त्रिकोणमिति का उपयोग: Difference between revisions

From Vigyanwiki
(Created page with "{{Short description|Applications of trigonometry}}{{refimprove|date=March 2012}} {{Trigonometry}} File:STS-114 Steve Robinson on Canadarm2.jpg|thumb|236px|अंतर्र...")
 
No edit summary
Line 1: Line 1:
{{Short description|Applications of trigonometry}}{{refimprove|date=March 2012}}
{{Short description|Applications of trigonometry}}{{Trigonometry}}
{{Trigonometry}}
[[File:STS-114 Steve Robinson on Canadarm2.jpg|thumb|236px|अंतर्राष्ट्रीय अंतरिक्ष स्टेशन पर [[कनाडार्म2]] रोबोटिक मैनिपुलेटर इसके जोड़ों के कोणों को नियंत्रित करके संचालित होता है। भुजा के अंत में अंतरिक्ष यात्री की अंतिम स्थिति की गणना के लिए उन कोणों के त्रिकोणमितीय कार्यों के बार-बार उपयोग की आवश्यकता होती है।]]गैर-गणितज्ञों और गैर-वैज्ञानिकों की आम जनता के बीच, [[त्रिकोणमिति]] मुख्य रूप से माप समस्याओं के लिए अपने अनुप्रयोग के लिए जानी जाती है, फिर भी इसका उपयोग अक्सर उन तरीकों से भी किया जाता है जो कहीं अधिक सूक्ष्म होते हैं, जैसे कि [[संगीत सिद्धांत]] में इसका स्थान; फिर भी अन्य उपयोग अधिक तकनीकी हैं, जैसे [[संख्या सिद्धांत]] में। फूरियर श्रृंखला और फूरियर रूपांतरण के गणितीय विषय त्रिकोणमितीय कार्यों के ज्ञान पर बहुत अधिक निर्भर करते हैं और सांख्यिकी सहित कई क्षेत्रों में आवेदन पाते हैं।
[[File:STS-114 Steve Robinson on Canadarm2.jpg|thumb|236px|अंतर्राष्ट्रीय अंतरिक्ष स्टेशन पर [[कनाडार्म2]] रोबोटिक मैनिपुलेटर इसके जोड़ों के कोणों को नियंत्रित करके संचालित होता है। भुजा के अंत में अंतरिक्ष यात्री की अंतिम स्थिति की गणना के लिए उन कोणों के त्रिकोणमितीय कार्यों के बार-बार उपयोग की आवश्यकता होती है।]]गैर-गणितज्ञों और गैर-वैज्ञानिकों की आम जनता के बीच, [[त्रिकोणमिति]] मुख्य रूप से माप समस्याओं के लिए अपने अनुप्रयोग के लिए जानी जाती है, फिर भी इसका उपयोग अक्सर उन तरीकों से भी किया जाता है जो कहीं अधिक सूक्ष्म होते हैं, जैसे कि [[संगीत सिद्धांत]] में इसका स्थान; फिर भी अन्य उपयोग अधिक तकनीकी हैं, जैसे [[संख्या सिद्धांत]] में। फूरियर श्रृंखला और फूरियर रूपांतरण के गणितीय विषय त्रिकोणमितीय कार्यों के ज्ञान पर बहुत अधिक निर्भर करते हैं और सांख्यिकी सहित कई क्षेत्रों में आवेदन पाते हैं।


==[[थॉमस पेन]] का बयान==
==[[थॉमस पेन]] का बयान==


द एज ऑफ रीज़न के अध्याय XI में, अमेरिकी क्रांतिकारी और [[ज्ञान का दौर]] विचारक थॉमस पेन ने लिखा:<ref>{{cite book |title=तर्क का युग|first1=Paine |last1=Thomas |publisher=Dover Publications |year=2004 |page=52 |url=http://manybooks.net/pages/painethoetext03twtp410/51.html}}</ref> :मनुष्य किसी ग्रहण या आकाशीय पिंडों की गति से संबंधित किसी अन्य चीज़ का पूर्वज्ञान प्राप्त करने के लिए जिन वैज्ञानिक सिद्धांतों का उपयोग करता है, वे मुख्य रूप से विज्ञान के उस हिस्से में निहित हैं जिसे त्रिकोणमिति, या त्रिकोण के गुण कहा जाता है, जो , जब स्वर्गीय पिंडों के अध्ययन पर लागू किया जाता है, तो इसे खगोल विज्ञान कहा जाता है; जब इसका उपयोग समुद्र में जहाज के मार्ग को निर्देशित करने के लिए किया जाता है, तो इसे नेविगेशन कहा जाता है; जब इसे रूलर और कम्पास द्वारा खींची गई आकृतियों के निर्माण पर लागू किया जाता है, तो इसे ज्यामिति कहा जाता है; जब इमारतों की योजनाओं के निर्माण पर लागू किया जाता है, तो इसे वास्तुकला कहा जाता है; जब इसे पृथ्वी की सतह के किसी भाग की माप पर लागू किया जाता है, तो इसे भूमि-सर्वेक्षण कहा जाता है। कुल मिलाकर यह विज्ञान की आत्मा है। यह एक शाश्वत सत्य है: इसमें वह गणितीय प्रदर्शन शामिल है जिसके बारे में मनुष्य बोलता है, और इसके उपयोग की सीमा अज्ञात है।
द एज ऑफ रीज़न के अध्याय XI में, अमेरिकी क्रांतिकारी और [[ज्ञान का दौर]] विचारक थॉमस पेन ने लिखा:<ref>{{cite book |title=तर्क का युग|first1=Paine |last1=Thomas |publisher=Dover Publications |year=2004 |page=52 |url=http://manybooks.net/pages/painethoetext03twtp410/51.html}}</ref> :मनुष्य किसी ग्रहण या आकाशीय पिंडों की गति से संबंधित किसी अन्य चीज़ का पूर्वज्ञान प्राप्त करने के लिए जिन वैज्ञानिक सिद्धांतों का उपयोग करता है, वे मुख्य रूप से विज्ञान के उस हिस्से में निहित हैं जिसे त्रिकोणमिति, या त्रिकोण के गुण कहा जाता है, जो , जब स्वर्गीय पिंडों के अध्ययन पर लागू किया जाता है, तो इसे खगोल विज्ञान कहा जाता है; जब इसका उपयोग समुद्र में जहाज के मार्ग को निर्देशित करने के लिए किया जाता है, तो इसे नेविगेशन कहा जाता है; जब इसे रूलर और कम्पास द्वारा खींची गई आकृतियों के निर्माण पर लागू किया जाता है, तो इसे ज्यामिति कहा जाता है; जब इमारतों की योजनाओं के निर्माण पर लागू किया जाता है, तो इसे वास्तुकला कहा जाता है; जब इसे पृथ्वी की सतह के किसी भाग की माप पर लागू किया जाता है, तो इसे भूमि-सर्वेक्षण कहा जाता है। कुल मिलाकर यह विज्ञान की आत्मा है। यह शाश्वत सत्य है: इसमें वह गणितीय प्रदर्शन शामिल है जिसके बारे में मनुष्य बोलता है, और इसके उपयोग की सीमा अज्ञात है।


