एक बहुपद की घात: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 26: Line 26:


==उदाहरण==
==उदाहरण==
बहुपद <math>(y - 3)(2y + 6)(-4y - 21)</math> एक घन बहुपद है: एक ही डिग्री के पदों को गुणा करने और एकत्रित करने के बाद, यह बन जाता है <math>- 8 y^3 - 42 y^2 + 72 y + 378</math>, उच्चतम घातांक के साथ 3.
बहुपद <math>(y - 3)(2y + 6)(-4y - 21)</math> एक घन बहुपद हैः बाहर गुणा और एक ही डिग्री के शब्दों का संग्रह के बाद, यह हो जाता है <math>- 8 y^3 - 42 y^2 + 72 y + 378</math>, उच्चतम घातांक 3 के साथ।


बहुपद <math>(3 z^8 + z^5 - 4 z^2 + 6) + (-3 z^8 + 8 z^4 + 2 z^3 + 14 z)</math> एक क्विंटिक बहुपद है: समान पदों को मिलाने पर, घात 8 के दो पद रद्द हो जाते हैं, छोड़कर <math>z^5 + 8 z^4 + 2 z^3 - 4 z^2 + 14 z + 6</math>, उच्चतम घातांक 5 के साथ।
बहुपद <math>(3 z^8 + z^5 - 4 z^2 + 6) + (-3 z^8 + 8 z^4 + 2 z^3 + 14 z)</math> एक क्विंटिक बहुपद है: समान पदों को मिलाने पर, घात 8 के दो पद रद्द हो जाते हैं, छोड़कर <math>z^5 + 8 z^4 + 2 z^3 - 4 z^2 + 14 z + 6</math>, सर्वोच्च घातांक 5 के साथ।


==बहुपद संचालन के तहत व्यवहार==
==बहुपद संचालन के तहत व्यवहार==
योग की डिग्री, उत्पाद या दो बहुपदों की संरचना इनपुट बहुपद की डिग्री से दृढ़ता से संबंधित है।<ref>{{cite book|last1=Lang|first1=Serge|title=Algebra|date=2005|publisher=Springer|isbn=978-0-387-95385-4|pages=100|edition=3rd|ref=lang}}</ref>
योग की डिग्री, उत्पाद या दो बहुपदों का संयोजन निवेश बहुपदों की डिग्री से दृढ़ता से संबंधित है।<ref>{{cite book|last1=Lang|first1=Serge|title=Algebra|date=2005|publisher=Springer|isbn=978-0-387-95385-4|pages=100|edition=3rd|ref=lang}}</ref>
 
 
===जोड़===
===जोड़===
दो बहुपदों के योग (या अंतर) की डिग्री उनकी डिग्री से कम या उसके बराबर होती है; वह है,
दो बहुपदों के योग (या अंतर) की डिग्री उनकी उपाधियों से कम या बराबर है;अर्थात्,
:<math>\deg(P + Q) \leq \max\{\deg(P),\deg(Q)\}</math> तथा <math>\deg(P - Q) \leq \max\{\deg(P),\deg(Q)\}</math>.
:<math>\deg(P + Q) \leq \max\{\deg(P),\deg(Q)\}</math> तथा <math>\deg(P - Q) \leq \max\{\deg(P),\deg(Q)\}</math>.
उदाहरण के लिए, की डिग्री <math>(x^3+x)-(x^3+x^2)=-x^2+x</math> 2, और 2 ≤ अधिकतम{3, 3} है।
उदाहरण के लिए, की डिग्री <math>(x^3+x)-(x^3+x^2)=-x^2+x</math> 2, और 2 ≤ अधिकतम{3, 3} है।


समानता हमेशा बनी रहती है जब बहुपदों की डिग्री भिन्न होती है। उदाहरण के लिए, की डिग्री <math>(x^3+x)+(x^2+1)=x^3+x^2+x+1</math> 3 है, और 3 = अधिकतम{3, 2} है।
बहुपदों के स्तरों के अलग-अलग होने पर हमेशा समानता कायम रहती है। उदाहरण के लिए, की डिग्री <math>(x^3+x)+(x^2+1)=x^3+x^2+x+1</math> 3 है, और 3 = अधिकतम{3, 2} है।


===गुणन===
===गुणन===


एक गैर-शून्य [[ अदिश (गणित) | अदिश (गणित)]] द्वारा बहुपद के गुणनफल की घात बहुपद की घात के बराबर होती है; वह है,
एक गैर शून्य [[ अदिश (गणित) |अदिश (गणित)]] द्वारा एक बहुपद के उत्पाद की डिग्री बहुपद की डिग्री के बराबर है;अर्थात्,


:<math>\deg(cP)=\deg(P)</math>.
:<math>\deg(cP)=\deg(P)</math>


उदाहरण के लिए, की डिग्री <math>2(x^2+3x-2)=2x^2+6x-4</math> 2 है, जो की डिग्री के बराबर है <math>x^2+3x-2</math>.
उदाहरण के लिए, की डिग्री <math>2(x^2+3x-2)=2x^2+6x-4</math> 2 है, जो की डिग्री के बराबर है <math>x^2+3x-2</math>.


इस प्रकार, बहुपदों का समुच्चय (गणित) (दिए गए क्षेत्र F से गुणांकों के साथ) जिसकी डिग्री दी गई संख्या n से छोटी या उसके बराबर होती है, एक सदिश समष्टि बनाता है; अधिक के लिए, उदाहरण_of_vector_spaces#Polynomial_vector_spaces देखें।
इस प्रकार, बहुपदों का सेट (दिए गए क्षेत्र एफ से गुणांक सहित) जिसकी डिग्री दी गई संख्या N से छोटा या उसके बराबर है, एक सदिश स्थान बनाता है;अधिक जानकारी के लिए सदिश रिक्त स्थान के उदाहरण देखें.आम तौर पर दो बहुपदों के उत्पाद की डिग्री एक क्षेत्र या एक अभिन्न डोमेन पर उनकी डिग्री का योग होता है:
 
अधिक सामान्यतः, एक क्षेत्र (गणित) या एक अभिन्न डोमेन पर दो बहुपदों के उत्पाद की डिग्री उनकी डिग्री का योग है:  
:<math>\deg(PQ) = \deg(P) + \deg(Q)</math>.
:<math>\deg(PQ) = \deg(P) + \deg(Q)</math>.


