यूक्लिडियन समष्टि पर फलन: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{Calculus}}
{{Calculus}}
गणित में, [[ यूक्लिडियन स्थान |यूक्लिडियन स्थान]] पर कैलकुलस, यूक्लिडियन स्पेस पर कार्यों के कैलकुलस के लिए एक या अनेक चर में कार्यों के कैलकुलस का एक सामान्यीकरण है। <math>\mathbb{R}^n</math> साथ ही एक [[परिमित-आयामी वास्तविक वेक्टर स्थान|परिमित-आयामी वास्तविक सदिश स्थान]]इस कैलकुलस को विशेष रूप से संयुक्त राज्य अमेरिका में उन्नत कैलकुलस के रूप में भी जाना जाता है। यह बहुपरिवर्तनीय कैलकुलस के समान है, किन्तु किसी भी तरह से अधिक परिष्कृत है क्योंकि यह रैखिक बीजगणित (या कुछ कार्यात्मक विश्लेषण) का अधिक व्यापक रूप से उपयोग करता है और अंतर ज्यामिति से कुछ अवधारणाओं को सम्मिलित करता है जैसे कि अंतर रूपों और अंतर रूपों के संदर्भ में स्टोक्स का सूत्र। रैखिक बीजगणित का यह व्यापक उपयोग बानाच रिक्त स्थान या टोपोलॉजिकल सदिश रिक्त स्थान पर कैलकुलस के लिए बहुपरिवर्तनीय कैलकुलस के प्राकृतिक सामान्यीकरण की भी अनुमति देता है।
गणित में, [[ यूक्लिडियन स्थान |यूक्लिडियन स्थान]] पर कैलकुलस, '''यूक्लिडियन स्पेस पर कार्यों''' के कैलकुलस के लिए एक या अनेक चर में कार्यों के कैलकुलस का एक सामान्यीकरण है। <math>\mathbb{R}^n</math> साथ ही एक [[परिमित-आयामी वास्तविक वेक्टर स्थान|परिमित-आयामी वास्तविक सदिश स्थान]] है। इस कैलकुलस को विशेष रूप से संयुक्त राज्य अमेरिका में '''उन्नत कैलकुलस''' के रूप में भी जाना जाता है। यह बहुपरिवर्तनीय कैलकुलस के समान है, किन्तु किसी भी तरह से अधिक परिष्कृत है क्योंकि यह रैखिक बीजगणित (या कुछ कार्यात्मक विश्लेषण) का अधिक व्यापक रूप से उपयोग करता है और अंतर ज्यामिति से कुछ अवधारणाओं को सम्मिलित करता है जैसे कि अंतर रूपों और अंतर रूपों के संदर्भ में स्टोक्स का सूत्र। रैखिक बीजगणित का यह व्यापक उपयोग बानाच रिक्त स्थान या टोपोलॉजिकल सदिश रिक्त स्थान पर कैलकुलस के लिए बहुपरिवर्तनीय कैलकुलस के प्राकृतिक सामान्यीकरण की भी अनुमति देता है।


यूक्लिडियन स्पेस पर कैलकुलस भी मैनिफोल्ड्स पर कैलकुलस का एक स्थानीय मॉडल है, जो मैनिफोल्ड्स पर कार्यों का एक सिद्धांत है।
यूक्लिडियन स्पेस पर कैलकुलस भी '''मैनिफोल्ड्स पर कैलकुलस''' का एक स्थानीय मॉडल है, जो मैनिफोल्ड्स पर कार्यों का एक सिद्धांत है।


== मूलभूतधारणाएँ ==
== मूलभूतधारणाएँ ==
Line 16: Line 16:
(सरलता के लिए, मान लीजिए <math>f(a) = 0</math>. तब फिर उपरोक्त का कारणयही है <math>f(a + h) = \lambda h + g(a, h)</math> कहाँ <math>g(a, h)</math> h, 0 पर जाने की तुलना में तेजी से 0 पर जाता है और, इस अर्थ में, <math>f(a + h)</math> जैसा व्यवहार करता है <math>\lambda h</math>.)
(सरलता के लिए, मान लीजिए <math>f(a) = 0</math>. तब फिर उपरोक्त का कारणयही है <math>f(a + h) = \lambda h + g(a, h)</math> कहाँ <math>g(a, h)</math> h, 0 पर जाने की तुलना में तेजी से 0 पर जाता है और, इस अर्थ में, <math>f(a + h)</math> जैसा व्यवहार करता है <math>\lambda h</math>.)


