आर्यभट्ट: Difference between revisions

From Vigyanwiki
No edit summary
(added citation)
Line 1: Line 1:
[[File:2064 aryabhata-crp.jpg|alt=आर्यभट्ट|thumb|आर्यभट्ट]]
[[File:2064 aryabhata-crp.jpg|alt=आर्यभट्ट|thumb|आर्यभट्ट]]
[https://hi.wikipedia.org/wiki/%E0%A4%86%E0%A4%B0%E0%A5%8D%E0%A4%AF%E0%A4%AD%E0%A4%9F आर्यभट] <ref>[https://hi.wikipedia.org/wiki/%E0%A4%86%E0%A4%B0%E0%A5%8D%E0%A4%AF%E0%A4%AD%E0%A4%9F]</ref>जन्म 476 ई. में हुआ था। 23 वर्ष की आयु में उन्होंने [https://hi.wikipedia.org/wiki/%E0%A4%86%E0%A4%B0%E0%A5%8D%E0%A4%AF%E0%A4%AD%E0%A4%9F%E0%A5%80%E0%A4%AF आर्यभटीय] कृति की रचना की। वे  पाटलिपुत्र, वर्तमान पटना में फले -फूले । उनका काम आर्यभटीय सैद्धांतिक खगोल विज्ञान और गणित के क्षेत्र में पहला उपलब्ध सटीक दिनांकित कार्य है। हालांकि यह माना जाता है कि इससे पहले के कई खगोलीय सिद्धांत थे, लेकिन इनके प्रामाणिक डेटा योग्य संस्करणों की खोज अभी बाकी है।  आर्यभटीय एक सटीक और अत्यधिक संघनित कार्य है। आर्यभटीय का दूसरा अध्याय गणितपाद  है(गणित पर अध्याय)। इसमें 33 छंद हैं जो दशमलव गति मान प्रणाली, विभिन्न ज्यामितीय आकृतियों के गुण, बीजगणित, त्रिकोणमिति, संख्याओं की श्रृंखला का योग और कई अन्य विषयों सहित गणित के विभिन्न पहलुओं से संबंधित हैं। यह π (pi) का मान 3.1416 भी देता है जो कि 4 दशमलव स्थानों तक सटीक है। आर्यभट ने अंकों की एक अनूठी प्रणाली विकसित की जहां संख्याओं को अक्षरों के एक समूह द्वारा दर्शाया जाता है। विद्वान उन्हें भारतीय खगोल विज्ञान और गणित के स्तंभों में से एक मानते हैं।
[https://hi.wikipedia.org/wiki/%E0%A4%86%E0%A4%B0%E0%A5%8D%E0%A4%AF%E0%A4%AD%E0%A4%9F आर्यभट] <ref>[https://hi.wikipedia.org/wiki/%E0%A4%86%E0%A4%B0%E0%A5%8D%E0%A4%AF%E0%A4%AD%E0%A4%9F]</ref>जन्म 476 ई. में हुआ था। 23 वर्ष की आयु में उन्होंने [https://hi.wikipedia.org/wiki/%E0%A4%86%E0%A4%B0%E0%A5%8D%E0%A4%AF%E0%A4%AD%E0%A4%9F%E0%A5%80%E0%A4%AF आर्यभटीय] कृति की रचना की। वे  पाटलिपुत्र, वर्तमान पटना में फले -फूले । उनका काम आर्यभटीय सैद्धांतिक खगोल विज्ञान और गणित के क्षेत्र में पहला उपलब्ध सटीक दिनांकित कार्य है। हालांकि यह माना जाता है कि इससे पहले के कई खगोलीय सिद्धांत थे, लेकिन इनके प्रामाणिक डेटा योग्य संस्करणों की खोज अभी बाकी है।  आर्यभटीय एक सटीक और अत्यधिक संघनित कार्य है। आर्यभटीय का दूसरा अध्याय गणितपाद  है(गणित पर अध्याय)। इसमें 33 छंद हैं जो दशमलव गति मान प्रणाली, विभिन्न ज्यामितीय आकृतियों के गुण, बीजगणित, त्रिकोणमिति, संख्याओं की श्रृंखला का योग और कई अन्य विषयों सहित गणित के विभिन्न पहलुओं से संबंधित हैं। यह π (pi) का मान 3.1416 भी देता है जो कि 4 दशमलव स्थानों तक सटीक है। आर्यभट ने अंकों की एक अनूठी प्रणाली विकसित की जहां संख्याओं को अक्षरों के एक समूह द्वारा दर्शाया जाता है। विद्वान उन्हें भारतीय खगोल विज्ञान और गणित के स्तंभों <ref>''A Primer to Bhāratīya Gaṇitam , Bhāratīya-Gaṇita-Praveśa- Part-1''. Samskrit Promotion Foundation. 2021. [[ISBN (identifier)|ISBN]] [[Special:BookSources/978-81-951757-2-7|<bdi>978-81-951757-2-7</bdi>]].</ref> में से एक मानते हैं।


== संदर्भ ==
== संदर्भ ==
[[Category:भारतीय गणितज्ञ]]
[[Category:भारतीय गणितज्ञ]]
[[Category:गणित]]
[[Category:गणित]]

Revision as of 09:10, 2 March 2022

आर्यभट्ट
आर्यभट्ट

आर्यभट [1]जन्म 476 ई. में हुआ था। 23 वर्ष की आयु में उन्होंने आर्यभटीय कृति की रचना की। वे पाटलिपुत्र, वर्तमान पटना में फले -फूले । उनका काम आर्यभटीय सैद्धांतिक खगोल विज्ञान और गणित के क्षेत्र में पहला उपलब्ध सटीक दिनांकित कार्य है। हालांकि यह माना जाता है कि इससे पहले के कई खगोलीय सिद्धांत थे, लेकिन इनके प्रामाणिक डेटा योग्य संस्करणों की खोज अभी बाकी है। आर्यभटीय एक सटीक और अत्यधिक संघनित कार्य है। आर्यभटीय का दूसरा अध्याय गणितपाद है(गणित पर अध्याय)। इसमें 33 छंद हैं जो दशमलव गति मान प्रणाली, विभिन्न ज्यामितीय आकृतियों के गुण, बीजगणित, त्रिकोणमिति, संख्याओं की श्रृंखला का योग और कई अन्य विषयों सहित गणित के विभिन्न पहलुओं से संबंधित हैं। यह π (pi) का मान 3.1416 भी देता है जो कि 4 दशमलव स्थानों तक सटीक है। आर्यभट ने अंकों की एक अनूठी प्रणाली विकसित की जहां संख्याओं को अक्षरों के एक समूह द्वारा दर्शाया जाता है। विद्वान उन्हें भारतीय खगोल विज्ञान और गणित के स्तंभों [2] में से एक मानते हैं।

संदर्भ

  1. [1]
  2. A Primer to Bhāratīya Gaṇitam , Bhāratīya-Gaṇita-Praveśa- Part-1. Samskrit Promotion Foundation. 2021. ISBN 978-81-951757-2-7.