==इतिहास==
==इतिहास==
Line 13: Line 12:
{{Main| Great Trigonometrical Survey}}
{{Main| Great Trigonometrical Survey}}


1802 से 1871 तक, [[ महान त्रिकोणमितीय सर्वेक्षण ]] भारतीय उपमहाद्वीप का उच्च परिशुद्धता के साथ सर्वेक्षण करने की एक परियोजना थी। तटीय आधार रेखा से शुरू करके, गणितज्ञों और भूगोलवेत्ताओं ने देश भर में विशाल दूरियों को त्रिकोणित किया। प्रमुख उपलब्धियों में से एक हिमालय पर्वत की ऊंचाई को मापना और यह निर्धारित करना था कि [[माउंट एवरेस्ट]] पृथ्वी पर सबसे ऊंचा स्थान है। <ref>{{cite web | url=https://mathigon.org/course/triangles-and-trigonometry/introduction#full | title=त्रिकोण और त्रिकोणमिति| website=Mathigon | access-date= 2019-02-06 }}</ref>
1802 से 1871 तक, [[ महान त्रिकोणमितीय सर्वेक्षण ]] भारतीय उपमहाद्वीप का उच्च परिशुद्धता के साथ सर्वेक्षण करने की परियोजना थी। तटीय आधार रेखा से शुरू करके, गणितज्ञों और भूगोलवेत्ताओं ने देश भर में विशाल दूरियों को त्रिकोणित किया। प्रमुख उपलब्धियों में से हिमालय पर्वत की ऊंचाई को मापना और यह निर्धारित करना था कि [[माउंट एवरेस्ट]] पृथ्वी पर सबसे ऊंचा स्थान है। <ref>{{cite web | url=https://mathigon.org/course/triangles-and-trigonometry/introduction#full | title=त्रिकोण और त्रिकोणमिति| website=Mathigon | access-date= 2019-02-06 }}</ref>


'''गुणन के लिए ऐतिहासिक उपयोग'''


===गुणन के लिए ऐतिहासिक उपयोग===
1614 में लघुगणक के आविष्कार से पहले के 25 वर्षों तक, उत्पादों को शीघ्रता से अनुमानित करने का मात्र ज्ञात आम तौर पर लागू तरीका [[प्रोस्थैफेरेसिस]] था। इसने उन कोणों के त्रिकोणमितीय कार्यों के उत्पादों के संदर्भ में कोणों के योग और अंतर के त्रिकोणमितीय कार्यों के लिए पहचान का उपयोग किया।
 
1614 में लघुगणक के आविष्कार से पहले के 25 वर्षों तक, उत्पादों को शीघ्रता से अनुमानित करने का एकमात्र ज्ञात आम तौर पर लागू तरीका [[प्रोस्थैफेरेसिस]] था। इसने उन कोणों के त्रिकोणमितीय कार्यों के उत्पादों के संदर्भ में कोणों के योग और अंतर के त्रिकोणमितीय कार्यों के लिए पहचान का उपयोग किया।


==कुछ आधुनिक उपयोग==
==कुछ आधुनिक उपयोग==
{{unsourced|section|date=August 2019}}
त्रिकोणमिति का उपयोग करने वाले वैज्ञानिक क्षेत्रों में शामिल हैं:
त्रिकोणमिति का उपयोग करने वाले वैज्ञानिक क्षेत्रों में शामिल हैं:


:ध्वनिकी, [[वास्तुकला]], [[खगोल]] विज्ञान, मानचित्रकला, [[ असैनिक अभियंत्रण ]], [[भूभौतिकी]], [[नक्शानवीसी]], [[ विद्युत अभियन्त्रण ]], [[ इलेक्ट्रानिक्स ]], भूमि सर्वेक्षण और भूगणित, कई [[भौतिक विज्ञान]], [[मैकेनिकल इंजीनियरिंग]], [[मशीनिंग]], [[मेडिकल इमेजिंग]], संख्या सिद्धांत, समुद्र विज्ञान, [[प्रकाशिकी]], [[ औषध ]], संभाव्यता सिद्धांत, [[भूकंप विज्ञान]], सांख्यिकी और दृश्य धारणा
:ध्वनिकी, [[वास्तुकला]], [[खगोल]] विज्ञान, मानचित्रकला, [[ असैनिक अभियंत्रण ]], [[भूभौतिकी]], [[नक्शानवीसी]], [[ विद्युत अभियन्त्रण ]], [[ इलेक्ट्रानिक्स ]], भूमि सर्वेक्षण और भूगणित, कई [[भौतिक विज्ञान]], [[मैकेनिकल इंजीनियरिंग]], [[मशीनिंग]], [[मेडिकल इमेजिंग]], संख्या सिद्धांत, समुद्र विज्ञान, [[प्रकाशिकी]], [[ औषध ]], संभाव्यता सिद्धांत, [[भूकंप विज्ञान]], सांख्यिकी और दृश्य धारणा


