बेथ संख्या: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{short description|Infinite Cardinal number}}
{{short description|Infinite Cardinal number}}
गणित में, विशेष रूप से सेट सिद्धांत में, 'बेथ संख्याएँ' एक निश्चित अनंत गणनीय संख्या सिरणी हैं (जिन्हें 'ट्रांसफाइनाइट संख्याएँ' भी कहा जाता है), जिन्हें सामान्यतः निम्नलिखित रूप में लिखा जाता है: <math>\beth_0, \beth_1, \beth_2, \beth_3, \dots</math>, जहाँ <math>\beth</math> दूसरे हिब्रू वर्णमाला के द्वितीय अक्षर ('बेथ') को प्रतिनिधित्व करता है। बेथ संख्याएँ अलेफ संख्याओं (<math>\aleph_0, \aleph_1, \dots</math>) से संबंधित होती हैं, लेकिन यदि 'सामान्यरूपी प्रतिधारा का सिद्धांत' सत्य न हो, तो ऐसे अंक होते हैं जिन्हें <math>\aleph</math> के द्वारा नहीं चिह्नित किया गया हो।
गणित में, विशेष रूप से समुच्चय  सिद्धांत में, 'बेथ संख्याएँ' एक निश्चित अनंत गणनीय संख्या सिरणी हैं (जिन्हें 'ट्रांसफाइनाइट संख्याएँ' भी कहा जाता है), जिन्हें सामान्यतः निम्नलिखित रूप में लिखा जाता है: <math>\beth_0, \beth_1, \beth_2, \beth_3, \dots</math>, जहाँ <math>\beth</math> दूसरे हिब्रू वर्णमाला के द्वितीय अक्षर ('बेथ') को प्रतिनिधित्व करता है। बेथ संख्याएँ अलेफ संख्याओं (<math>\aleph_0, \aleph_1, \dots</math>) से संबंधित होती हैं, लेकिन यदि 'सामान्यरूपी प्रतिधारा का सिद्धांत' सत्य न हो, तो ऐसे अंक होते हैं जिन्हें <math>\aleph</math> के द्वारा नहीं चिह्नित किया गया हो।




Line 9: Line 9:
*<math>\beth_{\alpha+1}=2^{\beth_{\alpha}},</math>
*<math>\beth_{\alpha+1}=2^{\beth_{\alpha}},</math>
*<math>\beth_{\lambda}=\sup{ \beth_{\alpha}:\alpha<\lambda },</math>
*<math>\beth_{\lambda}=\sup{ \beth_{\alpha}:\alpha<\lambda },</math>
यहाँ <math>\alpha</math> एक आदिक और <math>\lambda</math> एक सीमा आदिक हैं।
यहाँ <math>\alpha</math> एक क्रमसूचक और <math>\lambda</math> एक सीमा क्रमसूचक हैं।  


गणित में, <math>\beth_0=\aleph_0</math> कोई भी गिनती योग्य अनंत सेट की परिमाणता होती है, जैसे <math>\mathbb{N}</math> (प्राकृतिक संख्याएँ) का सेट, ताकि <math>\beth_0=|\mathbb{N}|</math>
गणित में, <math>\beth_0=\aleph_0</math> कोई भी गिनती योग्य अनंत समुच्चय की परिमाणता होती है, जैसे <math>\mathbb{N}</math> का समुच्चय, जिससे  <math>\beth_0=|\mathbb{N}|</math>हो।


