आर्यभट्ट: Difference between revisions
No edit summary |
(translated to Hindi and added an Image) |
||
Line 1: | Line 1: | ||
[[File:आर्यभट्ट.png|thumb]] | |||
आर्यभट का जन्म 476 ई. में हुआ था। 23 वर्ष की आयु में उन्होंने आर्यभय कृति की रचना की। वह पाटलिपुत्र, वर्तमान पटना में फला-फूला। उनका काम आर्यभटीय सैद्धांतिक खगोल विज्ञान और गणित के क्षेत्र में पहला उपलब्ध सटीक दिनांकित कार्य है। हालांकि यह माना जाता है कि इससे पहले के कई खगोलीय सिद्धांत थे, लेकिन इनके प्रामाणिक डेटा योग्य संस्करणों की खोज अभी बाकी है। आर्यभण्य एक सटीक और अत्यधिक संघनित कार्य है। आर्यभटीय का दूसरा अध्याय गणितपाद है(गणित पर अध्याय)।इसमें 33 छंद हैं जो दशमलव गति मान प्रणाली, विभिन्न ज्यामितीय आकृतियों के गुण, बीजगणित, त्रिकोणमिति, संख्याओं की श्रृंखला का योग और कई अन्य विषयों सहित गणित के विभिन्न पहलुओं से संबंधित हैं। यह π (pi) का मान 3.1416 भी देता है जो कि 4 दशमलव स्थानों तक सटीक है। आर्यभट ने अंकों की एक अनूठी प्रणाली विकसित की जहां संख्याओं को अक्षरों के एक समूह द्वारा दर्शाया जाता है। विद्वान उन्हें भारतीय खगोल विज्ञान और गणित के स्तंभों में से एक मानते हैं। | आर्यभट का जन्म 476 ई. में हुआ था। 23 वर्ष की आयु में उन्होंने आर्यभय कृति की रचना की। वह पाटलिपुत्र, वर्तमान पटना में फला-फूला। उनका काम आर्यभटीय सैद्धांतिक खगोल विज्ञान और गणित के क्षेत्र में पहला उपलब्ध सटीक दिनांकित कार्य है। हालांकि यह माना जाता है कि इससे पहले के कई खगोलीय सिद्धांत थे, लेकिन इनके प्रामाणिक डेटा योग्य संस्करणों की खोज अभी बाकी है। आर्यभण्य एक सटीक और अत्यधिक संघनित कार्य है। आर्यभटीय का दूसरा अध्याय गणितपाद है(गणित पर अध्याय)।इसमें 33 छंद हैं जो दशमलव गति मान प्रणाली, विभिन्न ज्यामितीय आकृतियों के गुण, बीजगणित, त्रिकोणमिति, संख्याओं की श्रृंखला का योग और कई अन्य विषयों सहित गणित के विभिन्न पहलुओं से संबंधित हैं। यह π (pi) का मान 3.1416 भी देता है जो कि 4 दशमलव स्थानों तक सटीक है। आर्यभट ने अंकों की एक अनूठी प्रणाली विकसित की जहां संख्याओं को अक्षरों के एक समूह द्वारा दर्शाया जाता है। विद्वान उन्हें भारतीय खगोल विज्ञान और गणित के स्तंभों में से एक मानते हैं। |
Revision as of 17:29, 27 January 2022
आर्यभट का जन्म 476 ई. में हुआ था। 23 वर्ष की आयु में उन्होंने आर्यभय कृति की रचना की। वह पाटलिपुत्र, वर्तमान पटना में फला-फूला। उनका काम आर्यभटीय सैद्धांतिक खगोल विज्ञान और गणित के क्षेत्र में पहला उपलब्ध सटीक दिनांकित कार्य है। हालांकि यह माना जाता है कि इससे पहले के कई खगोलीय सिद्धांत थे, लेकिन इनके प्रामाणिक डेटा योग्य संस्करणों की खोज अभी बाकी है। आर्यभण्य एक सटीक और अत्यधिक संघनित कार्य है। आर्यभटीय का दूसरा अध्याय गणितपाद है(गणित पर अध्याय)।इसमें 33 छंद हैं जो दशमलव गति मान प्रणाली, विभिन्न ज्यामितीय आकृतियों के गुण, बीजगणित, त्रिकोणमिति, संख्याओं की श्रृंखला का योग और कई अन्य विषयों सहित गणित के विभिन्न पहलुओं से संबंधित हैं। यह π (pi) का मान 3.1416 भी देता है जो कि 4 दशमलव स्थानों तक सटीक है। आर्यभट ने अंकों की एक अनूठी प्रणाली विकसित की जहां संख्याओं को अक्षरों के एक समूह द्वारा दर्शाया जाता है। विद्वान उन्हें भारतीय खगोल विज्ञान और गणित के स्तंभों में से एक मानते हैं।