कोज्या का गोलाकार नियम: Difference between revisions
No edit summary |
No edit summary |
||
Line 27: | Line 27: | ||
===तृतीय प्रमाण=== | ===तृतीय प्रमाण=== | ||
मान लीजिए {{math|'''u''', '''v'''}}, और {{math|'''w'''}} वृत्त के केंद्र से त्रिभुज के उन शीर्षों तक इकाई सदिशों को दर्शाते हैं। निम्नलिखित घूर्णी अनुक्रम पर विचार करें | मान लीजिए {{math|'''u''', '''v'''}}, और {{math|'''w'''}} वृत्त के केंद्र से त्रिभुज के उन शीर्षों तक इकाई सदिशों को दर्शाते हैं। निम्नलिखित घूर्णी अनुक्रम पर विचार करें, जहाँ हम सर्वप्रथम सदिश {{math|'''v'''}} को कोण {{math|''a''}} से {{math|'''u'''}} तक घुमाते हैं उसके पश्चात सदिश {{math|'''u'''}} से {{math|'''w'''}} को कोण {{math|''b''}} द्वारा घुमाते हैं, जिसके पश्चात हम सदिश {{math|'''w'''}} को पुनः {{math|'''v'''}} पर कोण {{math|''c''}} से घुमाते हैं। इन तीन घूर्णनों की संरचना पहचान परिवर्तन का निर्माण करेगी। अर्थात्, समग्र घूर्णन बिंदु {{math|'''v'''}} को स्वयं में मैप करता है। इन तीन घूर्णी संक्रियाओं को चतुर्भुजों द्वारा दर्शाया जा सकता है: | ||
<math display="block"> | <math display="block"> | ||
Line 36: | Line 36: | ||
\end{align} | \end{align} | ||
</math> | </math> | ||
जहाँ <math>\mathbf{A} ,</math> <math>\mathbf{B} ,</math> और <math>\mathbf{C}</math> क्रमशः दाएँ हाथ के नियम द्वारा परिभाषित इकाई सदिश घूर्णन के अक्षों का प्रतिनिधित्व करते हैं। इन तीन | जहाँ <math>\mathbf{A} ,</math> <math>\mathbf{B} ,</math> और <math>\mathbf{C}</math> क्रमशः दाएँ हाथ के नियम द्वारा परिभाषित इकाई सदिश घूर्णन के अक्षों का प्रतिनिधित्व करते हैं। इन तीन घूर्णनों की संरचना समानता <math>q_C q_B q_A = 1.</math> है। दोनों पक्षों को संयुग्म <math>q_A^* q_B^* ,</math> गुणा करने पर हमें <math>q_C = q_A^* q_B^* ,</math> प्राप्त होता है जहाँ <math display="inline">q_A^* = \cos \frac{a}{2} - \mathbf{A} \sin \frac{a}{2}</math> और <math display="inline">q_B^* = \cos \frac{b}{2} - \mathbf{B} \sin \frac{b}{2} .</math> हैं। इससे हमें निम्नलिखित प्रमाण प्राप्त होता है-<ref>{{cite book |last=Brand |first=Louis |title=वेक्टर और टेंसर विश्लेषण|year=1947 |publisher=Wiley |pages=416–417 |chapter=§186 Great Circle Arccs |chapter-url=https://archive.org/details/vectortensoranal00branrich/page/416/ }}</ref><ref>{{cite book |last=Kuipers |first=Jack B. |title=चतुर्भुज और घूर्णन अनुक्रम|year=1999 |publisher=Princeton University Press |pages=235-255 |chapter=§10 Spherical Trignometry |chapter-url=}}</ref> | ||
<math display="block">\cos \frac{c}{2} + \mathbf{C} \sin \frac{c}{2} = \left(\cos \frac{a}{2} - \mathbf{A} \sin \frac{a}{2}\right) \left( \cos \frac{b}{2} - \mathbf{B} \sin \frac{b}{2} \right).</math> | <math display="block">\cos \frac{c}{2} + \mathbf{C} \sin \frac{c}{2} = \left(\cos \frac{a}{2} - \mathbf{A} \sin \frac{a}{2}\right) \left( \cos \frac{b}{2} - \mathbf{B} \sin \frac{b}{2} \right).</math> | ||
इस | इस प्रमाण के दाहिनी ओर चतुर्भुज गुणनफल द्वारा दिया गया है- | ||