इन क्षेत्रों में त्रिकोणमिति शामिल है इसका मतलब यह नहीं है कि उनके बारे में कुछ भी सीखने के लिए त्रिकोणमिति का ज्ञान आवश्यक है। इसका मतलब यह है कि इन क्षेत्रों में कुछ चीजों को त्रिकोणमिति के बिना नहीं समझा जा सकता है। उदाहरण के लिए, [[संगीत]] का एक प्रोफेसर शायद गणित के बारे में कुछ नहीं जानता होगा, लेकिन शायद यह जानता होगा कि संगीत के गणितीय सिद्धांत में [[पाइथागोरस]] सबसे पहला ज्ञात योगदानकर्ता था।
इन क्षेत्रों में त्रिकोणमिति शामिल है इसका मतलब यह नहीं है कि उनके बारे में कुछ भी सीखने के लिए त्रिकोणमिति का ज्ञान आवश्यक है। इसका मतलब यह है कि इन क्षेत्रों में कुछ चीजों को त्रिकोणमिति के बिना नहीं समझा जा सकता है। उदाहरण के लिए, [[संगीत]] का प्रोफेसर शायद गणित के बारे में कुछ नहीं जानता होगा, लेकिन शायद यह जानता होगा कि संगीत के गणितीय सिद्धांत में [[पाइथागोरस]] सबसे पहला ज्ञात योगदानकर्ता था।


ऊपर सूचीबद्ध प्रयास के कुछ क्षेत्रों में यह कल्पना करना आसान है कि त्रिकोणमिति का उपयोग कैसे किया जा सकता है। उदाहरण के लिए, नेविगेशन और भूमि सर्वेक्षण में, त्रिकोणमिति के उपयोग के अवसर कम से कम कुछ मामलों में इतने सरल होते हैं कि उन्हें प्रारंभिक त्रिकोणमिति पाठ्यपुस्तक में वर्णित किया जा सकता है। संगीत सिद्धांत के मामले में, त्रिकोणमिति का अनुप्रयोग पाइथागोरस द्वारा शुरू किए गए कार्य से संबंधित है, जिन्होंने देखा कि अलग-अलग लंबाई के दो तारों को तोड़ने से उत्पन्न ध्वनियां व्यंजन हैं यदि दोनों लंबाई एक सामान्य लंबाई के छोटे पूर्णांक गुणज हैं। एक कंपायमान डोरी के आकार और [[ उन लोगों के ]] फलन के ग्राफ के बीच समानता महज एक संयोग नहीं है। समुद्रशास्त्र में कुछ तरंगों के आकार और साइन फ़ंक्शन के ग्राफ के बीच समानता भी संयोग नहीं है। कुछ अन्य क्षेत्रों में, जिनमें जलवायु विज्ञान, जीव विज्ञान और अर्थशास्त्र शामिल हैं, मौसमी आवधिकताएँ होती हैं। इनके अध्ययन में अक्सर साइन और कोसाइन फ़ंक्शन की आवधिक प्रकृति शामिल होती है।
ऊपर सूचीबद्ध प्रयास के कुछ क्षेत्रों में यह कल्पना करना आसान है कि त्रिकोणमिति का उपयोग कैसे किया जा सकता है। उदाहरण के लिए, नेविगेशन और भूमि सर्वेक्षण में, त्रिकोणमिति के उपयोग के अवसर कम से कम कुछ मामलों में इतने सरल होते हैं कि उन्हें प्रारंभिक त्रिकोणमिति पाठ्यपुस्तक में वर्णित किया जा सकता है। संगीत सिद्धांत के मामले में, त्रिकोणमिति का अनुप्रयोग पाइथागोरस द्वारा शुरू किए गए कार्य से संबंधित है, जिन्होंने देखा कि अलग-अलग लंबाई के दो तारों को तोड़ने से उत्पन्न ध्वनियां व्यंजन हैं यदि दोनों लंबाई सामान्य लंबाई के छोटे पूर्णांक गुणज हैं। कंपायमान डोरी के आकार और [[ उन लोगों के ]] फलन के ग्राफ के बीच समानता महज संयोग नहीं है। समुद्रशास्त्र में कुछ तरंगों के आकार और साइन फ़ंक्शन के ग्राफ के बीच समानता भी संयोग नहीं है। कुछ अन्य क्षेत्रों में, जिनमें जलवायु विज्ञान, जीव विज्ञान और अर्थशास्त्र शामिल हैं, मौसमी आवधिकताएँ होती हैं। इनके अध्ययन में अक्सर साइन और कोसाइन फ़ंक्शन की आवधिक प्रकृति शामिल होती है।


===फूरियर श्रृंखला===
===फूरियर श्रृंखला===


कई क्षेत्र त्रिकोणमिति का उपयोग किसी एक लेख में की जा सकने वाली तुलना से कहीं अधिक उन्नत तरीकों से करते हैं। इनमें अक्सर 18वीं और 19वीं शताब्दी के फ्रांसीसी गणितज्ञ और भौतिक विज्ञानी [[जीन बैप्टिस्ट जोसेफ फूरियर]] के बाद फूरियर श्रृंखला शामिल होती है। फूरियर श्रृंखला में कई वैज्ञानिक क्षेत्रों में आश्चर्यजनक रूप से विविध प्रकार के अनुप्रयोग हैं, विशेष रूप से ऊपर उल्लिखित मौसमी आवधिकों और तरंग गति से जुड़ी सभी घटनाओं में, और इसलिए विकिरण के अध्ययन में, ध्वनिकी के, भूकंप विज्ञान के, रेडियो के मॉड्यूलेशन के अध्ययन में। इलेक्ट्रॉनिक्स और इलेक्ट्रिक पावर इंजीनियरिंग में लहरें।
कई क्षेत्र त्रिकोणमिति का उपयोग किसी लेख में की जा सकने वाली तुलना से कहीं अधिक उन्नत तरीकों से करते हैं। इनमें अक्सर 18वीं और 19वीं शताब्दी के फ्रांसीसी गणितज्ञ और भौतिक विज्ञानी [[जीन बैप्टिस्ट जोसेफ फूरियर]] के बाद फूरियर श्रृंखला शामिल होती है। फूरियर श्रृंखला में कई वैज्ञानिक क्षेत्रों में आश्चर्यजनक रूप से विविध प्रकार के अनुप्रयोग हैं, विशेष रूप से ऊपर उल्लिखित मौसमी आवधिकों और तरंग गति से जुड़ी सभी घटनाओं में, और इसलिए विकिरण के अध्ययन में, ध्वनिकी के, भूकंप विज्ञान के, रेडियो के मॉड्यूलेशन के अध्ययन में। इलेक्ट्रॉनिक्स और इलेक्ट्रिक पावर इंजीनियरिंग में लहरें।