होने देना <math>\alpha</math> एक क्रमसूचक बनें, और <math>A_\alpha</math> कार्डिनलिटी के साथ एक सेट बनें <math>\beth_\alpha=|A_\alpha|</math>. तब,
यदि <math>\alpha</math> एक क्रमसूचक हो, और <math>A_\alpha</math>गणनांक के साथ एक समुच्चय  <math>\beth_\alpha=|A_\alpha|</math> हो तो, निम्नलिखित संबंध होते हैं:
*<math>\mathcal{P}(A_\alpha)</math> के [[ सत्ता स्थापित | सत्ता स्थापित]]  को दर्शाता है <math>A_\alpha</math> (अर्थात, सभी उपसमुच्चयों का समुच्चय <math>A_\alpha</math>),
*<math>\mathcal{P}(A_\alpha)</math> के ऊर्जा समुच्चय <math>A_\alpha</math> को दर्शाता है, अर्थात, सभी उपसमुच्चयों का <math>A_\alpha</math>समुच्चय ,
*सेट <math>2^{A_\alpha} \subset \mathcal{P}(A_\alpha \times 2)</math> से सभी कार्यों के सेट को दर्शाता है <math>A_\alpha</math> {0,1} तक,
*समुच्चय  <math>2^{A_\alpha} \subset \mathcal{P}(A_\alpha \times 2)</math> से सभी कार्यों के समुच्चय  <math>A_\alpha</math>को दर्शाता है {0,1} तक,
*कार्डिनल <math>2^{\beth_\alpha}</math> [[कार्डिनल घातांक]] का परिणाम है, और
*गणन <math>2^{\beth_\alpha}</math> [[कार्डिनल घातांक|गणन घातांक]] का परिणाम है, और
*<math>\beth_{\alpha+1}=2^{\beth_{\alpha}}=|2^{A_\alpha}|=|\mathcal{P}(A_\alpha)|</math> के पावर सेट की कार्डिनैलिटी है <math>A_\alpha</math>.
*<math>\beth_{\alpha+1}=2^{\beth_{\alpha}}=|2^{A_\alpha}|=|\mathcal{P}(A_\alpha)|</math> के ऊर्जा समुच्चय <math>A_\alpha</math>की  गणनांक है।


इस परिभाषा को देखते हुए,
इस परिभाषा को देखते हुए,


:<math>\beth_0,\ \beth_1,\ \beth_2,\ \beth_3,\ \dots</math>
:<math>\beth_0,\ \beth_1,\ \beth_2,\ \beth_3,\ \dots</math>
क्रमशः की प्रमुखताएँ हैं  
क्रमशः की गणनात्मकताएं हैं  


:<math>\mathbb{N},\ \mathcal{P}(\mathbb{N}),\ \mathcal{P}(\mathcal{P}(\mathbb{N})),\ \mathcal{P}(\mathcal{P}(\mathcal{P}(\mathbb{N}))),\ \dots.</math>
:<math>\mathbb{N},\ \mathcal{P}(\mathbb{N}),\ \mathcal{P}(\mathcal{P}(\mathbb{N})),\ \mathcal{P}(\mathcal{P}(\mathcal{P}(\mathbb{N}))),\ \dots.</math>
ताकि दूसरा बेथ नंबर हो <math>\beth_1</math> के बराबर है <math>\mathfrak c</math>, सातत्य की कार्डिनैलिटी ([[वास्तविक संख्या]]ओं के सेट की कार्डिनैलिटी), और तीसरी बेथ संख्या <math>\beth_2</math> सातत्य के शक्ति सेट की प्रमुखता है।
समुच्चय सिद्धांत में, बेथ संख्या <math>\beth_1</math> दूसरी बेथ संख्या है और यह <math>\mathfrak c</math>, के बराबर है, जो संख्या प्रकार की व्याप्ति की परिमाणता है। और इसके अतिरिक्त , तीसरी बेथ संख्या <math>\beth_2</math> व्याप्ति की शक्ति समुच्चय की परिमाणता है।


