हिप्पोपेड्स: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{short description|1=Plane curves of the form (x² + y²)² = cx² + dy²}}
{{short description|1=Plane curves of the form (x² + y²)² = cx² + dy²}}
[[Image:PedalCurve1.gif|500px|right|thumb|हिप्पोपेड (लाल) को दीर्घवृत्त (काला) के [[पेडल वक्र]] के रूप में दिया गया है। इस दरियाई घोड़े का समीकरण है: <math>4x^2 + y^2 = (x^2 + y^2)^2</math>]][[ज्यामिति]] में, हिप्पोपेड्स ऐसा [[समतल वक्र]] है जो रूप के समीकरण द्वारा निर्धारित होता है
[[Image:PedalCurve1.gif|500px|right|thumb|हिप्पोपेड (लाल) को दीर्घवृत्त (काला) के [[पेडल वक्र]] के रूप में दिया गया है। इस हिप्पोपेड्स का समीकरण है: <math>4x^2 + y^2 = (x^2 + y^2)^2</math>]][[ज्यामिति]] में, हिप्पोपेड्स ऐसा [[समतल वक्र]] है जो रूप के समीकरण द्वारा निर्धारित होता है
:<math>(x^2+y^2)^2=cx^2+dy^2,</math>
:<math>(x^2+y^2)^2=cx^2+dy^2,</math>
जहाँ ऐसा माना जाता है {{math|''c'' > 0}} और {{math|''c'' > ''d''}} चूंकि शेष स्तिथि या तो बिंदु तक कम हो जाते हैं या घूर्णन के साथ दिए गए रूप में रखे जा सकते हैं। हिप्पोपेड्स वृत्ताकार तर्कसंगत, डिग्री 4 के [[बीजगणितीय वक्र]] हैं और x और y दोनों अक्षों के संबंध में सममित हैं।.
जहाँ ऐसा माना जाता है {{math|''c'' > 0}} और {{math|''c'' > ''d''}} चूंकि शेष स्तिथि या तो बिंदु तक कम हो जाते हैं या घूर्णन के साथ दिए गए रूप में रखे जा सकते हैं। हिप्पोपेड्स वृत्ताकार तर्कसंगत, डिग्री 4 के [[बीजगणितीय वक्र]] हैं और x और y दोनों अक्षों के संबंध में सममित हैं।.
Line 7: Line 7:
जब d > 0 वक्र का आकार अंडाकार होता है और इसे प्रायः 'बूथ का अंडाकार' के रूप में जाना जाता है, और जब {{nowrap|''d'' < 0}} वक्र में आठ की आकृति या [[लेम्निस्केट]] जैसा दिखता है, और 19वीं दशक के गणितज्ञ [[जेम्स बूथ (गणितज्ञ)]] के पश्चात् बूथ के लेम्निस्केट के रूप में जाना जाता है, जिन्होंने उनका अध्ययन किया था। हिप्पोपेड्स का परीक्षण [[ बंद किया हुआ |प्रोक्लस]] (जिनके लिए उन्हें कभी-कभी प्रोक्लस का हिप्पोपेड्स कहा जाता है) और यूडोक्सस द्वारा भी की गई थी। {{nowrap|1=''d'' = −''c''}} के लिए हिप्पोपेड्स बर्नौली के लेम्निस्केट से युग्मित होता है।
जब d > 0 वक्र का आकार अंडाकार होता है और इसे प्रायः 'बूथ का अंडाकार' के रूप में जाना जाता है, और जब {{nowrap|''d'' < 0}} वक्र में आठ की आकृति या [[लेम्निस्केट]] जैसा दिखता है, और 19वीं दशक के गणितज्ञ [[जेम्स बूथ (गणितज्ञ)]] के पश्चात् बूथ के लेम्निस्केट के रूप में जाना जाता है, जिन्होंने उनका अध्ययन किया था। हिप्पोपेड्स का परीक्षण [[ बंद किया हुआ |प्रोक्लस]] (जिनके लिए उन्हें कभी-कभी प्रोक्लस का हिप्पोपेड्स कहा जाता है) और यूडोक्सस द्वारा भी की गई थी। {{nowrap|1=''d'' = −''c''}} के लिए हिप्पोपेड्स बर्नौली के लेम्निस्केट से युग्मित होता है।
==स्पिरिक सेक्शन के रूप में परिभाषा==
==स्पिरिक सेक्शन के रूप में परिभाषा==
[[Image:Hippopede02.svg|right|thumb|350px|= 1, बी = 0.1, 0.2, 0.5, 1.0, 1.5, और 2.0 के साथ हिप्पोपेड्स।]]
[[Image:Hippopede02.svg|right|thumb|350px|a = 1, b = 0.1, 0.2, 0.5, 1.0, 1.5, और 2.0 के साथ हिप्पोपेड्स।]]
[[Image:Hippopede01.svg|right|thumb|350px|बी = 1, = 0.1, 0.2, 0.5, 1.0, 1.5, और 2.0 के साथ हिप्पोपेड्स।]]हिप्पोपेड्स को [[ टोरस्र्स |टोरस]] और विमान के प्रतिच्छेदन से बने वक्र के रूप में परिभाषित किया जा सकता है, जहां विमान टोरस की धुरी के समानांतर होता है और आंतरिक वृत्त पर स्पर्शरेखा होता है। इस प्रकार यह [[आध्यात्मिक अनुभाग|स्पिरिक सेक्शन]] है जो परिवर्तन में प्रकार का [[टोरिक अनुभाग]] है।
[[Image:Hippopede01.svg|right|thumb|350px|b = 1, a = 0.1, 0.2, 0.5, 1.0, 1.5, और 2.0 के साथ हिप्पोपेड्स।]]हिप्पोपेड्स को [[ टोरस्र्स |टोरस]] और विमान के प्रतिच्छेदन से बने वक्र के रूप में परिभाषित किया जा सकता है, जहां विमान टोरस की धुरी के समानांतर होता है और आंतरिक वृत्त पर स्पर्शरेखा होता है। इस प्रकार यह [[आध्यात्मिक अनुभाग|स्पिरिक सेक्शन]] है जो परिवर्तन में प्रकार का [[टोरिक अनुभाग]] है।