फूरियर श्रृंखला इस रूप का योग है:
फूरियर श्रृंखला इस रूप का योग है:


: <math> \square + \underbrace{\square \cos\theta + \square\sin\theta}_1 + \underbrace{\square \cos(2\theta) + \square\sin(2\theta)}_2 + \underbrace{\square \cos(3\theta) + \square\sin(3\theta)}_3 + \cdots \, </math>
: <math> \square + \underbrace{\square \cos\theta + \square\sin\theta}_1 + \underbrace{\square \cos(2\theta) + \square\sin(2\theta)}_2 + \underbrace{\square \cos(3\theta) + \square\sin(3\theta)}_3 + \cdots \, </math>
जहां प्रत्येक वर्ग (<math>\square</math>) एक भिन्न संख्या है, और एक अपरिमित रूप से कई पद जोड़ रहा है। फूरियर ने ऊष्मा प्रवाह और [[प्रसार]] का अध्ययन करने के लिए इनका उपयोग किया (प्रसार वह प्रक्रिया है जिसके तहत, जब आप एक गैलन पानी में चीनी का एक टुकड़ा डालते हैं, तो चीनी धीरे-धीरे पानी में फैल जाती है, या प्रदूषक हवा में फैल जाता है, या कोई भी घुला हुआ पदार्थ पानी में फैल जाता है। कोई भी तरल पदार्थ)।
जहां प्रत्येक वर्ग (<math>\square</math>) भिन्न संख्या है, और अपरिमित रूप से कई पद जोड़ रहा है। फूरियर ने ऊष्मा प्रवाह और [[प्रसार]] का अध्ययन करने के लिए इनका उपयोग किया (प्रसार वह प्रक्रिया है जिसके तहत, जब आप गैलन पानी में चीनी का टुकड़ा डालते हैं, तो चीनी धीरे-धीरे पानी में फैल जाती है, या प्रदूषक हवा में फैल जाता है, या कोई भी घुला हुआ पदार्थ पानी में फैल जाता है। कोई भी तरल पदार्थ)।


फूरियर श्रृंखला उन विषयों पर भी लागू होती है जिनका तरंग गति से संबंध स्पष्ट नहीं है। एक सर्वव्यापी उदाहरण डेटा संपीड़न है जिसके द्वारा [[छवि संपीड़न]], [[ऑडियो संपीड़न (डेटा)]] और [[वीडियो संपीड़न]] डेटा को बहुत छोटे आकार में संपीड़ित किया जाता है जो [[ टेलीफ़ोन ]], [[इंटरनेट]] और ब्रॉडकास्टिंग [[ संगणक संजाल ]] पर उनके [[प्रसारण]] को संभव बनाता है। एक अन्य उदाहरण, जिसका ऊपर उल्लेख किया गया है, प्रसार है। अन्य में शामिल हैं: [[संख्याओं की ज्यामिति]], [[आइसोपरिमेट्री]], [[यादृच्छिक चाल]] की पुनरावृत्ति, [[द्विघात पारस्परिकता]], [[केंद्रीय सीमा प्रमेय]], हाइजेनबर्ग की असमानता।
फूरियर श्रृंखला उन विषयों पर भी लागू होती है जिनका तरंग गति से संबंध स्पष्ट नहीं है। सर्वव्यापी उदाहरण डेटा संपीड़न है जिसके द्वारा [[छवि संपीड़न]], [[ऑडियो संपीड़न (डेटा)]] और [[वीडियो संपीड़न]] डेटा को बहुत छोटे आकार में संपीड़ित किया जाता है जो [[ टेलीफ़ोन ]], [[इंटरनेट]] और ब्रॉडकास्टिंग [[ संगणक संजाल ]] पर उनके [[प्रसारण]] को संभव बनाता है। अन्य उदाहरण, जिसका ऊपर उल्लेख किया गया है, प्रसार है। अन्य में शामिल हैं: [[संख्याओं की ज्यामिति]], [[आइसोपरिमेट्री]], [[यादृच्छिक चाल]] की पुनरावृत्ति, [[द्विघात पारस्परिकता]], [[केंद्रीय सीमा प्रमेय]], हाइजेनबर्ग की असमानता।