उदाहरण के लिए, की डिग्री <math>(x^3+x)(x^2+1)=x^5+2x^3+x</math> 5 = 3 + 2 है।
उदाहरण के लिए, की डिग्री <math>(x^3+x)(x^2+1)=x^5+2x^3+x</math> 5 = 3 + 2 है।


एक मनमाना वलय (गणित) पर बहुपद के लिए, उपरोक्त नियम मान्य नहीं हो सकते हैं, क्योंकि रद्दीकरण जो दो गैर-शून्य स्थिरांक को गुणा करते समय हो सकता है। उदाहरण के लिए, रिंग में <math>\mathbf{Z}/4\mathbf{Z}</math> पूर्णांक मोडुलो n का, एक के पास वह है <math>\deg(2x) = \deg(1+2x) = 1</math>, लेकिन <math>\deg(2x(1+2x)) = \deg(2x) = 1</math>, जो कारकों की डिग्री के योग के बराबर नहीं है।
बहुपदों के लिए एक मनमाने अंगूठी पर, ऊपर के नियम मान्य नहीं हो सकते, क्योंकि रद्दीकरण के कारण जो दो गैर शून्य स्थिरांक के गुणा करने पर हो सकता है। उदाहरण के लिए, रिंग में <math>\mathbf{Z}/4\mathbf{Z}</math> पूर्णांक modulo 4, एक है कि  <math>\deg(2x) = \deg(1+2x) = 1</math>, लेकिन <math>\deg(2x(1+2x)) = \deg(2x) = 1</math>, जो कारकों की डिग्री के योग के बराबर नहीं है।


===रचना===
===रचना===
दो गैर-स्थिर बहुपदों की संरचना की डिग्री <math>P</math> तथा <math>Q</math> एक क्षेत्र या अभिन्न डोमेन पर उनकी डिग्री का उत्पाद है:
दो गैर निरंतर बहुपदों <math>P</math> और <math>Q</math> एक क्षेत्र या अभिन्न डोमेन पर उनके संयोजन की डिग्री उनकी डिग्री का उत्पाद है:
:<math>\deg(P \circ Q) = \deg(P)\deg(Q)</math>.
:<math>\deg(P \circ Q) = \deg(P)\deg(Q)</math>.


Line 65: Line 61:
* यदि <math>P = (x^3+x)</math>, <math>Q = (x^2+1)</math>, फिर <math>P \circ Q = P \circ (x^2+1) = (x^2+1)^3+(x^2+1) = x^6+3x^4+4x^2+2</math>, जिसकी डिग्री 6 है।
* यदि <math>P = (x^3+x)</math>, <math>Q = (x^2+1)</math>, फिर <math>P \circ Q = P \circ (x^2+1) = (x^2+1)^3+(x^2+1) = x^6+3x^4+4x^2+2</math>, जिसकी डिग्री 6 है।


ध्यान दें कि एक मनमाना वलय पर बहुपदों के लिए, यह आवश्यक रूप से सत्य नहीं है। उदाहरण के लिए, में <math>\mathbf{Z}/4\mathbf{Z}</math>, <math>\deg(2x) \deg(1+2x) = 1\cdot 1 = 1</math>, लेकिन <math>\deg(2x\circ(1+2x)) = \deg(2+4x)=\deg(2) = 0</math>.
यह जरूरी नहीं है कि बहुपदों के लिए एक मनमाने वलय पर यह सही नहीं है। उदाहरण के लिए, में <math>\mathbf{Z}/4\mathbf{Z}</math>, <math>\deg(2x) \deg(1+2x) = 1\cdot 1 = 1</math>, लेकिन <math>\deg(2x\circ(1+2x)) = \deg(2+4x)=\deg(2) = 0</math>.  


==शून्य बहुपद की डिग्री==
==शून्य बहुपद की डिग्री==


शून्य बहुपद की घात को या तो अपरिभाषित छोड़ दिया जाता है, या ऋणात्मक के रूप में परिभाषित किया जाता है (आमतौर पर -1 या <math>-\infty</math>).<ref>
शून्य बहुपद की डिग्री या तो अपरिभाषित छोड़ दिया है, या नकारात्मक होने के लिए परिभाषित किया गया है (आमतौर पर -1 या <math>-\infty</math>)<ref>
Shafarevich (2003) says of the zero polynomial: "In this case, we consider that the degree of the polynomial is undefined." (p. 27)<br />
Shafarevich (2003) says of the zero polynomial: "In this case, we consider that the degree of the polynomial is undefined." (p. 27)<br />
Childs (1995) uses −1. (p. 233)<br />
Childs (1995) uses −1. (p. 233)<br />
Line 76: Line 72:
Grillet (2007) says: "The degree of the zero polynomial 0 is sometimes left undefined or is variously defined as −1 ∈ <math>\mathbb{Z}</math> or as <math>-\infty</math>, as long as deg 0 < deg ''A'' for all ''A'' ≠ 0." (''A'' is a polynomial.) However, he excludes zero polynomials in his Proposition 5.3. (p. 121)
Grillet (2007) says: "The degree of the zero polynomial 0 is sometimes left undefined or is variously defined as −1 ∈ <math>\mathbb{Z}</math> or as <math>-\infty</math>, as long as deg 0 < deg ''A'' for all ''A'' ≠ 0." (''A'' is a polynomial.) However, he excludes zero polynomials in his Proposition 5.3. (p. 121)
</ref>
</ref>
किसी भी स्थिर मान की तरह, मान 0 को एक (स्थिर) बहुपद के रूप में माना जा सकता है, जिसे शून्य बहुपद कहा जाता है। इसकी कोई गैर-शून्य शर्तें नहीं हैं, और इसलिए, कड़ाई से बोलते हुए, इसकी कोई डिग्री भी नहीं है। जैसे, इसकी डिग्री आमतौर पर अपरिभाषित होती है। उपरोक्त खंड में बहुपदों के योग और गुणनफल के लिए प्रस्ताव लागू नहीं होते हैं, यदि इसमें शामिल कोई भी बहुपद शून्य बहुपद है।<ref>{{MathWorld|author=Barile, Margherita|id=ZeroPolynomial|title=Zero Polynomial}}</ref>
 
हालांकि, शून्य बहुपद की डिग्री को ऋणात्मक अनंत के रूप में परिभाषित करना सुविधाजनक है, <math>-\infty,</math> और अंकगणितीय नियमों को पेश करने के लिए<ref>Axler (1997) gives these rules and says: "The 0 polynomial is declared to have degree <math>-\infty</math> so that exceptions are not needed for various reasonable results." (p. 64)</ref>
किसी भी निरंतर मूल्य की तरह, मान 0 एक (निरंतर) बहुपद के रूप में माना जा सकता है, शून्य बहुपद कहा जाता है। इसमें कोई शून्येतर शब्द नहीं हैं, और इसलिए पूरी तरह से कहा जा सकता है, इसकी कोई डिग्री भी नहीं है। जैसे, इसकी डिग्री आमतौर पर अपरिभाषित है। उपरोक्त खंड में बहुपदों की मात्रा और उत्पादों के स्तर के लिए प्रस्ताव लागू नहीं होता है अगर इसमें शामिल बहुपदों में से कोई भी शून्य बहुपद है।<ref>{{MathWorld|author=Barile, Margherita|id=ZeroPolynomial|title=Zero Polynomial}}</ref>
 
