वृत्ताकार बीजगणितीय वक्र: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
[[ज्यामिति]] में, गोलाकार बीजगणितीय वक्र प्रकार का [[समतल बीजगणितीय वक्र]] होता है जो समीकरण ''F''(''x'', ''y'') = 0 द्वारा निर्धारित होता है, जहां ''F'' वास्तविक के साथ [[बहुपद]] है गुणांक और ''F'' के उच्चतम-क्रम वाले पद ''x'' से विभाज्य  बहुपद बनाते हैं<sup>2</sup>+और<sup>2</sup>. अधिक सटीक रूप से, यदि
[[ज्यामिति]] में, '''वृत्ताकार बीजगणितीय वक्र''' विशेष प्रकार का [[समतल बीजगणितीय वक्र]] होता है जो समीकरण ''F''(''x'', ''y'') = 0 द्वारा निर्धारित होता है, जहां ''F'' वास्तविक के साथ [[बहुपद]] है और F के उच्चतम-क्रम वाले पद ''x<sup>2</sup> + y<sup>2</sup>'' से विभाज्य बहुपद बनाते हैं, अधिक त्रुटिहीन रूप से, यदि ''F'' = ''F<sub>n</sub>'' + ''F<sub>n</sub>''<sub>−1</sub> + ... + ''F''<sub>1</sub> + ''F''<sub>0</sub>, जहां प्रत्येक ''F<sub>i</sub>'' डिग्री i का [[सजातीय कार्य|सजातीय फलन]] है, तो वक्र F(x,y)=0 गोलाकार है यदि केवल F<sub>''n''</sub> से x<sup>2</sup>+y<sup>2</sup> विभाज्य है।
एफ = एफ<sub>''n''</sub>+ एफ<sub>''n''−1</sub>+...+एफ<sub>1</sub>+ एफ<sub>0</sub>, जहां प्रत्येक एफ<sub>''i''</sub> डिग्री i का [[सजातीय कार्य]] है, तो वक्र F(x,y)=0 गोलाकार है यदि और केवल यदि F<sub>''n''</sub> x से विभाज्य है<sup>2</sup>+और<sup>2</sup>.


समान रूप से, यदि वक्र [[सजातीय निर्देशांक]] में G(x, y, z) = 0 द्वारा निर्धारित किया जाता है, जहां G सजातीय बहुपद है, तो वक्र गोलाकार है यदि और केवल यदि G(1, i, 0)=G(1) , −i, 0) = 0. दूसरे शब्दों में, वक्र गोलाकार होता है यदि इसमें [[अनंत पर गोलाकार बिंदु]] होते हैं, (1, i, 0) और (1, −i, 0), जब इसे वक्र के रूप में माना जाता है [[जटिल प्रक्षेप्य तल]].
समान रूप से, यदि वक्र [[सजातीय निर्देशांक]] में G(x, y, z) = 0 द्वारा निर्धारित किया जाता है, जहां G सजातीय बहुपद है, तो वक्र वृत्ताकार है यदि केवल G(1, i, 0)=G(1) , −i, 0) = 0 दूसरे शब्दों में, वक्र वृत्ताकार होता है यदि इसमें [[अनंत पर गोलाकार बिंदु|अनंत पर वृत्ताकार बिंदु]] होते हैं, (1, i, 0) और (1, −i, 0), जब [[जटिल प्रक्षेप्य तल]] में इसे वक्र के रूप में माना जाता है।