जो नंबर <math>\lambda</math> पर निर्भर करता है <math>a</math> और इस प्रकार दर्शाया गया है <math>f'(a)</math>. यदि <math>f</math> खुले अंतराल पर अवकलनीय है <math>U</math> और यदि <math>f'</math> पर एक सतत कार्य है <math>U</math>, तब <math>f</math> सी कहा जाता है<sup>1</sup>फलन. सामान्यतः अधिक, <math>f</math> सी कहा जाता है<sup>k</sup> फलन यदि यह व्युत्पन्न है <math>f'</math> सी है<sup>k-1</sup>फलन। टेलर के प्रमेय में कहा गया है कि एक सी<sup>k</sup> फलन वास्तव में एक फलन है जिसे डिग्री k के बहुपद द्वारा अनुमानित किया जा सकता है।<!-- not sure if we want to restate the theorem:
जो नंबर <math>\lambda</math> पर निर्भर करता है <math>a</math> और इस प्रकार दर्शाया गया है <math>f'(a)</math>. यदि <math>f</math> खुले अंतराल पर अवकलनीय है <math>U</math> और यदि <math>f'</math> पर एक सतत कार्य है <math>U</math>, तब <math>f</math> सी कहा जाता है<sup>1</sup>फलन. सामान्यतः अधिक, <math>f</math> सी कहा जाता है<sup>k</sup> फलन यदि यह व्युत्पन्न है <math>f'</math> सी है<sup>k-1</sup>फलन। टेलर के प्रमेय में कहा गया है कि एक सी<sup>k</sup> फलन वास्तव में एक फलन है जिसे डिग्री k के बहुपद द्वारा अनुमानित किया जा सकता है।<!-- निश्चित नहीं कि क्या हम प्रमेय को दोबारा बताना चाहते हैं:
:<math> f(x+h) =\sum_{n=0}^{k-1} f^{(n)}(x) {h^n\over n!} + \int_0^1 (1-t)^{k-1} {h^k \over k!} f^{(k)}(x+th)\, dt.</math>-->
:<math> f(x+h) =\sum_{n=0}^{k-1} f^{(n)}(x) {h^n\over n!} + \int_0^1 (1-t)^{k-1} {h^k \over k!} f^{(k)}(x+th)\, dt.</math>-->
यदि <math>f : \mathbb{R} \to \mathbb{R}</math> एक सी है<sup>1</sup>कार्य और <math>f'(a) \ne 0</math> कुछ के लिए <math>a</math>, तब कोई <math>f'(a) > 0</math> या <math>f'(a) < 0</math>; अर्थात, या तब <math>f</math> किसी खुले अंतराल में सख्ती से बढ़ रहा है या सख्ती से घट रहा है। विशेष रूप से, <math>f : f^{-1}(U) \to U</math> कुछ खुले अंतराल के लिए विशेषण है <math>U</math> युक्त <math>f(a)</math>. [[व्युत्क्रम फलन प्रमेय]] तब कहता है कि व्युत्क्रम फलन <math>f^{-1}</math> यू पर डेरिवेटिव के साथ अवकलनीय है: के लिए <math>y \in U</math>
यदि <math>f : \mathbb{R} \to \mathbb{R}</math> एक सी है<sup>1</sup>कार्य और <math>f'(a) \ne 0</math> कुछ के लिए <math>a</math>, तब कोई <math>f'(a) > 0</math> या <math>f'(a) < 0</math>; अर्थात, या तब <math>f</math> किसी खुले अंतराल में सख्ती से बढ़ रहा है या सख्ती से घट रहा है। विशेष रूप से, <math>f : f^{-1}(U) \to U</math> कुछ खुले अंतराल के लिए विशेषण है <math>U</math> युक्त <math>f(a)</math>. [[व्युत्क्रम फलन प्रमेय]] तब कहता है कि व्युत्क्रम फलन <math>f^{-1}</math> यू पर डेरिवेटिव के साथ अवकलनीय है: के लिए <math>y \in U</math>
:<math>(f^{-1})'(y) = {1 \over f'(f^{-1}(y))}.</math>
:<math>(f^{-1})'(y) = {1 \over f'(f^{-1}(y))}.</math>
Line 30: Line 31:
जैसा कि एक-चर चूँकिमें है, वहाँ है
जैसा कि एक-चर चूँकिमें है, वहाँ है