तथापि, यह शून्य बहुपद की डिग्री को ऋणात्मक अनंतता परिभाषित करने के लिए सुविधाजनक है, <math>-\infty,</math> और अंकगणित नियमों को लागू करने के लिए।<ref>Axler (1997) gives these rules and says: "The 0 polynomial is declared to have degree <math>-\infty</math> so that exceptions are not needed for various reasonable results." (p. 64)</ref>
:<math>\max(a,-\infty) = a,</math>
:<math>\max(a,-\infty) = a,</math>
तथा
तथा
:<math>a + (-\infty) = -\infty.</math>
:<math>a + (-\infty) = -\infty.</math>
ये उदाहरण बताते हैं कि यह एक्सटेंशन उपरोक्त बहुपद संचालन के तहत #व्यवहार को कैसे संतुष्ट करता है:  
इन उदाहरणों से स्पष्ट किया गया है कि यह विस्तार उपर्युक्त व्यवहार नियमों को कैसे संतुष्ट करता है:  
*योग की डिग्री <math>(x^3+x)+(0)=x^3+x</math> 3 है। यह अपेक्षित व्यवहार को संतुष्ट करता है, जो कि <math>3 \le \max(3, -\infty)</math>.
*योग की डिग्री <math>(x^3+x)+(0)=x^3+x</math> 3. यह अपेक्षित व्यवहार को संतुष्ट करता है, जो कि है  <math>3 \le \max(3, -\infty)</math>.
*अंतर की डिग्री <math>(x)-(x) = 0</math> है <math>-\infty</math>. यह अपेक्षित व्यवहार को संतुष्ट करता है, जो कि <math>-\infty \le \max(1,1)</math>.
*अंतर की डिग्री <math>(x)-(x) = 0</math> है <math>-\infty</math>. यह अपेक्षित व्यवहार को संतुष्ट करता है, जो कि है <math>-\infty \le \max(1,1)</math>.
*उत्पाद की डिग्री <math>(0)(x^2+1)=0</math> है <math>-\infty</math>. यह अपेक्षित व्यवहार को संतुष्ट करता है, जो कि <math>-\infty = -\infty + 2</math>.
*उत्पाद की डिग्री <math>(0)(x^2+1)=0</math> है <math>-\infty</math>. यह अपेक्षित व्यवहार को संतुष्ट करता है, जो कि है <math>-\infty = -\infty + 2</math>.


==फ़ंक्शन मानों से परिकलित==
==फ़ंक्शन मान से गणना==
कई सूत्र मौजूद हैं जो बहुपद फलन f की डिग्री का मूल्यांकन करेंगे। [[ स्पर्शोन्मुख विश्लेषण | स्पर्शोन्मुख विश्लेषण]] पर आधारित एक है
कई सूत्र मौजूद हैं जो एक बहुपद फलन f की डिग्री का मूल्यांकन करेगा। जो एक[[ स्पर्शोन्मुख विश्लेषण | स्पर्शोन्मुख विश्लेषण]] पर आधारित है
:<math>\deg f = \lim_{x\rarr\infty}\frac{\log |f(x)|}{\log x}</math>;
:<math>\deg f = \lim_{x\rarr\infty}\frac{\log |f(x)|}{\log x}</math>;
यह लॉग-लॉग प्लॉट में ढलान के आकलन की विधि का सटीक प्रतिरूप है।
यह लॉग-लॉग प्लॉट के ढलान के अनुमान की विधि का सटीक प्रतिरूप है।


यह सूत्र डिग्री की अवधारणा को कुछ ऐसे कार्यों के लिए सामान्यीकृत करता है जो बहुपद नहीं हैं।
यह सूत्र कुछ ऐसे कार्यों में डिग्री की अवधारणा को सामान्यीकृत करता है जो बहुपद नहीं हैं उदाहरण के लिए:
उदाहरण के लिए:
*[[ गुणात्मक प्रतिलोम | गुणात्मक प्रतिलोम]]  की डिग्री, <math>\ 1/x</math>, -1 है।
*[[ गुणात्मक प्रतिलोम | गुणात्मक प्रतिलोम]]  की डिग्री, <math>\ 1/x</math>, -1 है।
*[[ वर्गमूल | वर्गमूल]]  की डिग्री, <math>\sqrt x </math>, 1/2 है।
*[[ वर्गमूल | वर्गमूल]]  की डिग्री, <math>\sqrt x </math>, 1/2 है।
*लघुगणक की डिग्री, <math>\ \log x</math>, 0 है।
*लघुगणक की डिग्री, <math>\ \log x</math>, 0 है।
*घातीय फ़ंक्शन की डिग्री, <math>\exp x</math>, है <math>\infty.</math>
*घातीय फ़ंक्शन की डिग्री, <math>\exp x</math>, है <math>\infty.</math>
सूत्र भी ऐसे कार्यों के कई संयोजनों के लिए समझदार परिणाम देता है, उदाहरण के लिए, डिग्री की डिग्री <math>\frac{1 + \sqrt{x}}{x}</math> है <math>-1/2</math>.
सूत्र भी ऐसे कार्यों के कई संयोजनों के लिए समझदार परिणाम देता है, जैसे, की डिग्री <math>\frac{1 + \sqrt{x}}{x}</math> है <math>-1/2</math>.


इसके मूल्यों से f की डिग्री की गणना करने का एक अन्य सूत्र है
f  के उसके मूल्यों से डिग्री की गणना करने के लिए एक और सूत्र है।
:<math>\deg f = \lim_{x\to\infty}\frac{x f'(x)}{f(x)}</math>;
:<math>\deg f = \lim_{x\to\infty}\frac{x f'(x)}{f(x)}</math>;
यह दूसरा सूत्र L'Hôpital के नियम को पहले सूत्र पर लागू करने से अनुसरण करता है। हालांकि, सहज रूप से, यह व्युत्पन्न में अतिरिक्त स्थिर कारक के रूप में डिग्री d को प्रदर्शित करने के बारे में अधिक है <math>d x^{d-1}</math> का <math>x^d</math>.
यह दूसरा सूत्र L'Hopital के नियम को पहले सूत्र में लागू करने के बाद आता है। अंतः बोध से यह अधिक होता है कि डिग्री D को व्युत्पन्न में एक अतिरिक्त स्थिर कारक के रूप में प्रदर्शित किया जाता है <math>d x^{d-1}</math> का <math>x^d</math>.


एक फ़ंक्शन के एसिम्प्टोटिक्स का एक और अधिक बारीक (एक साधारण संख्यात्मक डिग्री से) विवरण [[ बिग ओ नोटेशन | बिग ओ नोटेशन]] का उपयोग करके किया जा सकता है। एल्गोरिदम के विश्लेषण में, उदाहरण के लिए, की वृद्धि दर के बीच अंतर करना अक्सर प्रासंगिक होता है <math> x </math> तथा <math> x \log x </math>, जो दोनों उपरोक्त सूत्रों के अनुसार समान डिग्री के रूप में सामने आएंगे।
एक फ़ंक्शन के एसिम्प्टोटिक्स का एक और अधिक बारीक (एक साधारण संख्यात्मक डिग्री से) विवरण [[ बिग ओ नोटेशन | बिग ओ नोटेशन]] का उपयोग करके किया जा सकता है। एल्गोरिदम के विश्लेषण में, उदाहरण के लिए, यह विकास दर के बीच अंतर करने के लिए अक्सर प्रासंगिक है <math> x </math> तथा <math> x \log x </math>, जो दोनों के रूप में ऊपर सूत्र के अनुसार एक ही डिग्री होने के रूप में बाहर आ जाएगा।


==दो या दो से अधिक चरों वाले बहुपदों का विस्तार ==
==दो या दो से अधिक चरों वाले बहुपदों का विस्तार ==