कैंटर के प्रमेय के कारण, पूर्ववर्ती अनुक्रम में प्रत्येक सेट की कार्डिनैलिटी उसके पूर्ववर्ती की तुलना में सख्ती से अधिक है। अनंत सीमा वाले ऑर्डिनल्स के लिए, λ, संबंधित बेथ संख्या को λ से बिल्कुल छोटे सभी ऑर्डिनल्स के लिए बेथ संख्याओं के सर्वोच्च के रूप में परिभाषित किया गया है:
कैंटर के सिद्धांत के कारण, पिछले अनुक्रम में प्रत्येक समुच्चय की परिमाणता पूर्व वाले समुच्चय से स्पष्ट रूप से अधिक होती है। यहाँ, प्रत्येक समुच्चय की परिमाणता बेथ संख्या होती है अनंत सीमा λ के लिए, संबंधित बेथ संख्या, λ को उस सभी क्रमसूचक से अधिक सभी बेथ संख्याओं का उच्चतम सीमा के रूप में परिभाषित किया जाता है:


:<math>\beth_{\lambda}=\sup\{ \beth_{\alpha}:\alpha<\lambda \}.</math>
:<math>\beth_{\lambda}=\sup\{ \beth_{\alpha}:\alpha<\lambda \}.</math>
कोई यह भी दिखा सकता है कि वॉन न्यूमैन ब्रह्मांड <math>V_{\omega+\alpha} </math> प्रमुखता है <math>\beth_{\alpha} </math>.
वॉन नेमन विश्व <math>V_{\omega+\alpha} </math>की परिमाणता बेथ संख्या <math>\beth_{\alpha} </math> के बराबर होती है।                                 


==एलेफ़ संख्याओं से संबंध==
==एलेफ़ संख्याओं से संबंध==
Line 43: Line 43:
  <math>\beth_\alpha = \aleph_\alpha</math> सभी अध्यादेशों के लिए <math>\alpha</math>.
  <math>\beth_\alpha = \aleph_\alpha</math> सभी अध्यादेशों के लिए <math>\alpha</math>.


==विशिष्ट कार्डिनल्स==
==विशिष्ट गणन्स==


===बेथ शून्य===
===बेथ शून्य===
चूँकि इसे परिभाषित किया गया है <math>\aleph_0</math>, या [[एलेफ़ नल]], कार्डिनैलिटी के साथ सेट होता है <math>\beth_0</math> शामिल करना:
चूँकि इसे परिभाषित किया गया है <math>\aleph_0</math>, या [[एलेफ़ नल]], कार्डिनैलिटी के साथ समुच्चय  होता है <math>\beth_0</math> शामिल करना:


*प्राकृतिक संख्याएँ N
*प्राकृतिक संख्याएँ N
Line 53: Line 53:
*गणनायोग्य संख्याएँ और संगणनीय समुच्चय
*गणनायोग्य संख्याएँ और संगणनीय समुच्चय
*[[पूर्णांक]]ों के परिमित समुच्चय का समुच्चय
*[[पूर्णांक]]ों के परिमित समुच्चय का समुच्चय
*पूर्णांकों के [[मल्टीसेट]] का सेट
*पूर्णांकों के [[मल्टीसेट|मल्टीसमुच्चय]] का समुच्चय
*पूर्णांकों के परिमित अनुक्रमों का समुच्चय
*पूर्णांकों के परिमित अनुक्रमों का समुच्चय


Line 60: Line 60:
{{main|cardinality of the continuum}}
{{main|cardinality of the continuum}}


कार्डिनैलिटी के साथ सेट <math>\beth_1</math> शामिल करना:
कार्डिनैलिटी के साथ समुच्चय  <math>\beth_1</math> शामिल करना:


*[[पारलौकिक संख्याएँ]]
*[[पारलौकिक संख्याएँ]]
Line 69: Line 69:
*[[ यूक्लिडियन स्थान | यूक्लिडियन स्थान]]  आर<sup>n</sup>
*[[ यूक्लिडियन स्थान | यूक्लिडियन स्थान]]  आर<sup>n</sup>
*प्राकृतिक संख्याओं का घात समुच्चय (प्राकृतिक संख्याओं के सभी उपसमूहों का समुच्चय)
*प्राकृतिक संख्याओं का घात समुच्चय (प्राकृतिक संख्याओं के सभी उपसमूहों का समुच्चय)
*पूर्णांकों के [[अनुक्रम]]ों का सेट (अर्थात् सभी फ़ंक्शन 'एन' → 'जेड', जिसे अक्सर 'जेड' कहा जाता है)<sup>न</sup>)
*पूर्णांकों के [[अनुक्रम]]ों का समुच्चय  (अर्थात् सभी फ़ंक्शन 'एन' → 'जेड', जिसे अक्सर 'जेड' कहा जाता है)<sup>न</sup>)
*वास्तविक संख्याओं के अनुक्रमों का समुच्चय, R<sup>एन</sup>
*वास्तविक संख्याओं के अनुक्रमों का समुच्चय, R<sup>एन</sup>
*आर से आर तक सभी [[वास्तविक [[विश्लेषणात्मक कार्य]]]]ों का सेट
*आर से आर तक सभी [[वास्तविक [[विश्लेषणात्मक कार्य]]]]ों का समुच्चय
*आर से आर तक सभी निरंतर कार्यों का सेट
*आर से आर तक सभी निरंतर कार्यों का समुच्चय
*वास्तविक संख्याओं के परिमित उपसमुच्चय का समुच्चय
*वास्तविक संख्याओं के परिमित उपसमुच्चय का समुच्चय
*सी से सी तक सभी विश्लेषणात्मक कार्यों का सेट ([[ होलोमार्फिक | होलोमार्फिक]]  फ़ंक्शन)
*सी से सी तक सभी विश्लेषणात्मक कार्यों का समुच्चय  ([[ होलोमार्फिक | होलोमार्फिक]]  फ़ंक्शन)


===बेथ दो===
===बेथ दो===
<math>\beth_2</math> (दो के साथ उच्चारित) को '2' भी कहा जाता है<sup>c</sup>' (उच्चारण में c की घात दो होती है)।
<math>\beth_2</math> (दो के साथ उच्चारित) को '2' भी कहा जाता है<sup>c</sup>' (उच्चारण में c की घात दो होती है)।


कार्डिनैलिटी के साथ सेट <math>\beth_2</math> शामिल करना:
कार्डिनैलिटी के साथ समुच्चय  <math>\beth_2</math> शामिल करना:


*वास्तविक संख्याओं के समुच्चय का घात समुच्चय, इसलिए यह वास्तविक रेखा के उपसमुच्चयों की संख्या, या वास्तविक संख्याओं के समुच्चयों की संख्या है
*वास्तविक संख्याओं के समुच्चय का घात समुच्चय, इसलिए यह वास्तविक रेखा के उपसमुच्चयों की संख्या, या वास्तविक संख्याओं के समुच्चयों की संख्या है
*प्राकृतिक संख्याओं के समुच्चय के घात समुच्चय का घात समुच्चय
*प्राकृतिक संख्याओं के समुच्चय के घात समुच्चय का घात समुच्चय
*आर से आर (आर) तक सभी [[फ़ंक्शन (गणित)]] का [[सबसेट]]<sup>आर</sup>)
*आर से आर (आर) तक सभी [[फ़ंक्शन (गणित)]] का [[सबसेट|सबसमुच्चय]] <sup>आर</sup>)
*आर से सभी कार्यों का सेट<sup>म</sup> से 'R'<sup>n</sup>
*आर से सभी कार्यों का समुच्चय <sup>म</sup> से 'R'<sup>n</sup>
*प्राकृतिक संख्याओं के सेट से सभी कार्यों के सेट की शक्ति सेट, इसलिए यह प्राकृतिक संख्याओं के अनुक्रमों के सेट की संख्या है
*प्राकृतिक संख्याओं के समुच्चय  से सभी कार्यों के समुच्चय  की शक्ति समुच्चय , इसलिए यह प्राकृतिक संख्याओं के अनुक्रमों के समुच्चय  की संख्या है
*'आर', 'क्यू' और 'एन' का स्टोन-सेच कॉम्पेक्टिफिकेशन
*'आर', 'क्यू' और 'एन' का स्टोन-सेच कॉम्पेक्टिफिकेशन
*'आर' में नियतात्मक [[भग्न]] का सेट<sup>n</sup> <ref name=":3">{{Cite journal|title= नियतात्मक भग्न के लिए हॉसडॉर्फ आयाम प्रमेय का एक सामान्यीकरण|year=2021 |doi=10.3390/math9131546 |doi-access=free |last1=Soltanifar |first1=Mohsen |journal=Mathematics |volume=9 |issue=13 |page=1546 }}</ref>
*'आर' में नियतात्मक [[भग्न]] का समुच्चय <sup>n</sup> <ref name=":3">{{Cite journal|title= नियतात्मक भग्न के लिए हॉसडॉर्फ आयाम प्रमेय का एक सामान्यीकरण|year=2021 |doi=10.3390/math9131546 |doi-access=free |last1=Soltanifar |first1=Mohsen |journal=Mathematics |volume=9 |issue=13 |page=1546 }}</ref>
*आर में यादृच्छिक फ्रैक्टल्स का सेट<sup>n</sup> <ref name=":4">{{Cite journal|title= रैंडम फ्रैक्टल्स के लिए हॉसडॉर्फ आयाम प्रमेय का दूसरा सामान्यीकरण|year=2022 |doi=10.3390/math10050706 |doi-access=free |last1=Soltanifar |first1=Mohsen |journal=Mathematics |volume=10 |issue=5 |page=706 }}</ref>
*आर में यादृच्छिक फ्रैक्टल्स का समुच्चय <sup>n</sup> <ref name=":4">{{Cite journal|title= रैंडम फ्रैक्टल्स के लिए हॉसडॉर्फ आयाम प्रमेय का दूसरा सामान्यीकरण|year=2022 |doi=10.3390/math10050706 |doi-access=free |last1=Soltanifar |first1=Mohsen |journal=Mathematics |volume=10 |issue=5 |page=706 }}</ref>




===बेथ ओमेगा===
===बेथ ओमेगा===
<math>\beth_\omega</math> (उच्चारण बेथ ओमेगा) सबसे छोटी, [[बेशुमार]] [[मजबूत सीमा कार्डिनल]] है।
<math>\beth_\omega</math> (उच्चारण बेथ ओमेगा) सबसे छोटी, [[बेशुमार]] [[मजबूत सीमा कार्डिनल|मजबूत सीमा  गणन]] है।


==सामान्यीकरण==
==सामान्यीकरण==
अधिक सामान्य प्रतीक <math>\beth_\alpha(\kappa)</math>, ऑर्डिनल्स α और कार्डिनल्स κ के लिए, कभी-कभी उपयोग किया जाता है। इसे इसके द्वारा परिभाषित किया गया है:
अधिक सामान्य प्रतीक <math>\beth_\alpha(\kappa)</math>, ऑर्डिनल्स α और गणन्स κ के लिए, कभी-कभी उपयोग किया जाता है। इसे इसके द्वारा परिभाषित किया गया है:
:<math>\beth_0(\kappa)=\kappa,</math>
:<math>\beth_0(\kappa)=\kappa,</math>
:<math>\beth_{\alpha+1}(\kappa)=2^{\beth_\alpha(\kappa)},</math>
:<math>\beth_{\alpha+1}(\kappa)=2^{\beth_\alpha(\kappa)},</math>
Line 102: Line 102:
इसलिए
इसलिए
:<math>\beth_\alpha=\beth_\alpha(\aleph_0).</math>
:<math>\beth_\alpha=\beth_\alpha(\aleph_0).</math>
ज़र्मेलो-फ्रेंकेल सेट सिद्धांत (जेडएफ) में, किसी भी कार्डिनल κ और μ के लिए, एक क्रमिक α होता है जैसे:
ज़र्मेलो-फ्रेंकेल समुच्चय  सिद्धांत (जेडएफ) में, किसी भी गणन κ और μ के लिए, एक क्रमिक α होता है जैसे:


:<math>\kappa \le \beth_\alpha(\mu).</math>
:<math>\kappa \le \beth_\alpha(\mu).</math>
और ZF में, किसी भी कार्डिनल κ और ऑर्डिनल्स α और β के लिए:
और ZF में, किसी भी गणन κ और ऑर्डिनल्स α और β के लिए:


:<math>\beth_\beta(\beth_\alpha(\kappa)) = \beth_{\alpha+\beta}(\kappa).</math>
:<math>\beth_\beta(\beth_\alpha(\kappa)) = \beth_{\alpha+\beta}(\kappa).</math>
नतीजतन, ZF में किसी भी कार्डिनल κ और μ के लिए पसंद के स्वयंसिद्ध के साथ या उसके बिना यूआर-तत्व अनुपस्थित हैं, समानता
नतीजतन, ZF में किसी भी गणन κ और μ के लिए पसंद के स्वयंसिद्ध के साथ या उसके बिना यूआर-तत्व अनुपस्थित हैं, समानता


:<math>\beth_\beta(\kappa) = \beth_\beta(\mu)</math>
:<math>\beth_\beta(\kappa) = \beth_\beta(\mu)</math>
सभी पर्याप्त रूप से बड़े ऑर्डिनल्स β के लिए मान्य है। अर्थात्, एक क्रमसूचक α है, जो प्रत्येक क्रमसूचक β ≥ α के लिए समानता रखता है।
सभी पर्याप्त रूप से बड़े ऑर्डिनल्स β के लिए मान्य है। अर्थात्, एक क्रमसूचक α है, जो प्रत्येक क्रमसूचक β ≥ α के लिए समानता रखता है।


यह उर-तत्वों (पसंद के स्वयंसिद्ध के साथ या उसके बिना) के साथ ज़र्मेलो-फ्रेंकेल सेट सिद्धांत में भी लागू होता है, बशर्ते कि उर-तत्व एक सेट बनाते हैं जो एक [[शुद्ध सेट]] के साथ समतुल्य होता है (एक सेट जिसका सकर्मक सेट #ट्रांसिटिव क्लोजर में कोई उर-तत्व नहीं होता है)। यदि पसंद का सिद्धांत मान्य है, तो उर-तत्वों का कोई भी सेट शुद्ध सेट के साथ समतुल्य है।
यह उर-तत्वों (पसंद के स्वयंसिद्ध के साथ या उसके बिना) के साथ ज़र्मेलो-फ्रेंकेल समुच्चय  सिद्धांत में भी लागू होता है, बशर्ते कि उर-तत्व एक समुच्चय  बनाते हैं जो एक [[शुद्ध सेट|शुद्ध समुच्चय]] के साथ समतुल्य होता है (एक समुच्चय  जिसका सकर्मक समुच्चय  #ट्रांसिटिव क्लोजर में कोई उर-तत्व नहीं होता है)। यदि पसंद का सिद्धांत मान्य है, तो उर-तत्वों का कोई भी समुच्चय  शुद्ध समुच्चय  के साथ समतुल्य है।


==[[बोरेल निर्धारण]]==
==[[बोरेल निर्धारण]]==
Line 132: Line 132:


*अनंत संख्या
*अनंत संख्या
*[[बेशुमार सेट]]
*[[बेशुमार सेट|बेशुमार समुच्चय]]  


==संदर्भ==
==संदर्भ==

Revision as of 12:12, 26 July 2023

गणित में, विशेष रूप से समुच्चय सिद्धांत में, 'बेथ संख्याएँ' एक निश्चित अनंत गणनीय संख्या सिरणी हैं (जिन्हें 'ट्रांसफाइनाइट संख्याएँ' भी कहा जाता है), जिन्हें सामान्यतः निम्नलिखित रूप में लिखा जाता है: , जहाँ दूसरे हिब्रू वर्णमाला के द्वितीय अक्षर ('बेथ') को प्रतिनिधित्व करता है। बेथ संख्याएँ अलेफ संख्याओं () से संबंधित होती हैं, लेकिन यदि 'सामान्यरूपी प्रतिधारा का सिद्धांत' सत्य न हो, तो ऐसे अंक होते हैं जिन्हें के द्वारा नहीं चिह्नित किया गया हो।