{{math_theorem|name=[[श्रृंखला नियम]]|math_statement=<ref>{{harvnb|Hörmander|2015|loc=(1.1.3.)}}</ref> Let <math>f</math> ऊपर जैसा हो और <math>g : Y \to Z</math> कुछ खुले उपसमुच्चय के लिए एक मानचित्र <math>Z</math> of <math>\mathbb{R}^l</math>. If <math>f</math> is differentiable at <math>x</math> and <math>g</math> differentiable at <math>y = f(x)</math>, फिर रचना <math>g \circ f</math> पर भिन्न है <math>x</math> व्युत्पन्न के साथ
{{math_theorem|name=[[श्रृंखला नियम]]|math_statement=<ref>{{harvnb|Hörmander|2015|loc=(1.1.3.)}}</ref> Let <math>f</math> ऊपर जैसा हो और <math>g : Y \to Z</math> कुछ खुले उपसमुच्चय के लिए एक मानचित्र <math>Z</math> of <math>\mathbb{R}^l</math>. If <math>f</math> पर भिन्न है <math>x</math> and <math>g</math> पर भिन्न <math>y = f(x)</math>, फिर रचना <math>g \circ f</math> पर भिन्न है <math>x</math> व्युत्पन्न के साथ
:<math>(g \circ f)'(x) = g'(y) \circ f'(x).</math>}}
:<math>(g \circ f)'(x) = g'(y) \circ f'(x).</math>}}


Line 66: Line 67:
where <math> \Delta_y f(x) = f(x + y) - f(x).</math>
where <math> \Delta_y f(x) = f(x + y) - f(x).</math>
}}
}}
(माध्य मूल्य असमानता का यह संस्करण माध्य मूल्य असमानता से अनुसरण करता है {{slink|Mean value theorem#Mean value theorem for vector-valued functions}} फलन पर क्रियान्वित किया गया <math>[0, 1] \to \mathbb{R}^m, \, t \mapsto f(x + ty) - tv</math>, जहां माध्य मूल्य असमानता पर प्रमाण दिया गया है।)
(माध्य मूल्य असमानता का यह संस्करण माध्य मूल्य असमानता से अनुसरण करता है {{slink|माध्य मान प्रमेय वेक्टर-मूल्यवान कार्यों के लिए माध्य मान प्रमेय}} फलन पर क्रियान्वित किया गया <math>[0, 1] \to \mathbb{R}^m, \, t \mapsto f(x + ty) - tv</math>, जहां माध्य मूल्य असमानता पर प्रमाण दिया गया है।)