Revision as of 22:52, 3 November 2022

गणित में, एक बहुपद की डिग्री, शून्य गुणांकों वाले बहुपद मोनोमियल (अलग-अलग शब्दों) की उच्चतम डिग्री होती है। एक शब्द की घात उस में दिखाई देने वाले चर (गणित) के प्रतिपादकों का योग है, और इस प्रकार एक गैर नकारात्मक पूर्णांक है।एक बहुपदी बहुपद के लिए, बहुपद की डिग्री केवल बहुपद में उत्पन्न उच्चतम प्रतिपादक है।[1][2] शब्द क्रम का प्रयोग डिग्री के पर्यायार्थ के रूप में किया गया है, लेकिन आजकल, यह अनेक अन्य अवधारणाओं के संदर्भ में ((बहुपद) बहुविकल्पी व्यवस्था को दर्शाता है।)

उदाहरण के लिए, बहुपद जो भी लिखा जा सकता है तीन शब्द है। पहले पद का घात 5 है (घातांक 2 और 3 का योग), दूसरे पद का घात 1 है, और अंतिम पद का घात 0 है। इसलिए बहुपद की डिग्री 5 है जो किसी भी पद की उच्चतम डिग्री है।

एक बहुपद की डिग्री निर्धारित करने के लिए जो मानक रूप में नहीं है, जैसे कि , कोई भी इसे उत्पादों (वितरण द्वारा) के विस्तार और समान शर्तों के संयोजन द्वारा मानक रूप में रख सकता है; उदाहरण के लिए, की डिग्री 1 है, हालांकि प्रत्येक शिखर की डिग्री 2 है। हालांकि, यह तब आवश्यक नहीं है जब बहुपद को मानक रूप में एक उत्पाद के रूप में लिखा जाता है क्योंकि एक उत्पाद की डिग्री कारकों की डिग्री का योग है।

घात के अनुसार बहुपदों के नाम

बहुपदों को उनकी डिग्री के अनुसार निम्नलिखित नाम दिए गए हैं:[3][4][5][2]

  • विशेष स्थिति - शून्य बहुपद(नीचे शून्य बहुपद की डिग्री देखें)
  • डिग्री 0 - गैर-शून्य निरंतर [6]
  • डिग्री 1 - रैखिक
  • डिग्री 2 - द्विघात
  • डिग्री 3 - घन
  • डिग्री 4 - क्वार्टिक (या, यदि सभी शर्तों में भी डिग्री, द्विद्विघात है)
  • डिग्री 5 - क्विंटिक
  • डिग्री 6 - सेक्स्टिक (या, सामान्य रूप से कम, हेसिक)
  • डिग्री 7 - सेप्टिक (या, सामान्य रूप से कम, हेप्टिक)

उच्चतर पद के लिए, कभी-कभी प्रस्ताव रखा जाता है,[7] लेकिन वे शायद ही कभी इस्तेमाल किया जाता है:

  • डिग्री 8 - ओक्टिक
  • डिग्री 9 - नॉनिक
  • डिग्री 10 - डेसिक

तीन से ऊपर की डिग्री के लिए नाम लैटिन क्रम संख्या पर आधारित होते हैं, और अंत-आईसी (ic) में होते हैं। यह चर की संख्या के लिए उपयोग किए जाने वाले नामों से अलग होना चाहिए, एरिटी, जो लैटिन में वितरण संख्या पर आधारित है, और -ary में समाप्त होता है। उदाहरण के लिए, एक डिग्री दो बहुपद जैसे दो चर में दो बहुपद ,को "द्विआधारी द्विघात" कहा जाता है: द्विआधारी कारण दो चर, द्विघात डिग्री दो के कारण होता है।[lower-alpha 1] शब्दों की संख्या के लिए भी नाम हैं, जो भी लैटिन वितरक संख्याओं पर आधारित हैं, जो कि -नॉमियल में समाप्त होता है; आम एकपद, द्विपद और (कम सामान्यतः) त्रिपद होते हैं; इस प्रकार एक "द्विआधारी द्विपद" होता है।

उदाहरण

बहुपद एक घन बहुपद हैः बाहर गुणा और एक ही डिग्री के शब्दों का संग्रह के बाद, यह हो जाता है , उच्चतम घातांक 3 के साथ।

बहुपद एक क्विंटिक बहुपद है: समान पदों को मिलाने पर, घात 8 के दो पद रद्द हो जाते हैं, छोड़कर , सर्वोच्च घातांक 5 के साथ।

बहुपद संचालन के तहत व्यवहार

योग की डिग्री, उत्पाद या दो बहुपदों का संयोजन निवेश बहुपदों की डिग्री से दृढ़ता से संबंधित है।[8]

जोड़

दो बहुपदों के योग (या अंतर) की डिग्री उनकी उपाधियों से कम या बराबर है;अर्थात्,

तथा .

उदाहरण के लिए, की डिग्री 2, और 2 ≤ अधिकतम{3, 3} है।

बहुपदों के स्तरों के अलग-अलग होने पर हमेशा समानता कायम रहती है। उदाहरण के लिए, की डिग्री 3 है, और 3 = अधिकतम{3, 2} है।

गुणन

एक गैर शून्य अदिश (गणित) द्वारा एक बहुपद के उत्पाद की डिग्री बहुपद की डिग्री के बराबर है;अर्थात्,

उदाहरण के लिए, की डिग्री 2 है, जो की डिग्री के बराबर है .

इस प्रकार, बहुपदों का सेट (दिए गए क्षेत्र एफ से गुणांक सहित) जिसकी डिग्री दी गई संख्या N से छोटा या उसके बराबर है, एक सदिश स्थान बनाता है;अधिक जानकारी के लिए सदिश रिक्त स्थान के उदाहरण देखें.आम तौर पर दो बहुपदों के उत्पाद की डिग्री एक क्षेत्र या एक अभिन्न डोमेन पर उनकी डिग्री का योग होता है:

.

उदाहरण के लिए, की डिग्री 5 = 3 + 2 है।

बहुपदों के लिए एक मनमाने अंगूठी पर, ऊपर के नियम मान्य नहीं हो सकते, क्योंकि रद्दीकरण के कारण जो दो गैर शून्य स्थिरांक के गुणा करने पर हो सकता है। उदाहरण के लिए, रिंग में पूर्णांक modulo 4, एक है कि , लेकिन , जो कारकों की डिग्री के योग के बराबर नहीं है।

रचना

दो गैर निरंतर बहुपदों और एक क्षेत्र या अभिन्न डोमेन पर उनके संयोजन की डिग्री उनकी डिग्री का उत्पाद है:

.

उदाहरण के लिए:

  • यदि , , फिर , जिसकी डिग्री 6 है।

यह जरूरी नहीं है कि बहुपदों के लिए एक मनमाने वलय पर यह सही नहीं है। उदाहरण के लिए, में , , लेकिन .