===[[फूरियर रूपांतरण]]===
===[[फूरियर रूपांतरण]]===


फूरियर श्रृंखला की तुलना में एक अधिक अमूर्त अवधारणा फूरियर रूपांतरण का विचार है। फूरियर परिवर्तनों में योग के बजाय [[अभिन्न]] अंग शामिल होते हैं, और वैज्ञानिक क्षेत्रों के समान विविध प्रकार में उपयोग किए जाते हैं। कई प्राकृतिक नियम मात्राओं में परिवर्तन की दरों को मात्राओं से जोड़कर व्यक्त किए जाते हैं। उदाहरण के लिए: जनसंख्या में परिवर्तन की दर कभी-कभी संयुक्त रूप से (1) वर्तमान जनसंख्या और (2) वह मात्रा जिसके द्वारा वर्तमान जनसंख्या [[वहन क्षमता]] से कम हो जाती है, के समानुपाती होती है। इस प्रकार के संबंध को विभेदक समीकरण कहा जाता है। यदि, यह जानकारी देते हुए, कोई जनसंख्या को समय के फलन के रूप में व्यक्त करने का प्रयास करता है, तो वह [[अंतर समीकरण]] को हल करने का प्रयास कर रहा है। फूरियर ट्रांसफॉर्म का उपयोग कुछ अंतर समीकरणों को बीजगणितीय समीकरणों में परिवर्तित करने के लिए किया जा सकता है, जिसके लिए उन्हें हल करने के तरीके ज्ञात हैं। फूरियर ट्रांसफॉर्म के कई उपयोग हैं। लगभग किसी भी वैज्ञानिक संदर्भ में जिसमें स्पेक्ट्रम, [[ लयबद्ध ]], या अनुनाद शब्द सामने आते हैं, फूरियर ट्रांसफॉर्म या फूरियर श्रृंखला निकट हैं।
फूरियर श्रृंखला की तुलना में अधिक अमूर्त अवधारणा फूरियर रूपांतरण का विचार है। फूरियर परिवर्तनों में योग के बजाय [[अभिन्न]] अंग शामिल होते हैं, और वैज्ञानिक क्षेत्रों के समान विविध प्रकार में उपयोग किए जाते हैं। कई प्राकृतिक नियम मात्राओं में परिवर्तन की दरों को मात्राओं से जोड़कर व्यक्त किए जाते हैं। उदाहरण के लिए: जनसंख्या में परिवर्तन की दर कभी-कभी संयुक्त रूप से (1) वर्तमान जनसंख्या और (2) वह मात्रा जिसके द्वारा वर्तमान जनसंख्या [[वहन क्षमता]] से कम हो जाती है, के समानुपाती होती है। इस प्रकार के संबंध को विभेदक समीकरण कहा जाता है। यदि, यह जानकारी देते हुए, कोई जनसंख्या को समय के फलन के रूप में व्यक्त करने का प्रयास करता है, तो वह [[अंतर समीकरण]] को हल करने का प्रयास कर रहा है। फूरियर ट्रांसफॉर्म का उपयोग कुछ अंतर समीकरणों को बीजगणितीय समीकरणों में परिवर्तित करने के लिए किया जा सकता है, जिसके लिए उन्हें हल करने के तरीके ज्ञात हैं। फूरियर ट्रांसफॉर्म के कई उपयोग हैं। लगभग किसी भी वैज्ञानिक संदर्भ में जिसमें स्पेक्ट्रम, [[ लयबद्ध ]], या अनुनाद शब्द सामने आते हैं, फूरियर ट्रांसफॉर्म या फूरियर श्रृंखला निकट हैं।


===सांख्यिकी, गणितीय मनोविज्ञान सहित===
===सांख्यिकी, गणितीय मनोविज्ञान सहित===


बुद्धि लब्धि को कभी-कभी [[सामान्य वितरण]] | घंटी के आकार के वक्र के अनुसार वितरित माना जाता है। वक्र के अंतर्गत लगभग 40% क्षेत्र 100 से 120 के अंतराल में है; तदनुसार, लगभग 40% जनसंख्या का आईक्यू परीक्षणों में 100 और 120 के बीच स्कोर होता है। वक्र के अंतर्गत लगभग 9% क्षेत्र 120 से 140 के अंतराल में है; तदनुसार, लगभग 9% जनसंख्या का आईक्यू परीक्षणों आदि पर 120 और 140 के बीच स्कोर होता है। इसी तरह कई अन्य चीजें घंटी के आकार के वक्र के अनुसार वितरित की जाती हैं, जिसमें कई भौतिक मापों में माप त्रुटियां भी शामिल हैं। घंटाकार वक्र की सर्वव्यापकता क्यों? इसका एक सैद्धांतिक कारण है, और इसमें फूरियर रूपांतरण और इसलिए त्रिकोणमितीय कार्य शामिल हैं। यह सांख्यिकी में फूरियर रूपांतरण के विभिन्न अनुप्रयोगों में से एक है।
बुद्धि लब्धि को कभी-कभी [[सामान्य वितरण]] | घंटी के आकार के वक्र के अनुसार वितरित माना जाता है। वक्र के अंतर्गत लगभग 40% क्षेत्र 100 से 120 के अंतराल में है; तदनुसार, लगभग 40% जनसंख्या का आईक्यू परीक्षणों में 100 और 120 के बीच स्कोर होता है। वक्र के अंतर्गत लगभग 9% क्षेत्र 120 से 140 के अंतराल में है; तदनुसार, लगभग 9% जनसंख्या का आईक्यू परीक्षणों आदि पर 120 और 140 के बीच स्कोर होता है। इसी तरह कई अन्य चीजें घंटी के आकार के वक्र के अनुसार वितरित की जाती हैं, जिसमें कई भौतिक मापों में माप त्रुटियां भी शामिल हैं। घंटाकार वक्र की सर्वव्यापकता क्यों? इसका सैद्धांतिक कारण है, और इसमें फूरियर रूपांतरण और इसलिए त्रिकोणमितीय कार्य शामिल हैं। यह सांख्यिकी में फूरियर रूपांतरण के विभिन्न अनुप्रयोगों में से है।


जब सांख्यिकीविद् मौसमी आवधिकों का अध्ययन करते हैं, तो त्रिकोणमितीय फ़ंक्शन भी लागू होते हैं, जिन्हें अक्सर फूरियर श्रृंखला द्वारा दर्शाया जाता है।
जब सांख्यिकीविद् मौसमी आवधिकों का अध्ययन करते हैं, तो त्रिकोणमितीय फ़ंक्शन भी लागू होते हैं, जिन्हें अक्सर फूरियर श्रृंखला द्वारा दर्शाया जाता है।
Line 81: Line 78:
त्रिकोणमिति का उपयोग करके विभिन्न प्रकार के समीकरणों को हल किया जा सकता है।
त्रिकोणमिति का उपयोग करके विभिन्न प्रकार के समीकरणों को हल किया जा सकता है।