वास्तव में, चलो <math>g(x) = (Jf)(x)</math>. हम ध्यान दें कि, यदि <math>y = y_i e_i</math>, तब
वास्तव में, चलो <math>g(x) = (Jf)(x)</math>. हम ध्यान दें कि, यदि <math>y = y_i e_i</math>, तब
Line 78: Line 79:
</math>
</math>
जो यह दर्शाता हे <math>|\Delta_y f (x) - g(x)y|/|y| \to 0</math> आवश्यकता अनुसार। <math>\square</math>
जो यह दर्शाता हे <math>|\Delta_y f (x) - g(x)y|/|y| \to 0</math> आवश्यकता अनुसार। <math>\square</math>
उदाहरण: चलो <math>U</math> आकार n के सभी व्युत्क्रमणीय वास्तविक वर्ग आव्यूहों का समुच्चय बनें। टिप्पणी <math>U</math> के एक खुले उपसमुच्चय के रूप में पहचाना जा सकता है <math>\mathbb{R}^{n^2}</math> निर्देशांक के साथ <math>x_{ij}, 0 \le i, j \ne n</math>. फलन पर विचार करें <math>f(g) = g^{-1}</math> = का व्युत्क्रम आव्युह <math>g</math> पर परिभाषित <math>U</math>. इसके व्युत्पन्न का अनुमान लगाने के लिए, मान लें <math>f</math> अवकलनीय है और वक्र पर विचार करें <math>c(t) = ge^{tg^{-1}h}</math> कहाँ <math>e^A</math> का कारण[[मैट्रिक्स घातांक|आव्युह घातांक]] है <math>A</math>. श्रृंखला नियम द्वारा क्रियान्वित किया गया <math>f(c(t)) = e^{-t g^{-1}h} g^{-1} </math>, अपने पास:
उदाहरण: चलो <math>U</math> आकार n के सभी व्युत्क्रमणीय वास्तविक वर्ग आव्यूहों का समुच्चय बनें। टिप्पणी <math>U</math> के एक खुले उपसमुच्चय के रूप में पहचाना जा सकता है <math>\mathbb{R}^{n^2}</math> निर्देशांक के साथ <math>x_{ij}, 0 \le i, j \ne n</math>. फलन पर विचार करें <math>f(g) = g^{-1}</math> = का व्युत्क्रम आव्युह <math>g</math> पर परिभाषित <math>U</math>. इसके व्युत्पन्न का अनुमान लगाने के लिए, मान लें <math>f</math> अवकलनीय है और वक्र पर विचार करें <math>c(t) = ge^{tg^{-1}h}</math> कहाँ <math>e^A</math> का कारण[[मैट्रिक्स घातांक|आव्युह घातांक]] है <math>A</math>. श्रृंखला नियम द्वारा क्रियान्वित किया गया <math>f(c(t)) = e^{-t g^{-1}h} g^{-1} </math>, अपने पास:
:<math>f'(c(t)) \circ c'(t) = -g^{-1}h e^{-t g^{-1}h} g^{-1}</math>.
:<math>f'(c(t)) \circ c'(t) = -g^{-1}h e^{-t g^{-1}h} g^{-1}</math>.
Line 99: Line 101:
चूँकि दाहिना भाग सममित है <math>u, v</math>, बाईं ओर भी ऐसा ही है: <math>f''(x)(u, v) = f''(x)(v, u)</math>. प्रेरण द्वारा, यदि <math>f</math> है <math>C^k</math>, फिर k-बहुरेखीय मानचित्र <math>f^{(k)}(x)</math> सममित है; अर्थात, आंशिक व्युत्पन्न लेने का क्रम कोई मायने नहीं रखता।<ref name="symmetry of partials" />
चूँकि दाहिना भाग सममित है <math>u, v</math>, बाईं ओर भी ऐसा ही है: <math>f''(x)(u, v) = f''(x)(v, u)</math>. प्रेरण द्वारा, यदि <math>f</math> है <math>C^k</math>, फिर k-बहुरेखीय मानचित्र <math>f^{(k)}(x)</math> सममित है; अर्थात, आंशिक व्युत्पन्न लेने का क्रम कोई मायने नहीं रखता।<ref name="symmetry of partials" />


जैसा कि एक चर के चूँकिमें, टेलर श्रृंखला विस्तार को भागों द्वारा एकीकरण द्वारा सिद्ध किया जा सकता है: <!-- we need to state a version in more than two variables. -->
जैसा कि एक चर के चूँकिमें, टेलर श्रृंखला विस्तार को भागों द्वारा एकीकरण द्वारा सिद्ध किया जा सकता है: <!-- हमें एक संस्करण को दो से अधिक वेरिएबल में बताने की आवश्यकता है। -->
:<math>f(z+(h,k))=\sum_{a+b<n} \partial_x^a\partial_y^b f(z){h^a k^b\over a! b!} + n\int_0^1 (1-t)^{n-1} \sum_{a+b=n} \partial_x^a\partial_y^b f(z+t(h,k)){h^a k^b\over a! b!} \, dt.</math>
:<math>f(z+(h,k))=\sum_{a+b<n} \partial_x^a\partial_y^b f(z){h^a k^b\over a! b!} + n\int_0^1 (1-t)^{n-1} \sum_{a+b=n} \partial_x^a\partial_y^b f(z+t(h,k)){h^a k^b\over a! b!} \, dt.</math>
टेलर के सूत्र में किसी फलन को चर द्वारा विभाजित करने का प्रभाव होता है, जिसे सूत्र के अगले विशिष्ट सैद्धांतिक उपयोग द्वारा चित्रित किया जा सकता है।
टेलर के सूत्र में किसी फलन को चर द्वारा विभाजित करने का प्रभाव होता है, जिसे सूत्र के अगले विशिष्ट सैद्धांतिक उपयोग द्वारा चित्रित किया जा सकता है।
Line 114: Line 116:


=== व्युत्क्रम फलन प्रमेय और निमज्जन प्रमेय ===
=== व्युत्क्रम फलन प्रमेय और निमज्जन प्रमेय ===
{{math_theorem|name=Inverse function theorem|math_statement=Let <math>f : X \to Y</math> be a map between open subsets <math>X, Y</math> in <math>\mathbb{R}^n, \mathbb{R}^m</math>. If <math>f</math> is continuously differentiable (or more generally <math>C^k</math>) and <math>f'(x)</math> is bijective, there exists neighborhoods <math>U, V</math> of <math>x, f(x)</math> and the inverse <math>f^{-1} : V \to U</math> that is continuously differentiable (or respectively <math>C^k</math>).}}
{{math_theorem|name=व्युत्क्रम फलन प्रमेय|math_statement=Let <math>f : X \to Y</math> खुले उपसमुच्चय के बीच एक मानचित्र बनें <math>X, Y</math> in <math>\mathbb{R}^n, \mathbb{R}^m</math>. If <math>f</math> निरंतर भिन्न है (या अधिक सामान्यतः <math>C^k</math>) and <math>f'(x)</math> विशेषण है, पड़ोस मौजूद हैं <math>U, V</math> of <math>x, f(x)</math> और उलटा <math>f^{-1} : V \to U</math> वह लगातार भिन्न होता है (या क्रमशः) <math>C^k</math>).}}


ए <math>C^k</math>-मानचित्र के साथ <math>C^k</math>- व्युत्क्रम को a कहा जाता है <math>C^k</math>-विभिन्नरूपता. इस प्रकार, प्रमेय कहता है कि, एक मानचित्र के लिए <math>f</math> एक बिंदु पर परिकल्पना को संतुष्ट करना <math>x</math>, <math>f</math> निकट एक भिन्नरूपता है <math>x, f(x).</math> प्रमाण के लिए देखें {{slink|Inverse function theorem#A proof using successive approximation}}.
ए <math>C^k</math>-मानचित्र के साथ <math>C^k</math>- व्युत्क्रम को a कहा जाता है <math>C^k</math>-विभिन्नरूपता. इस प्रकार, प्रमेय कहता है कि, एक मानचित्र के लिए <math>f</math> एक बिंदु पर परिकल्पना को संतुष्ट करना <math>x</math>, <math>f</math> निकट एक भिन्नरूपता है <math>x, f(x).</math> प्रमाण के लिए देखें {{slink|व्युत्क्रम फलन प्रमेय क्रमिक सन्निकटन का उपयोग करते हुए एक प्रमाण}}.


अंतर्[[निहित कार्य प्रमेय]] कहता है:<ref>{{harvnb|Spivak|1965|loc=Theorem 2-12.}}</ref> एक नक्शा दिया <math>f : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^m</math>, यदि <math>f(a, b) = 0</math>, <math>f</math> है <math>C^k</math> के एक पड़ोस में <math>(a, b)</math> और का व्युत्पन्न <math>y \mapsto f(a, y)</math> पर <math>b</math> उलटा है, तब एक भिन्न मानचित्र उपस्तिथ है <math>g : U \to V</math> कुछ पड़ोस के लिए <math>U, V</math> का <math>a, b</math> ऐसा है कि <math>f(x, g(x)) = 0</math>. प्रमेय व्युत्क्रम फलन प्रमेय से अनुसरण करता है; देखना {{slink|Inverse function theorem#Implicit function theorem}}.
अंतर्[[निहित कार्य प्रमेय]] कहता है:<ref>{{harvnb|Spivak|1965|loc=Theorem 2-12.}}</ref> एक नक्शा दिया <math>f : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^m</math>, यदि <math>f(a, b) = 0</math>, <math>f</math> है <math>C^k</math> के एक पड़ोस में <math>(a, b)</math> और का व्युत्पन्न <math>y \mapsto f(a, y)</math> पर <math>b</math> उलटा है, तब एक भिन्न मानचित्र उपस्तिथ है <math>g : U \to V</math> कुछ पड़ोस के लिए <math>U, V</math> का <math>a, b</math> ऐसा है कि <math>f(x, g(x)) = 0</math>. प्रमेय व्युत्क्रम फलन प्रमेय से अनुसरण करता है; देखना {{slink|व्युत्क्रम फलन प्रमेय निहित फलन प्रमेय}}.


