काल्पनिक रेखा (गणित): Difference between revisions

From Vigyanwiki
No edit summary
Line 51: Line 51:
[[Category: Machine Translated Page]]
[[Category: Machine Translated Page]]
[[Category:Created On 13/07/2023]]
[[Category:Created On 13/07/2023]]
[[Category:Vigyan Ready]]

Revision as of 16:36, 1 August 2023

समिष्ट ज्यामिति में, काल्पनिक रेखा एक सीधी रेखा (ज्यामिति) होती है जिसमें केवल वास्तविक बिंदु होती है। यह सिद्ध किया जा सकता है कि यह बिंदु समिष्ट संयुग्म रेखा के साथ प्रतिच्छेदन बिंदु है।[1]

यह काल्पनिक वक्र की विशेष स्तिथि है।

समिष्ट प्रक्षेप्य तल P2(C) में काल्पनिक रेखा पाई जाती है जहां बिंदुओं को तीन सजातीय निर्देशांकों द्वारा दर्शाया जाता है:

बॉयड पैटरसन ने इस विमान में रेखाओं का वर्णन किया:[2]

उन बिंदुओं का समिष्ट जिनके निर्देशांक समिष्ट गुणांक वाले सजातीय रैखिक समीकरण को संतुष्ट करते हैं:
एक सीधी रेखा है और यह रेखा वास्तविक या काल्पनिक है क्योंकि इसके समीकरण के गुणांक तीन वास्तविक संख्याओं के समानुपाती होते हैं या नहीं।

फ़ेलिक्स क्लेन ने काल्पनिक ज्यामितीय संरचनाओं का वर्णन किया: हम ज्यामितीय संरचना को काल्पनिक मानेंगे यदि उसके सभी निर्देशांक वास्तविक नहीं हैं।[3]

हैटन के अनुसार:[4]

अतिव्यापी इंवोलुशन (गणित) के निश्चित बिंदु (गणित) (काल्पनिक) का समिष्ट जिसमें ओवरलैपिंग इंवोलुशन पेंसिल (वास्तविक) को वास्तविक ट्रांसवर्सल द्वारा विभक्त किया जाता है, काल्पनिक सीधी रेखाओं की एक जोड़ी है।

हैटन प्रारंभ है,

इससे यह निष्कर्ष निकलता है कि काल्पनिक सीधी रेखा एक काल्पनिक बिंदु से निर्धारित होती है, जो कि इनवोलुशन की ड्यूल बिंदु है, और वास्तविक बिंदु, इनवोलुशन पेंसिल का शीर्ष है।

यह भी देखें

संदर्भ

  1. Patterson, B. C. (1941), "The inversive plane", The American Mathematical Monthly, 48: 589–599, doi:10.2307/2303867, MR 0006034.
  2. Patterson 590
  3. Klein 1928 p 46
  4. Hatton 1929 page 13, Definition 4


उद्धरण