडायनामिक (संतुलन अवस्था में) मूल्यांकन से हैं, इन आरेखों का सावधानी से उपयोग किया जाना चाहिए। यद्यपि किसी खनिज के बनने या उसके घुलने की परिस्थितियों के सेट के तहत होने की भविष्यवाणी की जा सकती है, प्रक्रिया व्यावहारिक रूप से नगण्य हो सकती है क्योंकि इसकी दर बहुत धीमी है। नतीजतन, गतिज मूल्यांकन ही समय में आवश्यक हैं। फिर भी, सहज परिवर्तनों की दिशा और उनके पीछे प्रेरक शक्ति के परिमाण का मूल्यांकन करने के लिए संतुलन की स्थितियों का उपयोग किया जा सकता है।

यह भी देखें

संदर्भ

  1. 1.0 1.1 1.2 1.3 1.4 1.5 vanLoon, Gary; Duffy, Stephen (2011). पर्यावरण रसायन विज्ञान - (* गैरी वालेस) एक वैश्विक परिप्रेक्ष्य (3rd ed.). Oxford University Press. pp. 235–248. ISBN 978-0-19-922886-7.
  2. Stumm, W. and Morgan, J. J. (1981). Aquatic Chemistry, 2nd Ed., John Wiley & Sons, New York.
  3. "Standard Electrode Potentials". hyperphysics.phy-astr.gsu.edu. Retrieved 29 March 2018.
  4. Garrels, R. M.; Christ, C. L. (1990). खनिज, समाधान और संतुलन. London: Jones and Bartlett.
  5. Chuan, M.; Liu, G. Shu. J. (1996). "Solubility of heavy metals in a contaminated soil: Effects of redox potential and pH". Water, Air, & Soil Pollution. 90 (3–4): 543–556. Bibcode:1996WASP...90..543C. doi:10.1007/BF00282668. S2CID 93256604.
  6. हसन ओ एट अल। (2016)। मृदा रेडॉक्स क्षमता में व्यावहारिक सुधार (ईh) मिट्टी के गुणों के लक्षण वर्णन के लिए माप। पारंपरिक और संरक्षण कृषि फसल प्रणालियों की तुलना के लिए आवेदन। एनालिटिका चिमिका एक्टा 906, 98–109।
  7. 7.0 7.1 Trevor V. Suslow, 2004. Oxidation-Reduction Potential for Water Disinfection Monitoring, Control, and Documentation, University of California Davis, http://anrcatalog.ucdavis.edu/pdf/8149.pdf
  8. Bastian, Tiana; Brondum, Jack (2009). "Do Traditional Measures of Water Quality in Swimming Pools and Spas Correspond with Beneficial Oxidation Reduction Potential?". Public Health Rep. 124 (2): 255–61. doi:10.1177/003335490912400213. PMC 2646482. PMID 19320367.


बाहरी संबंध


टिप्पणियाँ

  1. Half reactions: 2 Li (s) → 2 Li+ (s) + 2 e combined along with: H2 (g) → 2 H+ (g) + 2 e
  2. Half reactions: H2 (g) → 2 H+ (g) + 2 e combined along with: F2 (g) + 2 e → 2 F (g)


अतिरिक्त नोट्स

Onishi, j; Kondo W; Uchiyama Y (1960). "मसूड़े और जीभ की सतहों पर और इंटरडेंटल स्पेस में प्राप्त ऑक्सीकरण-कमी क्षमता पर प्रारंभिक रिपोर्ट।". Bull Tokyo Med Dent Univ (7): 161.

बाहरी संबंध