एक अन्य परिणाम [[विसर्जन प्रमेय]] है।<!-- more later -->
एक अन्य परिणाम [[विसर्जन प्रमेय]] है।<!-- more later -->
Line 129: Line 131:
*आयतन <math>\operatorname{vol}(Q)</math> का <math>Q</math> सामान्य यूक्लिडियन आयतन है; अर्थात।, <math>\operatorname{vol}(Q) = \prod_1^n (t_{i, j_i+1} - t_{i, j_i})</math>.
*आयतन <math>\operatorname{vol}(Q)</math> का <math>Q</math> सामान्य यूक्लिडियन आयतन है; अर्थात।, <math>\operatorname{vol}(Q) = \prod_1^n (t_{i, j_i+1} - t_{i, j_i})</math>.
निचला रीमैन योग <math>L(f, P)</math> का <math>f</math> फिर प्रतिस्थापित करके परिभाषित किया जाता है <math>\sup</math> द्वारा <math>\inf</math>. अंत में, फलन  <math>f</math> यदि यह परिबद्ध है तब इसे पूर्णांकीय फलन कहा जाता है <math>\sup \{ L(f, P) \mid P \} = \inf \{ U(f, P) \mid P \}</math>. उस स्थिति में, सामान्य मान को इस प्रकार दर्शाया जाता है <math>\int_D f \, dx</math>.<ref>{{harvnb|Spivak|1965|p=48}}</ref>
निचला रीमैन योग <math>L(f, P)</math> का <math>f</math> फिर प्रतिस्थापित करके परिभाषित किया जाता है <math>\sup</math> द्वारा <math>\inf</math>. अंत में, फलन  <math>f</math> यदि यह परिबद्ध है तब इसे पूर्णांकीय फलन कहा जाता है <math>\sup \{ L(f, P) \mid P \} = \inf \{ U(f, P) \mid P \}</math>. उस स्थिति में, सामान्य मान को इस प्रकार दर्शाया जाता है <math>\int_D f \, dx</math>.<ref>{{harvnb|Spivak|1965|p=48}}</ref>
का एक उपसमुच्चय <math>\mathbb{R}^n</math> कहा जाता है कि प्रत्येक के लिए माप शून्य है <math>\epsilon > 0</math>, कुछ संभवतः अपरिमित रूप से अनेक आयतें हैं <math>D_1, D_2, \dots, </math> जिसके संघ में समुच्चय और सम्मिलित है <math>\sum_i \operatorname{vol}(D_i) < \epsilon.</math><ref>{{harvnb|Spivak|1965|p=50}}</ref>
का एक उपसमुच्चय <math>\mathbb{R}^n</math> कहा जाता है कि प्रत्येक के लिए माप शून्य है <math>\epsilon > 0</math>, कुछ संभवतः अपरिमित रूप से अनेक आयतें हैं <math>D_1, D_2, \dots, </math> जिसके संघ में समुच्चय और सम्मिलित है <math>\sum_i \operatorname{vol}(D_i) < \epsilon.</math><ref>{{harvnb|Spivak|1965|p=50}}</ref>
एक प्रमुख प्रमेय है<!-- state and cite a more general version-->
एक प्रमुख प्रमेय है<!-- बताएं और अधिक सामान्य संस्करण उद्धृत करें-->
{{math_theorem|name=Theorem|math_statement=<ref>{{harvnb|Spivak|1965|loc=Theorem 3-8.}}</ref> A bounded function <math>f</math> on a closed rectangle is integrable if and only if the set <math>\{ x | f \text{ is not continuous at } x \}</math> has measure zero.}}
 
{{math_theorem|name=प्रमेय|math_statement=<ref>{{harvnb|Spivak|1965|loc=Theorem 3-8.}}</ref> एक बंधा हुआ कार्य <math>f</math> एक बंद आयत पर पूर्णांक है यदि और केवल यदि सेट हो <math>\{ x | f \text{ is not continuous at } x \}</math> माप शून्य है.}}