<math display="block">\left(\cos \frac{a}{2} \cos \frac{b}{2} - \mathbf{A} \cdot \mathbf{B} \sin \frac{a}{2} \sin \frac{b}{2} \right) - \left(\mathbf{A} \sin \frac{a}{2} \cos \frac{b}{2} + \mathbf{B} \cos \frac{a}{2} \sin \frac{b}{2} - \mathbf{A} \times \mathbf{B} \sin \frac{a}{2} \sin \frac{b}{2} \right).</math> | <math display="block">\left(\cos \frac{a}{2} \cos \frac{b}{2} - \mathbf{A} \cdot \mathbf{B} \sin \frac{a}{2} \sin \frac{b}{2} \right) - \left(\mathbf{A} \sin \frac{a}{2} \cos \frac{b}{2} + \mathbf{B} \cos \frac{a}{2} \sin \frac{b}{2} - \mathbf{A} \times \mathbf{B} \sin \frac{a}{2} \sin \frac{b}{2} \right).</math> | ||
सर्वसमिका के दोनों ओर के अदिश भागों को | सर्वसमिका के दोनों ओर के अदिश भागों को समान करने पर, हमें प्राप्त होता है- | ||
<math display="block">\cos \frac{c}{2} = \cos \frac{a}{2} \cos \frac{b}{2} - \mathbf{A} \cdot \mathbf{B} \sin \frac{a}{2} \sin \frac{b}{2}.</math> | |||
जहाँ <math>\mathbf{A} \cdot \mathbf{B} = \cos (\pi - C) = - \cos C .</math> चूँकि यह पहचान किसी भी चाप कोण के लिए मान्य होती है, इसलिए हम अर्ध भाग को अवरोधित कर देते हैं- | |||
<math display="block">\cos c = \cos a \cos b + \cos C \sin a \sin b.</math> | |||
हम | हम प्रथम <math>\mathbf{A} \times \mathbf{B} = -\mathbf{u} \sin C</math> को अंकित करके और तत्पश्चात पहचान के दोनों पक्षों पर सदिश भागों को समरूप करके साइन नियम को भी पुनर्प्राप्त कर सकते हैं- | ||
<math display="block">\mathbf{C} \sin \frac{c}{2} = -\left( \mathbf{A} \sin \frac{a}{2} \cos \frac{b}{2} + \mathbf{B} \cos \frac{a}{2} \sin \frac{b}{2} + \mathbf{u} \sin C \sin \frac{a}{2} \sin \frac{b}{2} \right). </math> | |||
सदिश <math>\mathbf{u}</math> दोनों सदिशों | सदिश <math>\mathbf{u}</math> दोनों सदिशों <math>\mathbf{A}</math> और <math>\mathbf{B} ,</math> के लिए ओर्थोगोनल है और इस प्रकार से <math>\mathbf{u} \cdot \mathbf{A} = \mathbf{u} \cdot \mathbf{B} = 0 .</math> के संबंध में डॉट गुणनफल लेना <math>\mathbf{u}</math> दोनों तरफ, और हिस्सों को दबाते हुए, हमारे पास है <math> \mathbf{u} \cdot \mathbf{C} \sin c = -\sin C \sin a \sin b.</math> अब <math>\mathbf{v} \times \mathbf{w} = -\mathbf{C} \sin c</math> और इसलिए हमारे पास है <math> \mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = -\mathbf{u} \cdot \mathbf{C} \sin c = \sin C \sin a \sin b. </math> प्रत्येक पक्ष को विभाजित करना <math>\sin a \sin b \sin c ,</math> अपने पास | ||
<math display="block">\frac{\sin C}{\sin c} = \frac{\mathbf{u} \cdot (\mathbf{w} \times \mathbf{v})}{\sin a \sin b \sin c}.</math> | |||
चूँकि उपरोक्त अभिव्यक्ति का दाहिना भाग चक्रीय क्रमपरिवर्तन द्वारा अपरिवर्तित है, हमारे पास है | चूँकि उपरोक्त अभिव्यक्ति का दाहिना भाग चक्रीय क्रमपरिवर्तन द्वारा अपरिवर्तित है, हमारे पास है | ||
Revision as of 17:10, 23 July 2023
गोलाकार त्रिकोणमिति में, कोज्या का नियम (जिसे भुजाओं के लिए कोज्या नियम भी कहा जाता है[1]) गोलाकार त्रिकोणों की भुजाओं और कोणों से संबंधित प्रमेय है, जो समतल त्रिकोणमिति के कोज्या के सामान्य नियम के अनुरूप है।
इकाई वृत्त को देखते हुए, वृत्त की सतह पर गोलाकार त्रिभुज को वृत्त पर तीन बिंदुओं u, v, और w को संयोजित करने वाले बड़े वृत्तों द्वारा परिभाषित किया जाता है (जिसे दाईं ओर दर्शाया गया है)। यदि इन तीनों भुजाओं की लम्बाई a (u से v तक) b (u से w तक), और c (v से w तक) है, और c के विपरीत शीर्ष का कोण C है, तो कोज्या का (प्रथम) गोलाकार नियम कहता है:[2][1]
कोज्या के नियम पर भिन्नता, कोज्या का द्वितीय गोलाकार नियम,[4] (जिसे कोणों के लिए कोज्या नियम भी कहा जाता है[1] कहता है:
प्रमाण
प्रथम प्रमाण