उदाहरण के लिए, स्थिर गुणांक वाले एक [[[[रैखिक अंतर समीकरण]]]] या रैखिक अंतर समीकरण के समाधान इसके विशिष्ट समीकरण के [[eigenvalue]]s ​​​​के संदर्भ में व्यक्त किए जाते हैं; यदि कुछ eigenvalues ​​​​संमिश्र संख्या हैं, तो जटिल शब्दों को वास्तविक शब्दों के त्रिकोणमितीय कार्यों द्वारा प्रतिस्थापित किया जा सकता है, यह दर्शाता है कि गतिशील चर दोलन प्रदर्शित करता है।
उदाहरण के लिए, स्थिर गुणांक वाले [[[[रैखिक अंतर समीकरण]]]] या रैखिक अंतर समीकरण के समाधान इसके विशिष्ट समीकरण के [[eigenvalue]]s ​​​​के संदर्भ में व्यक्त किए जाते हैं; यदि कुछ eigenvalues ​​​​संमिश्र संख्या हैं, तो जटिल शब्दों को वास्तविक शब्दों के त्रिकोणमितीय कार्यों द्वारा प्रतिस्थापित किया जा सकता है, यह दर्शाता है कि गतिशील चर दोलन प्रदर्शित करता है।


इसी प्रकार, क्यूबिक फ़ंक्शन#त्रिकोणमिति और तीन वास्तविक समाधानों वाले हाइपरबोलिक समाधानों में एक [[बीजगणितीय समाधान]] होता है जो अनुपयोगी होता है क्योंकि इसमें [[जटिल संख्या]]ओं के घनमूल होते हैं; वास्तविक पदों के त्रिकोणमितीय फलनों के संदर्भ में फिर से एक वैकल्पिक समाधान मौजूद है।
इसी प्रकार, क्यूबिक फ़ंक्शन#त्रिकोणमिति और तीन वास्तविक समाधानों वाले हाइपरबोलिक समाधानों में [[बीजगणितीय समाधान]] होता है जो अनुपयोगी होता है क्योंकि इसमें [[जटिल संख्या]]ओं के घनमूल होते हैं; वास्तविक पदों के त्रिकोणमितीय फलनों के संदर्भ में फिर से वैकल्पिक समाधान मौजूद है।


==संदर्भ==
==संदर्भ==

Revision as of 18:01, 20 July 2023

अंतर्राष्ट्रीय अंतरिक्ष स्टेशन पर कनाडार्म2 रोबोटिक मैनिपुलेटर इसके जोड़ों के कोणों को नियंत्रित करके संचालित होता है। भुजा के अंत में अंतरिक्ष यात्री की अंतिम स्थिति की गणना के लिए उन कोणों के त्रिकोणमितीय कार्यों के बार-बार उपयोग की आवश्यकता होती है।

गैर-गणितज्ञों और गैर-वैज्ञानिकों की आम जनता के बीच, त्रिकोणमिति मुख्य रूप से माप समस्याओं के लिए अपने अनुप्रयोग के लिए जानी जाती है, फिर भी इसका उपयोग अक्सर उन तरीकों से भी किया जाता है जो कहीं अधिक सूक्ष्म होते हैं, जैसे कि संगीत सिद्धांत में इसका स्थान; फिर भी अन्य उपयोग अधिक तकनीकी हैं, जैसे संख्या सिद्धांत में। फूरियर श्रृंखला और फूरियर रूपांतरण के गणितीय विषय त्रिकोणमितीय कार्यों के ज्ञान पर बहुत अधिक निर्भर करते हैं और सांख्यिकी सहित कई क्षेत्रों में आवेदन पाते हैं।

थॉमस पेन का बयान

द एज ऑफ रीज़न के अध्याय XI में, अमेरिकी क्रांतिकारी और ज्ञान का दौर विचारक थॉमस पेन ने लिखा:[1] :मनुष्य किसी ग्रहण या आकाशीय पिंडों की गति से संबंधित किसी अन्य चीज़ का पूर्वज्ञान प्राप्त करने के लिए जिन वैज्ञानिक सिद्धांतों का उपयोग करता है, वे मुख्य रूप से विज्ञान के उस हिस्से में निहित हैं जिसे त्रिकोणमिति, या त्रिकोण के गुण कहा जाता है, जो , जब स्वर्गीय पिंडों के अध्ययन पर लागू किया जाता है, तो इसे खगोल विज्ञान कहा जाता है; जब इसका उपयोग समुद्र में जहाज के मार्ग को निर्देशित करने के लिए किया जाता है, तो इसे नेविगेशन कहा जाता है; जब इसे रूलर और कम्पास द्वारा खींची गई आकृतियों के निर्माण पर लागू किया जाता है, तो इसे ज्यामिति कहा जाता है; जब इमारतों की योजनाओं के निर्माण पर लागू किया जाता है, तो इसे वास्तुकला कहा जाता है; जब इसे पृथ्वी की सतह के किसी भाग की माप पर लागू किया जाता है, तो इसे भूमि-सर्वेक्षण कहा जाता है। कुल मिलाकर यह विज्ञान की आत्मा है। यह शाश्वत सत्य है: इसमें वह गणितीय प्रदर्शन शामिल है जिसके बारे में मनुष्य बोलता है, और इसके उपयोग की सीमा अज्ञात है।

इतिहास

महान त्रिकोणमितीय सर्वेक्षण

1802 से 1871 तक, महान त्रिकोणमितीय सर्वेक्षण भारतीय उपमहाद्वीप का उच्च परिशुद्धता के साथ सर्वेक्षण करने की परियोजना थी। तटीय आधार रेखा से शुरू करके, गणितज्ञों और भूगोलवेत्ताओं ने देश भर में विशाल दूरियों को त्रिकोणित किया। प्रमुख उपलब्धियों में से हिमालय पर्वत की ऊंचाई को मापना और यह निर्धारित करना था कि माउंट एवरेस्ट पृथ्वी पर सबसे ऊंचा स्थान है। [2]