शून्य बहुपद की डिग्री

शून्य बहुपद की डिग्री या तो अपरिभाषित छोड़ दिया है, या नकारात्मक होने के लिए परिभाषित किया गया है (आमतौर पर -1 या )[9]

किसी भी निरंतर मूल्य की तरह, मान 0 एक (निरंतर) बहुपद के रूप में माना जा सकता है, शून्य बहुपद कहा जाता है। इसमें कोई शून्येतर शब्द नहीं हैं, और इसलिए पूरी तरह से कहा जा सकता है, इसकी कोई डिग्री भी नहीं है। जैसे, इसकी डिग्री आमतौर पर अपरिभाषित है। उपरोक्त खंड में बहुपदों की मात्रा और उत्पादों के स्तर के लिए प्रस्ताव लागू नहीं होता है अगर इसमें शामिल बहुपदों में से कोई भी शून्य बहुपद है।[10]

तथापि, यह शून्य बहुपद की डिग्री को ऋणात्मक अनंतता परिभाषित करने के लिए सुविधाजनक है, और अंकगणित नियमों को लागू करने के लिए।[11]

तथा

इन उदाहरणों से स्पष्ट किया गया है कि यह विस्तार उपर्युक्त व्यवहार नियमों को कैसे संतुष्ट करता है:

  • योग की डिग्री 3. यह अपेक्षित व्यवहार को संतुष्ट करता है, जो कि है .
  • अंतर की डिग्री है . यह अपेक्षित व्यवहार को संतुष्ट करता है, जो कि है .
  • उत्पाद की डिग्री है . यह अपेक्षित व्यवहार को संतुष्ट करता है, जो कि है .

फ़ंक्शन मान से गणना

कई सूत्र मौजूद हैं जो एक बहुपद फलन f की डिग्री का मूल्यांकन करेगा। जो एक स्पर्शोन्मुख विश्लेषण पर आधारित है

;

यह लॉग-लॉग प्लॉट के ढलान के अनुमान की विधि का सटीक प्रतिरूप है।

यह सूत्र कुछ ऐसे कार्यों में डिग्री की अवधारणा को सामान्यीकृत करता है जो बहुपद नहीं हैं उदाहरण के लिए:

  • गुणात्मक प्रतिलोम की डिग्री, , -1 है।
  • वर्गमूल की डिग्री, , 1/2 है।
  • लघुगणक की डिग्री, , 0 है।
  • घातीय फ़ंक्शन की डिग्री, , है

सूत्र भी ऐसे कार्यों के कई संयोजनों के लिए समझदार परिणाम देता है, जैसे, की डिग्री है .

f के उसके मूल्यों से डिग्री की गणना करने के लिए एक और सूत्र है।

;

यह दूसरा सूत्र L'Hopital के नियम को पहले सूत्र में लागू करने के बाद आता है। अंतः बोध से यह अधिक होता है कि डिग्री D को व्युत्पन्न में एक अतिरिक्त स्थिर कारक के रूप में प्रदर्शित किया जाता है का .

एक फ़ंक्शन के एसिम्प्टोटिक्स का एक और अधिक बारीक (एक साधारण संख्यात्मक डिग्री से) विवरण बिग ओ नोटेशन का उपयोग करके किया जा सकता है। एल्गोरिदम के विश्लेषण में, उदाहरण के लिए, यह विकास दर के बीच अंतर करने के लिए अक्सर प्रासंगिक है तथा , जो दोनों के रूप में ऊपर सूत्र के अनुसार एक ही डिग्री होने के रूप में बाहर आ जाएगा।

दो या दो से अधिक चरों वाले बहुपदों का विस्तार

दो या दो से अधिक चरों वाले बहुपदों के लिए, पद की घात पद में चरों के घातांकों का योग होता है; बहुपद की घात (जिसे कभी-कभी 'कुल घात' भी कहा जाता है) बहुपद में सभी पदों की घातों का अधिकतम होता है। उदाहरण के लिए, बहुपद x2और2 + 3x3 + 4y में डिग्री 4 है, वही डिग्री x2और2</सुप>.

हालांकि, चर x और y में एक बहुपद, x में एक बहुपद है जिसमें गुणांक y में बहुपद हैं, और y में एक बहुपद भी गुणांक के साथ है जो x में बहुपद हैं। बहुपद

डिग्री 3 x में और डिग्री 2 y में है।

अमूर्त बीजगणित में डिग्री फ़ंक्शन

एक वलय (गणित) R को देखते हुए, बहुपद वलय R[x] x में सभी बहुपदों का समुच्चय है, जिसके गुणांक R में हैं। विशेष स्थिति में कि R भी एक क्षेत्र (गणित) है, बहुपद वलय R[x] एक प्रमुख आदर्श डोमेन है और, यहां हमारी चर्चा के लिए अधिक महत्वपूर्ण, एक यूक्लिडियन डोमेन

यह दिखाया जा सकता है कि एक क्षेत्र पर बहुपद की डिग्री यूक्लिडियन डोमेन में मानक फ़ंक्शन की सभी आवश्यकताओं को पूरा करती है। अर्थात्, दो बहुपद f(x) और g(x) दिए जाने पर, गुणनफल f(x)g(x) की घात व्यक्तिगत रूप से f और g दोनों की घातों से बड़ी होनी चाहिए। वास्तव में, कुछ मजबूत धारण करता है:

एक उदाहरण के लिए डिग्री फ़ंक्शन एक रिंग पर विफल क्यों हो सकता है जो एक फ़ील्ड नहीं है, निम्न उदाहरण लें। चलो आर = , पूर्णांकों का वलय मॉड्यूलर अंकगणित 4. यह वलय एक क्षेत्र नहीं है (और एक अभिन्न डोमेन भी नहीं है) क्योंकि 2 × 2 = 4 ≡ 0 (मॉड 4)। इसलिए, माना f(x) = g(x) = 2x + 1। फिर, f(x)g(x) = 4x2 + 4x + 1 = 1. इस प्रकार deg(f⋅g) = 0 जो f और g की डिग्री से अधिक नहीं है (जिनमें से प्रत्येक की डिग्री 1 थी)।

चूँकि वलय के शून्य तत्व के लिए मानक फलन परिभाषित नहीं है, हम बहुपद f(x) = 0 की घात को भी अपरिभाषित मानते हैं ताकि यह यूक्लिडियन डोमेन में एक मानदंड के नियमों का पालन करे।