परिभाषा

बेथ संख्याओं को ट्रांसफ़िनिट रिकर्सन द्वारा परिभाषित किया गया है:

यहाँ एक क्रमसूचक और एक सीमा क्रमसूचक हैं।

गणित में, कोई भी गिनती योग्य अनंत समुच्चय की परिमाणता होती है, जैसे का समुच्चय, जिससे हो।

यदि एक क्रमसूचक हो, और गणनांक के साथ एक समुच्चय हो तो, निम्नलिखित संबंध होते हैं:

  • के ऊर्जा समुच्चय को दर्शाता है, अर्थात, सभी उपसमुच्चयों का समुच्चय ,
  • समुच्चय से सभी कार्यों के समुच्चय को दर्शाता है {0,1} तक,
  • गणन गणन घातांक का परिणाम है, और
  • के ऊर्जा समुच्चय की गणनांक है।

इस परिभाषा को देखते हुए,

क्रमशः की गणनात्मकताएं हैं

समुच्चय सिद्धांत में, बेथ संख्या दूसरी बेथ संख्या है और यह , के बराबर है, जो संख्या प्रकार की व्याप्ति की परिमाणता है। और इसके अतिरिक्त , तीसरी बेथ संख्या व्याप्ति की शक्ति समुच्चय की परिमाणता है।

कैंटर के सिद्धांत के कारण, पिछले अनुक्रम में प्रत्येक समुच्चय की परिमाणता पूर्व वाले समुच्चय से स्पष्ट रूप से अधिक होती है। यहाँ, प्रत्येक समुच्चय की परिमाणता बेथ संख्या होती है अनंत सीमा λ के लिए, संबंधित बेथ संख्या, λ को उस सभी क्रमसूचक से अधिक सभी बेथ संख्याओं का उच्चतम सीमा के रूप में परिभाषित किया जाता है:

वॉन नेमन विश्व की परिमाणता बेथ संख्या के बराबर होती है।

एलेफ़ संख्याओं से संबंध

पसंद के सिद्धांत को मानते हुए, अनंत कार्डिनैलिटी कुल क्रम हैं; कोई भी दो प्रमुखताएँ तुलनीय होने में असफल नहीं हो सकतीं। इस प्रकार, चूँकि परिभाषा के अनुसार कोई भी अनंत कार्डिनैलिटी बीच में नहीं है और , यह इस प्रकार है कि

इस तर्क को दोहराने से (अनंत प्रेरण देखें) परिणाम मिलता है

 सभी अध्यादेशों के लिए .

सातत्य परिकल्पना समतुल्य है

सातत्य परिकल्पना#सामान्यीकृत सातत्य परिकल्पना कहती है कि इस प्रकार परिभाषित बेथ संख्याओं का अनुक्रम एलेफ़ संख्याओं के अनुक्रम के समान है, अर्थात,

 सभी अध्यादेशों के लिए .

विशिष्ट गणन्स

बेथ शून्य

चूँकि इसे परिभाषित किया गया है , या एलेफ़ नल, कार्डिनैलिटी के साथ समुच्चय होता है शामिल करना:

  • प्राकृतिक संख्याएँ N
  • परिमेय संख्याएं Q
  • बीजगणितीय संख्याएँ
  • गणनायोग्य संख्याएँ और संगणनीय समुच्चय
  • पूर्णांकों के परिमित समुच्चय का समुच्चय
  • पूर्णांकों के मल्टीसमुच्चय का समुच्चय
  • पूर्णांकों के परिमित अनुक्रमों का समुच्चय

बेथ एक

कार्डिनैलिटी के साथ समुच्चय शामिल करना:

बेथ दो

(दो के साथ उच्चारित) को '2' भी कहा जाता हैc' (उच्चारण में c की घात दो होती है)।

कार्डिनैलिटी के साथ समुच्चय शामिल करना:

  • वास्तविक संख्याओं के समुच्चय का घात समुच्चय, इसलिए यह वास्तविक रेखा के उपसमुच्चयों की संख्या, या वास्तविक संख्याओं के समुच्चयों की संख्या है
  • प्राकृतिक संख्याओं के समुच्चय के घात समुच्चय का घात समुच्चय
  • आर से आर (आर) तक सभी फ़ंक्शन (गणित) का सबसमुच्चय आर)
  • आर से सभी कार्यों का समुच्चय से 'R'n
  • प्राकृतिक संख्याओं के समुच्चय से सभी कार्यों के समुच्चय की शक्ति समुच्चय , इसलिए यह प्राकृतिक संख्याओं के अनुक्रमों के समुच्चय की संख्या है
  • 'आर', 'क्यू' और 'एन' का स्टोन-सेच कॉम्पेक्टिफिकेशन
  • 'आर' में नियतात्मक भग्न का समुच्चय n [1]
  • आर में यादृच्छिक फ्रैक्टल्स का समुच्चय n [2]


बेथ ओमेगा

(उच्चारण बेथ ओमेगा) सबसे छोटी, बेशुमार मजबूत सीमा गणन है।

सामान्यीकरण

अधिक सामान्य प्रतीक , ऑर्डिनल्स α और गणन्स κ के लिए, कभी-कभी उपयोग किया जाता है। इसे इसके द्वारा परिभाषित किया गया है:

यदि λ एक सीमा क्रमसूचक है।

इसलिए

ज़र्मेलो-फ्रेंकेल समुच्चय सिद्धांत (जेडएफ) में, किसी भी गणन κ और μ के लिए, एक क्रमिक α होता है जैसे:

और ZF में, किसी भी गणन κ और ऑर्डिनल्स α और β के लिए:

नतीजतन, ZF में किसी भी गणन κ और μ के लिए पसंद के स्वयंसिद्ध के साथ या उसके बिना यूआर-तत्व अनुपस्थित हैं, समानता

सभी पर्याप्त रूप से बड़े ऑर्डिनल्स β के लिए मान्य है। अर्थात्, एक क्रमसूचक α है, जो प्रत्येक क्रमसूचक β ≥ α के लिए समानता रखता है।

यह उर-तत्वों (पसंद के स्वयंसिद्ध के साथ या उसके बिना) के साथ ज़र्मेलो-फ्रेंकेल समुच्चय सिद्धांत में भी लागू होता है, बशर्ते कि उर-तत्व एक समुच्चय बनाते हैं जो एक शुद्ध समुच्चय के साथ समतुल्य होता है (एक समुच्चय जिसका सकर्मक समुच्चय #ट्रांसिटिव क्लोजर में कोई उर-तत्व नहीं होता है)। यदि पसंद का सिद्धांत मान्य है, तो उर-तत्वों का कोई भी समुच्चय शुद्ध समुच्चय के साथ समतुल्य है।

बोरेल निर्धारण

बोरेल निर्धारण गणनीय सूचकांक के सभी बेथ के अस्तित्व से निहित है।[3]


यह भी देखें

संदर्भ

  1. Soltanifar, Mohsen (2021). "नियतात्मक भग्न के लिए हॉसडॉर्फ आयाम प्रमेय का एक सामान्यीकरण". Mathematics. 9 (13): 1546. doi:10.3390/math9131546.
  2. Soltanifar, Mohsen (2022). "रैंडम फ्रैक्टल्स के लिए हॉसडॉर्फ आयाम प्रमेय का दूसरा सामान्यीकरण". Mathematics. 10 (5): 706. doi:10.3390/math10050706.
  3. Leinster, Tom (23 July 2021). "Borel Determinacy Does Not Require Replacement". The n-Category Café. The University of Texas at Austin. Retrieved 25 August 2021.


ग्रन्थसूची