गुणन के लिए ऐतिहासिक उपयोग

1614 में लघुगणक के आविष्कार से पहले के 25 वर्षों तक, उत्पादों को शीघ्रता से अनुमानित करने का मात्र ज्ञात आम तौर पर लागू तरीका प्रोस्थैफेरेसिस था। इसने उन कोणों के त्रिकोणमितीय कार्यों के उत्पादों के संदर्भ में कोणों के योग और अंतर के त्रिकोणमितीय कार्यों के लिए पहचान का उपयोग किया।

कुछ आधुनिक उपयोग

त्रिकोणमिति का उपयोग करने वाले वैज्ञानिक क्षेत्रों में शामिल हैं:

ध्वनिकी, वास्तुकला, खगोल विज्ञान, मानचित्रकला, असैनिक अभियंत्रण , भूभौतिकी, नक्शानवीसी, विद्युत अभियन्त्रण , इलेक्ट्रानिक्स , भूमि सर्वेक्षण और भूगणित, कई भौतिक विज्ञान, मैकेनिकल इंजीनियरिंग, मशीनिंग, मेडिकल इमेजिंग, संख्या सिद्धांत, समुद्र विज्ञान, प्रकाशिकी, औषध , संभाव्यता सिद्धांत, भूकंप विज्ञान, सांख्यिकी और दृश्य धारणा

इन क्षेत्रों में त्रिकोणमिति शामिल है इसका मतलब यह नहीं है कि उनके बारे में कुछ भी सीखने के लिए त्रिकोणमिति का ज्ञान आवश्यक है। इसका मतलब यह है कि इन क्षेत्रों में कुछ चीजों को त्रिकोणमिति के बिना नहीं समझा जा सकता है। उदाहरण के लिए, संगीत का प्रोफेसर शायद गणित के बारे में कुछ नहीं जानता होगा, लेकिन शायद यह जानता होगा कि संगीत के गणितीय सिद्धांत में पाइथागोरस सबसे पहला ज्ञात योगदानकर्ता था।

ऊपर सूचीबद्ध प्रयास के कुछ क्षेत्रों में यह कल्पना करना आसान है कि त्रिकोणमिति का उपयोग कैसे किया जा सकता है। उदाहरण के लिए, नेविगेशन और भूमि सर्वेक्षण में, त्रिकोणमिति के उपयोग के अवसर कम से कम कुछ मामलों में इतने सरल होते हैं कि उन्हें प्रारंभिक त्रिकोणमिति पाठ्यपुस्तक में वर्णित किया जा सकता है। संगीत सिद्धांत के मामले में, त्रिकोणमिति का अनुप्रयोग पाइथागोरस द्वारा शुरू किए गए कार्य से संबंधित है, जिन्होंने देखा कि अलग-अलग लंबाई के दो तारों को तोड़ने से उत्पन्न ध्वनियां व्यंजन हैं यदि दोनों लंबाई सामान्य लंबाई के छोटे पूर्णांक गुणज हैं। कंपायमान डोरी के आकार और उन लोगों के फलन के ग्राफ के बीच समानता महज संयोग नहीं है। समुद्रशास्त्र में कुछ तरंगों के आकार और साइन फ़ंक्शन के ग्राफ के बीच समानता भी संयोग नहीं है। कुछ अन्य क्षेत्रों में, जिनमें जलवायु विज्ञान, जीव विज्ञान और अर्थशास्त्र शामिल हैं, मौसमी आवधिकताएँ होती हैं। इनके अध्ययन में अक्सर साइन और कोसाइन फ़ंक्शन की आवधिक प्रकृति शामिल होती है।

फूरियर श्रृंखला

कई क्षेत्र त्रिकोणमिति का उपयोग किसी लेख में की जा सकने वाली तुलना से कहीं अधिक उन्नत तरीकों से करते हैं। इनमें अक्सर 18वीं और 19वीं शताब्दी के फ्रांसीसी गणितज्ञ और भौतिक विज्ञानी जीन बैप्टिस्ट जोसेफ फूरियर के बाद फूरियर श्रृंखला शामिल होती है। फूरियर श्रृंखला में कई वैज्ञानिक क्षेत्रों में आश्चर्यजनक रूप से विविध प्रकार के अनुप्रयोग हैं, विशेष रूप से ऊपर उल्लिखित मौसमी आवधिकों और तरंग गति से जुड़ी सभी घटनाओं में, और इसलिए विकिरण के अध्ययन में, ध्वनिकी के, भूकंप विज्ञान के, रेडियो के मॉड्यूलेशन के अध्ययन में। इलेक्ट्रॉनिक्स और इलेक्ट्रिक पावर इंजीनियरिंग में लहरें।

फूरियर श्रृंखला इस रूप का योग है:

जहां प्रत्येक वर्ग () भिन्न संख्या है, और अपरिमित रूप से कई पद जोड़ रहा है। फूरियर ने ऊष्मा प्रवाह और प्रसार का अध्ययन करने के लिए इनका उपयोग किया (प्रसार वह प्रक्रिया है जिसके तहत, जब आप गैलन पानी में चीनी का टुकड़ा डालते हैं, तो चीनी धीरे-धीरे पानी में फैल जाती है, या प्रदूषक हवा में फैल जाता है, या कोई भी घुला हुआ पदार्थ पानी में फैल जाता है। कोई भी तरल पदार्थ)।

फूरियर श्रृंखला उन विषयों पर भी लागू होती है जिनका तरंग गति से संबंध स्पष्ट नहीं है। सर्वव्यापी उदाहरण डेटा संपीड़न है जिसके द्वारा छवि संपीड़न, ऑडियो संपीड़न (डेटा) और वीडियो संपीड़न डेटा को बहुत छोटे आकार में संपीड़ित किया जाता है जो टेलीफ़ोन , इंटरनेट और ब्रॉडकास्टिंग संगणक संजाल पर उनके प्रसारण को संभव बनाता है। अन्य उदाहरण, जिसका ऊपर उल्लेख किया गया है, प्रसार है। अन्य में शामिल हैं: संख्याओं की ज्यामिति, आइसोपरिमेट्री, यादृच्छिक चाल की पुनरावृत्ति, द्विघात पारस्परिकता, केंद्रीय सीमा प्रमेय, हाइजेनबर्ग की असमानता।