यह भी देखें

  • हाबिल-रफिनी प्रमेय
  • बीजगणित की मौलिक प्रमेय

टिप्पणियाँ

  1. For simplicity, this is a homogeneous polynomial, with equal degree in both variables separately.
  1. Weisstein, Eric W. "Polynomial Degree". mathworld.wolfram.com (in English). Retrieved 2020-08-31.
  2. 2.0 2.1 "Degree (of an Expression)". www.mathsisfun.com. Retrieved 2020-08-31.
  3. "Names of Polynomials". November 25, 1997. Retrieved 5 February 2012.
  4. Mac Lane and Birkhoff (1999) define "linear", "quadratic", "cubic", "quartic", and "quintic". (p. 107)
  5. King (2009) defines "quadratic", "cubic", "quartic", "quintic", "sextic", "septic", and "octic".
  6. Shafarevich (2003) says of a polynomial of degree zero, : "Such a polynomial is called a constant because if we substitute different values of x in it, we always obtain the same value ." (p. 23)
  7. James Cockle proposed the names "sexic", "septic", "octic", "nonic", and "decic" in 1851. (Mechanics Magazine, Vol. LV, p. 171)
  8. Lang, Serge (2005). Algebra (3rd ed.). Springer. p. 100. ISBN 978-0-387-95385-4.
  9. Shafarevich (2003) says of the zero polynomial: "In this case, we consider that the degree of the polynomial is undefined." (p. 27)
    Childs (1995) uses −1. (p. 233)
    Childs (2009) uses −∞ (p. 287), however he excludes zero polynomials in his Proposition 1 (p. 288) and then explains that the proposition holds for zero polynomials "with the reasonable assumption that + m = for m any integer or m = ".
    Axler (1997) uses −∞. (p. 64)
    Grillet (2007) says: "The degree of the zero polynomial 0 is sometimes left undefined or is variously defined as −1 ∈ or as , as long as deg 0 < deg A for all A ≠ 0." (A is a polynomial.) However, he excludes zero polynomials in his Proposition 5.3. (p. 121)
  10. Barile, Margherita. "Zero Polynomial". MathWorld.
  11. Axler (1997) gives these rules and says: "The 0 polynomial is declared to have degree so that exceptions are not needed for various reasonable results." (p. 64)