अगला प्रमेय हमें एक फलन के इंटीग्रल की गणना एक-चर में फलन के इंटीग्रल्स की पुनरावृत्ति के रूप में करने की अनुमति देता है:
अगला प्रमेय हमें एक फलन के इंटीग्रल की गणना एक-चर में फलन के इंटीग्रल्स की पुनरावृत्ति के रूप में करने की अनुमति देता है:


{{math_theorem|name=[[Fubini's theorem]]|math_statement=If <math>f</math> is a continuous function on a closed rectangle <math>D = \prod [a_i, b_i]</math> (in fact, this assumption is too strong), then
{{math_theorem|name=[[फ़ुबिनी का प्रमेय]]|math_statement=If <math>f</math> एक बंद आयत पर एक सतत फलन है <math>D = \prod [a_i, b_i]</math> (वास्तव में, यह धारणा बहुत मजबूत है), तो
:<math>\int_D f \, dx = \int_{a_n}^{b_n} \cdots \left( \int_{a_1}^{b_1} f(x_1, \dots, x_n) dx_1 \right) dx_2 \cdots dx_n.</math>}}
:<math>\int_D f \, dx = \int_{a_n}^{b_n} \cdots \left( \int_{a_1}^{b_1} f(x_1, \dots, x_n) dx_1 \right) dx_2 \cdots dx_n.</math>}}
विशेष रूप से, एकीकरण का क्रम बदला जा सकता है।
विशेष रूप से, एकीकरण का क्रम बदला जा सकता है।
Line 181: Line 185:


=== सीमा और अभिविन्यास ===
=== सीमा और अभिविन्यास ===
<!-- Let <math>\mathbb{H}^k = \{ (x_1, \dots, x_k) \mid x_k \ge 0 \} \subset \mathbb{R}^k</math> denote the upper half-space. We say that a subset <math>M</math> of <math>\mathbb{R}^n</math> of dimension <math>k</math> has a <math>C^1</math> boundary if, for each point <math>p</math> in ?, there is a neighborhood <math>U</math> of <math>p</math> in <math>\mathbb{R}^n</math> and an open subset <math>V \subset \mathbb{R}^n</math> such that <math>M \cap U</math> is <math>C^1</math>-diffeomorphic to <math>(\mathbb{H}^k \times 0) \cap V = \{ y \in V \mid y_k \ge 0, y_{k+1} = \cdots = y_n = 0 \}.</math> -->
<!-- Let <math>\mathbb{H}^k = \{ (x_1, \dots, x_k) \mid x_k \ge 0 \} \subset \mathbb{R}^k</math> ऊपरी आधे स्थान को निरूपित करें। हम कहते हैं कि एक उपसमुच्चय <math>M</math> of <math>\mathbb{R}^n</math> of dimension <math>k</math> has a <math>C^1</math> सीमा यदि, प्रत्येक बिंदु के लिए <math>p</math> in ?, there is a neighborhood <math>U</math> of <math>p</math> in <math>\mathbb{R}^n</math> and an open subset <math>V \subset \mathbb{R}^n</math> such that <math>M \cap U</math> is <math>C^1</math>-diffeomorphic to <math>(\mathbb{H}^k \times 0) \cap V = \{ y \in V \mid y_k \ge 0, y_{k+1} = \cdots = y_n = 0 \}.</math> -->
एक वृत्त को दक्षिणावर्त या वामावर्त दिशा में उन्मुख किया जा सकता है। गणितीय रूप से, हम कहते हैं कि एक उपसमुच्चय <math>M</math> का <math>\mathbb{R}^n</math> यदि सामान्य सदिशों का एक सुसंगत विकल्प हो तब उन्मुख होता है <math>M</math> जो लगातार बदलता रहता है. उदाहरण के लिए, एक वृत्त या, अधिक सामान्यतः, एक n-गोले को उन्मुख किया जा सकता है; अर्थात, ओरिएंटेबल. दूसरी ओर, एक मोबियस पट्टी (आयत की दो विपरीत भुजाओं द्वारा घुमाकर प्राप्त की गई सतह) उन्मुख नहीं हो सकती: यदि हम एक सामान्य सदिश से प्रारंभ करते हैं और पट्टी के चारों ओर यात्रा करते हैं, तब अंत में सामान्य सदिश विपरीत दिशा की ओर संकेत करेगा।<!-- give a precise definition ; i.e., there is a continuous function <math>n : M \to \mathbb{R}^{n-r}</math> such that, for every point <math>x</math> in <math>M</math>, <math>n(x)</math> is nonzero and is normal to <math>M</math> at x. -->
एक वृत्त को दक्षिणावर्त या वामावर्त दिशा में उन्मुख किया जा सकता है। गणितीय रूप से, हम कहते हैं कि एक उपसमुच्चय <math>M</math> का <math>\mathbb{R}^n</math> यदि सामान्य सदिशों का एक सुसंगत विकल्प हो तब उन्मुख होता है <math>M</math> जो लगातार बदलता रहता है. उदाहरण के लिए, एक वृत्त या, अधिक सामान्यतः, एक n-गोले को उन्मुख किया जा सकता है; अर्थात, ओरिएंटेबल. दूसरी ओर, एक मोबियस पट्टी (आयत की दो विपरीत भुजाओं द्वारा घुमाकर प्राप्त की गई सतह) उन्मुख नहीं हो सकती: यदि हम एक सामान्य सदिश से प्रारंभ करते हैं और पट्टी के चारों ओर यात्रा करते हैं, तब अंत में सामान्य सदिश विपरीत दिशा की ओर संकेत करेगा।<!-- एक सटीक परिभाषा दें; यानी, एक सतत कार्य है <math>n : M \to \mathbb{R}^{n-r}</math> ऐसा कि, हर बिंदु के लिए <math>x</math> in <math>M</math>, <math>n(x)</math> शून्येतर है और सामान्य है <math>M</math> at x. -->