फूरियर रूपांतरण

फूरियर श्रृंखला की तुलना में अधिक अमूर्त अवधारणा फूरियर रूपांतरण का विचार है। फूरियर परिवर्तनों में योग के बजाय अभिन्न अंग शामिल होते हैं, और वैज्ञानिक क्षेत्रों के समान विविध प्रकार में उपयोग किए जाते हैं। कई प्राकृतिक नियम मात्राओं में परिवर्तन की दरों को मात्राओं से जोड़कर व्यक्त किए जाते हैं। उदाहरण के लिए: जनसंख्या में परिवर्तन की दर कभी-कभी संयुक्त रूप से (1) वर्तमान जनसंख्या और (2) वह मात्रा जिसके द्वारा वर्तमान जनसंख्या वहन क्षमता से कम हो जाती है, के समानुपाती होती है। इस प्रकार के संबंध को विभेदक समीकरण कहा जाता है। यदि, यह जानकारी देते हुए, कोई जनसंख्या को समय के फलन के रूप में व्यक्त करने का प्रयास करता है, तो वह अंतर समीकरण को हल करने का प्रयास कर रहा है। फूरियर ट्रांसफॉर्म का उपयोग कुछ अंतर समीकरणों को बीजगणितीय समीकरणों में परिवर्तित करने के लिए किया जा सकता है, जिसके लिए उन्हें हल करने के तरीके ज्ञात हैं। फूरियर ट्रांसफॉर्म के कई उपयोग हैं। लगभग किसी भी वैज्ञानिक संदर्भ में जिसमें स्पेक्ट्रम, लयबद्ध , या अनुनाद शब्द सामने आते हैं, फूरियर ट्रांसफॉर्म या फूरियर श्रृंखला निकट हैं।

सांख्यिकी, गणितीय मनोविज्ञान सहित

बुद्धि लब्धि को कभी-कभी सामान्य वितरण | घंटी के आकार के वक्र के अनुसार वितरित माना जाता है। वक्र के अंतर्गत लगभग 40% क्षेत्र 100 से 120 के अंतराल में है; तदनुसार, लगभग 40% जनसंख्या का आईक्यू परीक्षणों में 100 और 120 के बीच स्कोर होता है। वक्र के अंतर्गत लगभग 9% क्षेत्र 120 से 140 के अंतराल में है; तदनुसार, लगभग 9% जनसंख्या का आईक्यू परीक्षणों आदि पर 120 और 140 के बीच स्कोर होता है। इसी तरह कई अन्य चीजें घंटी के आकार के वक्र के अनुसार वितरित की जाती हैं, जिसमें कई भौतिक मापों में माप त्रुटियां भी शामिल हैं। घंटाकार वक्र की सर्वव्यापकता क्यों? इसका सैद्धांतिक कारण है, और इसमें फूरियर रूपांतरण और इसलिए त्रिकोणमितीय कार्य शामिल हैं। यह सांख्यिकी में फूरियर रूपांतरण के विभिन्न अनुप्रयोगों में से है।

जब सांख्यिकीविद् मौसमी आवधिकों का अध्ययन करते हैं, तो त्रिकोणमितीय फ़ंक्शन भी लागू होते हैं, जिन्हें अक्सर फूरियर श्रृंखला द्वारा दर्शाया जाता है।

संख्या सिद्धांत

त्रिकोणमिति और संख्या सिद्धांत के बीच संबंध का संकेत मिलता है। शिथिल रूप से कहें तो, कोई यह कह सकता है कि संख्या सिद्धांत संख्याओं के मात्रात्मक गुणों के बजाय गुणात्मक गुणों से संबंधित है।

जो निम्नतम शर्तों में नहीं हैं उन्हें त्यागें; केवल वही रखें जो निम्नतम शर्तों में हों:

फिर त्रिकोणमिति लाएँ:

योग का मान -1 है, क्योंकि 42 में विषम संख्या में अभाज्य गुणनखंड हैं और उनमें से कोई भी दोहराया नहीं गया है: 42 = 2 × 3 × 7. (यदि गैर-दोहराए गए कारकों की संख्या सम संख्या में होती तो योग होता) 1 रहा है; यदि कोई दोहराया गया अभाज्य गुणनखंड होता (उदाहरण के लिए, 60 = 2 × 2 × 3 × 5) तो योग 0 होता; योग 42 पर मूल्यांकन किया गया मोबियस फ़ंक्शन है।) यह संभावना की ओर संकेत करता है संख्या सिद्धांत पर फूरियर विश्लेषण लागू करना।

गैर-त्रिकोणमितीय समीकरणों को हल करना

त्रिकोणमिति का उपयोग करके विभिन्न प्रकार के समीकरणों को हल किया जा सकता है।

उदाहरण के लिए, स्थिर गुणांक वाले [[रैखिक अंतर समीकरण]] या रैखिक अंतर समीकरण के समाधान इसके विशिष्ट समीकरण के eigenvalues ​​​​के संदर्भ में व्यक्त किए जाते हैं; यदि कुछ eigenvalues ​​​​संमिश्र संख्या हैं, तो जटिल शब्दों को वास्तविक शब्दों के त्रिकोणमितीय कार्यों द्वारा प्रतिस्थापित किया जा सकता है, यह दर्शाता है कि गतिशील चर दोलन प्रदर्शित करता है।

इसी प्रकार, क्यूबिक फ़ंक्शन#त्रिकोणमिति और तीन वास्तविक समाधानों वाले हाइपरबोलिक समाधानों में बीजगणितीय समाधान होता है जो अनुपयोगी होता है क्योंकि इसमें जटिल संख्याओं के घनमूल होते हैं; वास्तविक पदों के त्रिकोणमितीय फलनों के संदर्भ में फिर से वैकल्पिक समाधान मौजूद है।

संदर्भ

  1. Thomas, Paine (2004). तर्क का युग. Dover Publications. p. 52.
  2. "त्रिकोण और त्रिकोणमिति". Mathigon. Retrieved 2019-02-06.