संदर्भ


इस पृष्ठ में अनुपलब्ध आंतरिक लिंक की सूची

  • रैखिक फिल्टर
  • मूर्ति प्रोद्योगिकी
  • करणीय
  • खास समय
  • सिग्नल (इलेक्ट्रॉनिक्स)
  • लगातार कश्मीर फिल्टर
  • चरण विलंब
  • एम-व्युत्पन्न फ़िल्टर
  • स्थानांतरण प्रकार्य
  • बहुपदीय फलन
  • लो पास फिल्टर
  • अंतःप्रतीक हस्तक्षेप
  • फ़िल्टर (प्रकाशिकी)
  • युग्मित उपकरण को चार्ज करें
  • गांठदार तत्व
  • पतली फिल्म थोक ध्वनिक गुंजयमान यंत्र
  • लोहा
  • परमाणु घड़ी
  • फुरियर रूपांतरण
  • लहर (फ़िल्टर)
  • कार्तीय समन्वय प्रणाली
  • अंक शास्त्र
  • यूक्लिडियन स्पेस
  • मामला
  • ब्रम्हांड
  • कद
  • द्वि-आयामी अंतरिक्ष
  • निर्देशांक तरीका
  • अदिश (गणित)
  • शास्त्रीय हैमिल्टनियन quaternions
  • quaternions
  • पार उत्पाद
  • उत्पत्ति (गणित)
  • दो प्रतिच्छेद रेखाएँ
  • तिरछी रेखाएं
  • समानांतर पंक्ति
  • रेखीय समीकरण
  • समानांतर चतुर्भुज
  • वृत्त
  • शंकु खंड
  • विकृति (गणित)
  • निर्देशांक वेक्टर
  • लीनियर अलजेब्रा
  • सीधा
  • भौतिक विज्ञान
  • लेट बीजगणित
  • एक क्षेत्र पर बीजगणित
  • जोड़नेवाला
  • समाकृतिकता
  • कार्तीय गुणन
  • अंदरूनी प्रोडक्ट
  • आइंस्टीन योग सम्मेलन
  • इकाई वेक्टर
  • टुकड़े-टुकड़े चिकना
  • द्विभाजित
  • आंशिक व्युत्पन्न
  • आयतन तत्व
  • समारोह (गणित)
  • रेखा समाकलन का मौलिक प्रमेय
  • खंड अनुसार
  • सौम्य सतह
  • फ़ानो विमान
  • प्रक्षेप्य स्थान
  • प्रक्षेप्य ज्यामिति
  • चार आयामी अंतरिक्ष
  • विद्युत प्रवाह
  • उच्च लाभ एंटीना
  • सर्वदिशात्मक एंटीना
  • गामा किरणें
  • विद्युत संकेत
  • वाहक लहर
  • आयाम अधिमिश्रण
  • चैनल क्षमता
  • आर्थिक अच्छा
  • आधार - सामग्री संकोचन
  • शोर उन्मुक्ति
  • कॉल चिह्न
  • शिशु की देखरेख करने वाला
  • आईएसएम बैंड
  • लंबी लहर
  • एफएम प्रसारण
  • सत्य के प्रति निष्ठा
  • जमीनी लहर
  • कम आवृत्ति
  • श्रव्य विकृति
  • वह-एएसी
  • एमपीईजी-4
  • संशोधित असतत कोसाइन परिवर्तन
  • भू-स्थिर
  • प्रत्यक्ष प्रसारण उपग्रह टेलीविजन
  • माध्यमिक आवृत्ति
  • परमाणु घड़ी
  • बीपीसी (समय संकेत)
  • फुल डुप्लेक्स
  • बिट प्रति सेकंड
  • पहला प्रतिसादकर्ता
  • हवाई गलियारा
  • नागरिक बंद
  • विविधता स्वागत
  • शून्य (रेडियो)
  • बिजली का मीटर
  • जमीन (बिजली)
  • हवाई अड्डे की निगरानी रडार
  • altimeter
  • समुद्री रडार
  • देशान्तर
  • तोपखाने का खोल
  • बचाव बीकन का संकेत देने वाली आपातकालीन स्थिति
  • अंतर्राष्ट्रीय कॉस्पास-सरसैट कार्यक्रम
  • संरक्षण जीवविज्ञान
  • हवाई आलोक चित्र विद्या
  • गैराज का दरवाज़ा
  • मुख्य जेब
  • अंतरिक्ष-विज्ञान
  • ध्वनि-विज्ञान
  • निरंतर संकेत
  • मिड-रेंज स्पीकर
  • फ़िल्टर (सिग्नल प्रोसेसिंग)
  • उष्ण ऊर्जा
  • विद्युतीय प्रतिरोध
  • लंबी लाइन (दूरसंचार)
  • इलास्टेंस
  • गूंज
  • ध्वनिक प्रतिध्वनि
  • प्रत्यावर्ती धारा
  • आवृत्ति विभाजन बहुसंकेतन
  • छवि फ़िल्टर
  • वाहक लहर
  • ऊष्मा समीकरण
  • प्रतिक दर
  • विद्युत चालकता
  • आवृति का उतार - चढ़ाव
  • निरंतर कश्मीर फिल्टर
  • जटिल विमान
  • फासर (साइन वेव्स)
  • पोर्ट (सर्किट सिद्धांत)
  • लग्रांगियन यांत्रिकी
  • जाल विश्लेषण
  • पॉइसन इंटीग्रल
  • affine परिवर्तन
  • तर्कसंगत कार्य
  • शोर अनुपात का संकेत
  • मिलान फ़िल्टर
  • रैखिक-द्विघात-गाऊसी नियंत्रण
  • राज्य स्थान (नियंत्रण)
  • ऑपरेशनल एंप्लीफायर
  • एलटीआई प्रणाली सिद्धांत
  • विशिष्ट एकीकृत परिपथ आवेदन
  • सतत समय
  • एंटी - एलियासिंग फ़िल्टर
  • भाजक
  • निश्चित बिंदु अंकगणित
  • फ्लोटिंग-पॉइंट अंकगणित
  • डिजिटल बाइकैड फ़िल्टर
  • अनुकूली फिल्टर
  • अध्यारोपण सिद्धांत
  • कदम की प्रतिक्रिया
  • राज्य स्थान (नियंत्रण)
  • नियंत्रण प्रणाली
  • वोल्टेज नियंत्रित थरथरानवाला
  • कंपंडोर
  • नमूना और पकड़
  • संगणक
  • अनेक संभावनाओं में से चुनी हूई प्रक्रिया
  • प्रायिकता वितरण
  • वर्तमान परिपथ
  • गूंज रद्दीकरण
  • सुविधा निकासी
  • छवि उन्नीतकरण
  • एक प्रकार की प्रोग्रामिंग की पर्त
  • ओ एस आई मॉडल
  • समानता (संचार)
  • आंकड़ा अधिग्रहण
  • रूपांतरण सिद्धांत
  • लीनियर अलजेब्रा
  • स्टचास्तिक प्रोसेसेज़
  • संभावना
  • गैर-स्थानीय साधन
  • घटना (सिंक्रनाइज़ेशन आदिम)
  • एंटीलोक ब्रेक
  • उद्यम प्रणाली
  • सुरक्षा-महत्वपूर्ण प्रणाली
  • डेटा सामान्य
  • आर टी -11
  • डंब टर्मिनल
  • समय बताना
  • सेब II
  • जल्द से जल्द समय सीमा पहले शेड्यूलिंग
  • अनुकूली विभाजन अनुसूचक
  • वीडियो गेम कंसोल की चौथी पीढ़ी
  • वीडियो गेम कंसोल की तीसरी पीढ़ी
  • नमूनाकरण दर
  • अंकगणित औसत
  • उच्च प्रदर्शन कंप्यूटिंग
  • भयावह विफलता
  • हुड विधि
  • प्रणाली विश्लेषण
  • समय अपरिवर्तनीय
  • औद्योगिक नियंत्रण प्रणाली
  • निर्देशयोग्य तर्क नियंत्रक
  • प्रक्रिया अभियंता)
  • नियंत्रण पाश
  • संयंत्र (नियंत्रण सिद्धांत)
  • क्रूज नियंत्रण
  • अनुक्रमिक कार्य चार्ट
  • नकारात्मक प्रतिपुष्टि
  • अन्देंप्त
  • नियंत्रण वॉल्व
  • पीआईडी ​​नियंत्रक
  • यौगिक
  • फिल्टर (सिग्नल प्रोसेसिंग)
  • वितरित कोटा पद्धति
  • महाकाव्यों
  • डूप गति नियंत्रण
  • हवाई जहाज
  • संक्षिप्त और प्रारंभिकवाद
  • मोटर गाड़ी
  • संयुक्त राज्य नौसेना
  • निर्देशित मिसाइलें
  • भूभाग-निम्नलिखित रडार
  • अवरक्त किरणे
  • प्रेसिजन-निर्देशित युद्धपोत
  • विमान भेदी युद्ध
  • शाही रूसी नौसेना
  • हस्तक्षेप हरा
  • सेंट पीटर्सबर्ग
  • योण क्षेत्र
  • आकाशीय बिजली
  • द्वितीय विश्वयुद्ध
  • संयुक्त राज्य सेना
  • डेथ रे
  • पर्ल हार्बर पर हमला
  • ओबाउ (नेविगेशन)
  • जमीन नियंत्रित दृष्टिकोण
  • भूविज्ञानी
  • आंधी तूफान
  • मौसम पूर्वानुमान
  • बहुत बुरा मौसम
  • सर्दियों का तूफान
  • संकेत पहचान
  • बिखरने
  • इलेक्ट्रिकल कंडक्टीविटी
  • पराबैगनी प्रकाश
  • खालीपन
  • भूसा (प्रतिमाप)
  • पारद्युतिक स्थिरांक
  • विद्युत चुम्बकीय विकिरण
  • विद्युतीय प्रतिरोध
  • प्रतिचुम्बकत्व
  • बहुपथ प्रसार
  • तरंग दैर्ध्य