==बहुवृत्ताकार बीजगणितीय वक्र==
==बहुवृत्ताकार बीजगणितीय वक्र==
बीजगणितीय वक्र को ''पी''-परिपत्र कहा जाता है यदि इसमें बिंदु (1, ''आई'',0) और (1,−''आई'',0) शामिल हैं, जब इसे जटिल प्रक्षेप्य में वक्र माना जाता है समतल, और ये बिंदु कम से कम ''पी'' क्रम की विलक्षणताएं हैं। शब्द ''द्विवृत्ताकार'', ''त्रिकवृत्ताकार'', आदि तब लागू होते हैं जब ''पी'' = 2,3, आदि। ऊपर दिए गए बहुपद ''एफ'' के संदर्भ में, वक्र ''एफ'' (''x'', ''y'') = 0 ''p''-वृत्ताकार है यदि ''F''<sub>''n''−''i''</sub> (x) से विभाज्य है<sup>2</sup>+और<sup>2</sup>)<sup>p−i</sup> जब i<p. जब p = 1 यह गोलाकार वक्र की परिभाषा में कम हो जाता है। [[यूक्लिडियन समूह]] के अंतर्गत पी-वृत्ताकार वक्रों का समुच्चय अपरिवर्तनीय है। ध्यान दें कि p-वृत्ताकार वक्र की डिग्री कम से कम 2p होनी चाहिए।
बीजगणितीय वक्र को ''p''-परिपत्र कहा जाता है यदि इसमें बिंदु (1, i, 0) और (1,−i, 0) सम्मिलित हैं, जब इसे जटिल प्रक्षेप्य तल में वक्र माना जाता है समतल, और ये बिंदु कम से कम ''p'' क्रम की विलक्षणताएं हैं। द्विवृत्ताकार, त्रिवृत्ताकार आदि शब्द तब प्रारंभ होते हैं जब ''p'' = 2,3, आदि। ऊपर दिए गए बहुपद F के संदर्भ में, वक्र F(x, y) = 0 ''p''-वृत्ताकार है यदि ''F''<sub>''n''−''i''</sub> से (''x''<sup>2</sup> + ''y''<sup>2</sup>)<sup>''p''−''i''</sup> विभाज्य है जब i<p जब p = 1 यह वृत्ताकार वक्र की परिभाषा में परिवर्तित हो जाता है। [[यूक्लिडियन समूह]] के अंतर्गत p-वृत्ताकार वक्रों का समुच्चय अपरिवर्तनीय है। ध्यान दें कि p-वृत्ताकार वक्र की डिग्री कम से कम 2p होनी चाहिए।


{{cn-span|date=September 2020|The set of ''p''-circular curves of degree ''p''&nbsp;+&nbsp;''k'', where ''p'' may vary but ''k'' is a fixed positive integer, is invariant under [[inversive geometry|inversion]].}} जब k 1 होता है तो यह कहता है कि रेखाओं का सेट (डिग्री 1 के 0-वृत्ताकार वक्र) वृत्तों के सेट (डिग्री 2 के 1-वृत्ताकार वक्र) के साथ मिलकर सेट बनाते हैं जो व्युत्क्रम के तहत अपरिवर्तनीय होता है।
{{cn-span|date=सितंबर 2020|डिग्री ''p''&nbsp;+&nbsp;''k'' के ''p''-वृत्ताकार वक्रों का समुच्चय, जहां ''p'' भिन्न हो सकता है किन्तु ''k'' निश्चित सकारात्मक पूर्णांक है,[[व्युत्क्रम ज्यामिति| व्युत्क्रम]] के अंतर्गत अपरिवर्तनीय है।
}} जब k 1 होता है तो यह कहता है कि रेखाओं का समुच्चय (डिग्री 1 के 0-वृत्ताकार वक्र) वृत्तों के समुच्चय (डिग्री 2 के 1-वृत्ताकार वक्र) के साथ मिलकर समुच्चय बनाते हैं जो व्युत्क्रम के अंतर्गत अपरिवर्तनीय होता है।


==उदाहरण==
==उदाहरण==
* वृत्त ही मात्र गोलाकार शंकु है।
* वृत्त ही मात्र वृत्ताकार शंकु है।
* डी स्लुज़ के कोनकॉइड (जिसमें कई प्रसिद्ध घन वक्र शामिल हैं) गोलाकार घन हैं।
* डी स्लुज़ के कोनकॉइड (जिसमें कई प्रसिद्ध घन वक्र सम्मिलित हैं) वृत्ताकार घन हैं।
* [[ कैसिनी अंडाकार ]] (बर्नौली के लेम्निस्केट सहित), [[टोरिक अनुभाग]] और लिमाकॉन ([[ कारडायोड ]] सहित) द्विवृत्ताकार चतुर्थक हैं।
* [[ कैसिनी अंडाकार | कैसिनी ओवल]] (बर्नौली के लेम्निस्केट सहित), [[टोरिक अनुभाग]] और लिमाकॉन ([[ कारडायोड ]] सहित) द्विवृत्ताकार चतुर्थक हैं।
*वाट का वक्र त्रिवृत्ताकार सेक्स्टिक है।
*वाट का वक्र द्विवृत्ताकार चतुर्थक हैं।