यदि त्रिज्या a वाले वृत्त को उसके केंद्र से दूरी b पर अक्ष के चारों ओर घुमाया जाता है, तो ध्रुवीय निर्देशांक में परिणामी दरियाई घोड़े का समीकरण
यदि त्रिज्या a वाले वृत्त को उसके केंद्र से दूरी b पर अक्ष के चारों ओर घुमाया जाता है, तो ध्रुवीय निर्देशांक में परिणामी हिप्पोपेड्स का समीकरण है:


:<math>
:<math>
Line 19: Line 19:
:<math>(x^2+y^2)^2+4b(b-a)(x^2+y^2)=4b^2x^2</math>.
:<math>(x^2+y^2)^2+4b(b-a)(x^2+y^2)=4b^2x^2</math>.


ध्यान दें कि जब a > b टोरस स्वयं को काटता है, तो यह टोरस की सामान्य तस्वीर जैसा नहीं दिखता है।
ध्यान दें कि जब a > b टोरस स्वयं को विभक्त करता है, तो यह टोरस की सामान्य छवि जैसा नहीं दिखता है।


==यह भी देखें==
==यह भी देखें==

Revision as of 19:54, 21 July 2023

हिप्पोपेड (लाल) को दीर्घवृत्त (काला) के पेडल वक्र के रूप में दिया गया है। इस हिप्पोपेड्स का समीकरण है:

ज्यामिति में, हिप्पोपेड्स ऐसा समतल वक्र है जो रूप के समीकरण द्वारा निर्धारित होता है

जहाँ ऐसा माना जाता है c > 0 और c > d चूंकि शेष स्तिथि या तो बिंदु तक कम हो जाते हैं या घूर्णन के साथ दिए गए रूप में रखे जा सकते हैं। हिप्पोपेड्स वृत्ताकार तर्कसंगत, डिग्री 4 के बीजगणितीय वक्र हैं और x और y दोनों अक्षों के संबंध में सममित हैं।.

विशेष केस

जब d > 0 वक्र का आकार अंडाकार होता है और इसे प्रायः 'बूथ का अंडाकार' के रूप में जाना जाता है, और जब d < 0 वक्र में आठ की आकृति या लेम्निस्केट जैसा दिखता है, और 19वीं दशक के गणितज्ञ जेम्स बूथ (गणितज्ञ) के पश्चात् बूथ के लेम्निस्केट के रूप में जाना जाता है, जिन्होंने उनका अध्ययन किया था। हिप्पोपेड्स का परीक्षण प्रोक्लस (जिनके लिए उन्हें कभी-कभी प्रोक्लस का हिप्पोपेड्स कहा जाता है) और यूडोक्सस द्वारा भी की गई थी। d = −c के लिए हिप्पोपेड्स बर्नौली के लेम्निस्केट से युग्मित होता है।

स्पिरिक सेक्शन के रूप में परिभाषा

a = 1, b = 0.1, 0.2, 0.5, 1.0, 1.5, और 2.0 के साथ हिप्पोपेड्स।
b = 1, a = 0.1, 0.2, 0.5, 1.0, 1.5, और 2.0 के साथ हिप्पोपेड्स।

हिप्पोपेड्स को टोरस और विमान के प्रतिच्छेदन से बने वक्र के रूप में परिभाषित किया जा सकता है, जहां विमान टोरस की धुरी के समानांतर होता है और आंतरिक वृत्त पर स्पर्शरेखा होता है। इस प्रकार यह स्पिरिक सेक्शन है जो परिवर्तन में प्रकार का टोरिक अनुभाग है।

यदि त्रिज्या a वाले वृत्त को उसके केंद्र से दूरी b पर अक्ष के चारों ओर घुमाया जाता है, तो ध्रुवीय निर्देशांक में परिणामी हिप्पोपेड्स का समीकरण है:

या कार्टेशियन निर्देशांक में

.

ध्यान दें कि जब a > b टोरस स्वयं को विभक्त करता है, तो यह टोरस की सामान्य छवि जैसा नहीं दिखता है।

यह भी देखें

संदर्भ

  • Lawrence JD. (1972) Catalog of Special Plane Curves, Dover Publications. Pp. 145–146.
  • Booth J. A Treatise on Some New Geometrical Methods, Longmans, Green, Reader, and Dyer, London, Vol. I (1873) and Vol. II (1877).
  • Weisstein, Eric W. "Hippopede". MathWorld.
  • "Hippopede" at 2dcurves.com
  • "Courbes de Booth" at Encyclopédie des Formes Mathématiques Remarquables


बाहरी संबंध