  • अर्ध-सक्रिय रडार होमिंग
  • Nyquist आवृत्ति
  • ध्रुवीकरण (लहरें)
  • अपवर्तक सूचकांक
  • नाड़ी पुनरावृत्ति आवृत्ति
  • शोर मचाने वाला फ़र्श
  • प्रकाश गूंज
  • रेत का तूफान
  • स्वत: नियंत्रण प्राप्त करें
  • जय स्पाइक
  • घबराना
  • आयनमंडलीय परावर्तन
  • वायुमंडलीय वाहिनी
  • व्युत्क्रम वर्ग नियम
  • इलेक्ट्रानिक युद्ध
  • उड़ान का समय
  • प्रकाश कि गति
  • पूर्व चेतावनी रडार
  • रफ़्तार
  • निरंतर-लहर रडार
  • स्पेकट्रूम विशेष्यग्य
  • रेंज अस्पष्टता संकल्प
  • मिलान फ़िल्टर
  • रोटेशन
  • चरणबद्ध व्यूह रचना
  • मैमथ राडार
  • निगरानी करना
  • स्क्रीन
  • पतला सरणी अभिशाप
  • हवाई रडार प्रणाली
  • परिमाणक्रम
  • इंस्टीट्यूट ऑफ़ इलेक्ट्रिकल एंड इलेक्ट्रॉनिक्स इंजीनियर्स
  • क्षितिज राडार के ऊपर
  • पल्स बनाने वाला नेटवर्क
  • अमेरिका में प्रदूषण की रोकथाम
  • आईटी रेडियो विनियम
  • रडार संकेत विशेषताएं
  • हैस (रडार)
  • एवियोनिक्स में एक्रोनिम्स और संक्षिप्ताक्षर
  • समय की इकाई
  • गुणात्मक प्रतिलोम
  • रोशनी
  • दिल की आवाज
  • हिलाना
  • सरल आवर्त गति
  • नहीं (पत्र)
  • एसआई व्युत्पन्न इकाई
  • इंटरनेशनल इलेक्ट्रोटेक्नीकल कमीशन
  • प्रति मिनट धूर्णन
  • हवा की लहर
  • एक समारोह का तर्क
  • चरण (लहरें)
  • आयामहीन मात्रा
  • असतत समय संकेत
  • विशेष मामला
  • मध्यम (प्रकाशिकी)
  • कोई भी त्रुटि
  • ध्वनि की तरंग
  • दृश्यमान प्रतिबिम्ब
  • लय
  • सुनवाई की दहलीज
  • प्रजातियाँ
  • मुख्य विधुत
  • नाबालिग तीसरा
  • माप की इकाइयां
  • आवधिकता (बहुविकल्पी)
  • परिमाण के आदेश (आवृत्ति)
  • वर्णक्रमीय घटक
  • रैखिक समय-अपरिवर्तनीय प्रणाली
  • असतत समय फिल्टर
  • ऑटोरेग्रेसिव मॉडल
  • डिजिटल डाटा
  • डिजिटल देरी लाइन
  • बीआईबीओ स्थिरता
  • फोरियर श्रेणी
  • दोषी
  • दशमलव (सिग्नल प्रोसेसिंग)
  • असतत फूरियर रूपांतरण
  • एफआईआर ट्रांसफर फंक्शन
  • 3डी परीक्षण मॉडल
  • ब्लेंडर (सॉफ्टवेयर)
  • वैज्ञानिक दृश्य
  • प्रतिपादन (कंप्यूटर ग्राफिक्स)
  • विज्ञापन देना
  • चलचित्र
  • अनुभूति
  • निहित सतह
  • विमानन
  • भूतपूर्व छात्र
  • छिपी सतह निर्धारण
  • अंतरिक्ष आक्रमणकारी
  • लकीर खींचने की क्रिया
  • एनएमओएस तर्क
  • उच्च संकल्प
  • एमओएस मेमोरी
  • पूरक राज्य मंत्री
  • नक्षत्र-भवन
  • वैश्विक चमक
  • मैकिंटोश कंप्यूटर
  • प्रथम व्यक्ति शूटर
  • साधारण मानचित्रण
  • हिमयुग (2002 फ़िल्म)
  • मेडागास्कर (2005 फ़िल्म)
  • बायोइनफॉरमैटिक्स
  • शारीरिक रूप से आधारित प्रतिपादन
  • हीरे की थाली
  • प्रतिबिंब (कंप्यूटर ग्राफिक्स)
  • 2010 की एनिमेटेड फीचर फिल्मों की सूची
  • परिवेशी बाधा
  • वास्तविक समय (मीडिया)
  • जानकारी
  • कंकाल एनिमेशन
  • भीड़ अनुकरण
  • प्रक्रियात्मक एनिमेशन
  • अणु प्रणाली
  • कैमरा
  • माइक्रोस्कोप
  • इंजीनियरिंग के चित्र
  • रेखापुंज छवि
  • नक्शा
  • हार्डवेयर एक्सिलरेशन
  • अंधेरा
  • गैर-समान तर्कसंगत बी-तख़्ता
  • नक्शा टक्कर
  • चुम्बकीय अनुनाद इमेजिंग
  • नमूनाकरण (सिग्नल प्रोसेसिंग)
  • sculpting
  • आधुनिक कला का संग्रहालय
  • गेम डेवलपर्स कांफ्रेंस
  • शैक्षिक
  • आपूर्ती बंद करने की आवृत्ति
  • प्रतिक्रिया (इलेक्ट्रॉनिक्स)
  • अण्डाकार फिल्टर
  • सीरिज़ सर्किट)
  • मिलान जेड-ट्रांसफॉर्म विधि
  • कंघी फ़िल्टर
  • समूह देरी
  • सप्टक
  • दूसरों से अलग
  • लो पास फिल्टर
  • निर्देश प्रति सेकंड
  • अंकगणित अतिप्रवाह
  • चरण (लहरें)
  • हस्तक्षेप (लहर प्रसार)
  • बीट (ध्वनिक)
  • अण्डाकार तर्कसंगत कार्य
  • जैकोबी अण्डाकार कार्य
  • क्यू कारक
  • यूनिट सर्कल
  • फी (पत्र)
  • सुनहरा अनुपात
  • मोनोटोनिक
  • Immittance
  • ऑप एंप
  • आवेग invariance
  • बेसेल फ़ंक्शन
  • जटिल सन्युग्म
  • संकेत प्रतिबिंब
  • विद्युतीय ऊर्जा
  • इनपुट उपस्थिति
  • एकदिश धारा
  • जटिल संख्या
  • भार प्रतिबाधा
  • विद्युतचुंबकीय व्यवधान
  • बिजली की आपूर्ति
  • आम-कैथोड
  • अवमन्दन कारक
  • ध्वनिरोधन
  • गूंज (घटना)
  • फ्रेस्नेल समीकरण
  • रोड़ी
  • लोडिंग कॉइल
  • आर एस होयतो
  • लोड हो रहा है कॉइल
  • चेबीशेव बहुपद
  • एक बंदरगाह
  • सकारात्मक-वास्तविक कार्य
  • आपूर्ती बंद करने की आवृत्ति
  • उच्च मार्ग
  • रैखिक फ़िल्टर
  • प्रतिक दर
  • घेरा
  • नॉन-रिटर्न-टू-जीरो
  • अनियमित चर
  • संघ बाध्य
  • एकाधिक आवृत्ति-शिफ्ट कुंजीयन
  • COMPARATOR
  • द्विआधारी जोड़
  • असंबद्ध संचरण
  • त्रुटि समारोह
  • आपसी जानकारी
  • बिखरा हुआ1
  • डिजिटल मॉडुलन
  • डिमॉड्युलेटर
  • कंघा
  • खड़ी तरंगें
  • नमूना दर
  • प्रक्षेप
  • ऑडियो सिग्नल प्रोसेसिंग
  • खगोल-कंघी
  • खास समय
  • पोल (जटिल विश्लेषण)
  • दुर्लभ
  • आरसी सर्किट
  • अवरोध
  • स्थिर समय
  • एक घोड़ा
  • पुनरावृत्ति संबंध
  • निष्क्रिय फिल्टर
  • श्रव्य सीमा
  • मिक्सिंग कंसोल
  • एसी कपलिंग
  • क्यूएससी ऑडियो
  • संकट
  • दूसरों से अलग
  • डीएसएल मॉडम
  • फाइबर ऑप्टिक संचार
  • व्यावर्तित जोड़ी
  • बातचीत का माध्यम
  • समाक्षीय तार
  • लंबी दूरी का टेलीफोन कनेक्शन
  • डाउनस्ट्रीम (कंप्यूटर विज्ञान)
  • आवृत्ति द्वैध
  • आवृत्ति प्रतिक्रिया
  • आकड़ों की योग्यता
  • परीक्षण के अंतर्गत उपकरण
  • कंघी फिल्टर
  • निष्क्रियता (इंजीनियरिंग)
  • लाभ (इलेक्ट्रॉनिक्स)
  • कोने की आवृत्ति
  • फील्ड इफ़ेक्ट ट्रांजिस्टर
  • कम आवृत्ति दोलन
  • एकीकृत परिपथ
  • निरंतर-प्रतिरोध नेटवर्क
  • यूनिट सर्कल
  • अधिकतम प्रयोग करने योग्य आवृत्ति
  • विशेषता समीकरण (कलन)
  • लहर संख्या
  • वेवगाइड (प्रकाशिकी)
  • लाप्लासियान
  • वेवनंबर
  • अपवर्तन तरंग
  • एकतरफा बहुपद
  • एकपदी की डिग्री
  • एक बहुपद का क्रम (बहुविकल्पी)
  • रैखिक प्रकार्य
  • कामुक समीकरण
  • चतुर्थक कार्य
  • क्रमसूचक अंक
  • त्रिनाम
  • इंटीग्रल डोमेन
  • सदिश स्थल
  • फील्ड (गणित)
  • सेट (गणित)
  • अंगूठी (गणित)
  • पूर्णांक मॉड्यूल n
  • लोगारित्म
  • घातांक प्रकार्य
  • एल्गोरिदम का विश्लेषण
  • बीजगणित का मौलिक प्रमेय

बाहरी संबंध