==फ़ुटनोट==
==फ़ुटनोट==

Revision as of 21:42, 21 July 2023

ज्यामिति में, वृत्ताकार बीजगणितीय वक्र विशेष प्रकार का समतल बीजगणितीय वक्र होता है जो समीकरण F(x, y) = 0 द्वारा निर्धारित होता है, जहां F वास्तविक के साथ बहुपद है और F के उच्चतम-क्रम वाले पद x2 + y2 से विभाज्य बहुपद बनाते हैं, अधिक त्रुटिहीन रूप से, यदि F = Fn + Fn−1 + ... + F1 + F0, जहां प्रत्येक Fi डिग्री i का सजातीय फलन है, तो वक्र F(x,y)=0 गोलाकार है यदि केवल Fn से x2+y2 विभाज्य है।

समान रूप से, यदि वक्र सजातीय निर्देशांक में G(x, y, z) = 0 द्वारा निर्धारित किया जाता है, जहां G सजातीय बहुपद है, तो वक्र वृत्ताकार है यदि केवल G(1, i, 0)=G(1) , −i, 0) = 0 दूसरे शब्दों में, वक्र वृत्ताकार होता है यदि इसमें अनंत पर वृत्ताकार बिंदु होते हैं, (1, i, 0) और (1, −i, 0), जब जटिल प्रक्षेप्य तल में इसे वक्र के रूप में माना जाता है।

बहुवृत्ताकार बीजगणितीय वक्र

बीजगणितीय वक्र को p-परिपत्र कहा जाता है यदि इसमें बिंदु (1, i, 0) और (1,−i, 0) सम्मिलित हैं, जब इसे जटिल प्रक्षेप्य तल में वक्र माना जाता है समतल, और ये बिंदु कम से कम p क्रम की विलक्षणताएं हैं। द्विवृत्ताकार, त्रिवृत्ताकार आदि शब्द तब प्रारंभ होते हैं जब p = 2,3, आदि। ऊपर दिए गए बहुपद F के संदर्भ में, वक्र F(x, y) = 0 p-वृत्ताकार है यदि Fni से (x2 + y2)pi विभाज्य है जब i<p जब p = 1 यह वृत्ताकार वक्र की परिभाषा में परिवर्तित हो जाता है। यूक्लिडियन समूह के अंतर्गत p-वृत्ताकार वक्रों का समुच्चय अपरिवर्तनीय है। ध्यान दें कि p-वृत्ताकार वक्र की डिग्री कम से कम 2p होनी चाहिए।

डिग्री p + k के p-वृत्ताकार वक्रों का समुच्चय, जहां p भिन्न हो सकता है किन्तु k निश्चित सकारात्मक पूर्णांक है, व्युत्क्रम के अंतर्गत अपरिवर्तनीय है।[citation needed] जब k 1 होता है तो यह कहता है कि रेखाओं का समुच्चय (डिग्री 1 के 0-वृत्ताकार वक्र) वृत्तों के समुच्चय (डिग्री 2 के 1-वृत्ताकार वक्र) के साथ मिलकर समुच्चय बनाते हैं जो व्युत्क्रम के अंतर्गत अपरिवर्तनीय होता है।

उदाहरण

  • वृत्त ही मात्र वृत्ताकार शंकु है।
  • डी स्लुज़ के कोनकॉइड (जिसमें कई प्रसिद्ध घन वक्र सम्मिलित हैं) वृत्ताकार घन हैं।
  • कैसिनी ओवल (बर्नौली के लेम्निस्केट सहित), टोरिक अनुभाग और लिमाकॉन (कारडायोड सहित) द्विवृत्ताकार चतुर्थक हैं।
  • वाट का वक्र द्विवृत्ताकार चतुर्थक हैं।

फ़ुटनोट

संदर्भ