मान लीजिए u, v, और w वृत्त के केंद्र से त्रिभुज के उन शीर्षों तक इकाई सदिशों को दर्शाते हैं। यदि समन्वय प्रणाली को घुमाया जाए तो कोण और दूरियां परिवर्तित नहीं होती हैं, इसलिए हम समन्वय प्रणाली को घुमा सकते हैं जिससे कि उत्तरी ध्रुव पर हो और कहीं प्रधान मध्याह्न रेखा (0 का देशांतर) पर हो। इस घूर्णन के साथ, के लिए गोलाकार निर्देशांक है, जहाँ θ भूमध्य रेखा से नहीं उत्तरी ध्रुव से मापा गया कोण है, और के लिए गोलाकार निर्देशांक है। के लिए कार्तीय निर्देशांक है और के लिए कार्तीय निर्देशांक है। का मान दो कार्टेशियन वैक्टर का डॉट गुणनफल है, जो है।
द्वितीय प्रमाण
मान लीजिए u, v, और w वृत्त के केंद्र से त्रिभुज के उन शीर्षों तक इकाई सदिशों को दर्शाते हैं। हमारे निकट u · u = 1, v · w = cos c, u · v = cos a, और u · w = cos b है। सदिश u × v और u × w की लंबाई क्रमशः sin a और sin b है और उनके मध्य का कोण C है, इसलिए
- sin a sin b cos C = (u × v) · (u × w) = (u · u)(v · w) − (u · v)(u · w) = cos c − cos a cos b,
क्रॉस गुणनफल, डॉट गुणनफल और बिनेट-कॉची प्रमाण (p × q) · (r × s) = (p · r)(q · s) − (p · s)(q · r) का उपयोग करना किया जाता है।
तृतीय प्रमाण
मान लीजिए u, v, और w वृत्त के केंद्र से त्रिभुज के उन शीर्षों तक इकाई सदिशों को दर्शाते हैं। निम्नलिखित घूर्णी अनुक्रम पर विचार करें, जहाँ हम सर्वप्रथम सदिश v को कोण a से u तक घुमाते हैं उसके पश्चात सदिश u से w को कोण b द्वारा घुमाते हैं, जिसके पश्चात हम सदिश w को पुनः v पर कोण c से घुमाते हैं। इन तीन घूर्णनों की संरचना पहचान परिवर्तन का निर्माण करेगी। अर्थात्, समग्र घूर्णन बिंदु v को स्वयं में मैप करता है। इन तीन घूर्णी संक्रियाओं को चतुर्भुजों द्वारा दर्शाया जा सकता है:
पुनर्व्यवस्था
कोज्या के पहले और दूसरे गोलाकार नियमों को भुजाओं को रखने के लिए पुनर्व्यवस्थित किया जा सकता है (a, b, c) और कोण (A, B, C) समीकरणों के विपरीत पक्षों पर:
तलीय सीमा: छोटे कोण
छोटे गोलाकार त्रिभुजों के लिए, यानी छोटे के लिए a, b, और c, कोज्या का गोलाकार नियम लगभग कोज्या के सामान्य तलीय नियम के समान है,
इतिहास
मुहम्मद इब्न मूसा अल-ख्वारिज्मी|अल-ख्वारिज्मी (9वीं शताब्दी), अल-बत्तानी|अल-बत्तानी (9वीं शताब्दी), और नीलकंठ सोमयाजी|नीलकंठ द्वारा कोज्या के गोलाकार नियम के समतुल्य कुछ का उपयोग किया गया था (लेकिन सामान्य रूप से नहीं कहा गया था)। (15th शताब्दी)।[7]
यह भी देखें
- अर्ध-पक्षीय सूत्र
- कोज्या का अतिपरवलयिक नियम
- त्रिभुजों का हल
- ज्या का गोलाकार नियम
टिप्पणियाँ
- ↑ Jump up to: 1.0 1.1 1.2 W. Gellert, S. Gottwald, M. Hellwich, H. Kästner, and H. Küstner, The VNR Concise Encyclopedia of Mathematics, 2nd ed., ch. 12 (Van Nostrand Reinhold: New York, 1989).
- ↑ Romuald Ireneus 'Scibor-Marchocki, Spherical trigonometry, Elementary-Geometry Trigonometry web page (1997).
- ↑ R. W. Sinnott, "Virtues of the Haversine", Sky and Telescope 68 (2), 159 (1984).
- ↑ Reiman, István (1999). Geometria és határterületei. Szalay Könyvkiadó és Kereskedőház Kft. p. 83.
- ↑ Brand, Louis (1947). "§186 Great Circle Arccs". वेक्टर और टेंसर विश्लेषण. Wiley. pp. 416–417.
- ↑ Kuipers, Jack B. (1999). "§10 Spherical Trignometry". चतुर्भुज और घूर्णन अनुक्रम. Princeton University Press. pp. 235–255.
- ↑ Van Brummelen, Glen (2012). Heavenly mathematics: The forgotten art of spherical trigonometry. Princeton University Press. p. 98.
[[he:טריגונומטריה ספירית#משפט הקוסינוס