{{math_theorem|name=Proposition|A bounded differentiable region <math>M</math> in <math>\mathbb{R}^n</math> of dimension <math>k</math> is oriented if and only if there exists a nowhere-vanishing <math>k</math>-form on <math>M</math> (called a volume form).}}
{{math_theorem|name=प्रस्ताव|एक घिरा हुआ अलग-अलग क्षेत्र <math>M</math> in <math>\mathbb{R}^n</math> आयाम का <math>k</math> उन्मुख तभी होता है जब कहीं गायब होने वाला अस्तित्व मौजूद होता है <math>k</math>-form on <math>M</math> (वॉल्यूम फॉर्म कहा जाता है).}}


प्रस्ताव उपयोगी है क्योंकि यह हमें वॉल्यूम फॉर्म देकर एक अभिविन्यास देने की अनुमति देता है।
प्रस्ताव उपयोगी है क्योंकि यह हमें वॉल्यूम फॉर्म देकर एक अभिविन्यास देने की अनुमति देता है।
Line 195: Line 199:
फिर हमारे पास बाहरी व्युत्पन्न और एकीकरण से संबंधित मौलिक सूत्र है:
फिर हमारे पास बाहरी व्युत्पन्न और एकीकरण से संबंधित मौलिक सूत्र है:


{{math_theorem|name=[[Stokes' formula]]|math_statement=For a bounded region <math>M</math> in <math>\mathbb{R}^n</math> of dimension <math>k</math> whose boundary is a union of finitely many <math>C^1</math>-subsets<!-- what's better phrasing? -->, if <math>M</math> is oriented, then
{{math_theorem|name=[[स्टोक्स का सूत्र]]|math_statement=एक सीमाबद्ध क्षेत्र के लिए <math>M</math> in <math>\mathbb{R}^n</math> आयाम का <math>k</math> जिसकी सीमा अनंत अनेकों का मिलन है <math>C^1</math>-subsets<!-- बेहतर वाक्यांश क्या है? -->, if <math>M</math> तब उन्मुख है
:<math>\int_{\partial M} \omega = \int_M d\omega </math>
:<math>\int_{\partial M} \omega = \int_M d\omega </math>
for any differential <math>(k-1)</math>-form <math>\omega</math> on the boundary <math>\partial M</math> of <math>M</math>.
किसी भी अंतर के लिए <math>(k-1)</math>-form <math>\omega</math> सीमा पर <math>\partial M</math> of <math>M</math>.
}}
}}


Line 205: Line 209:
:<math>\int d(f \omega) = \int df \wedge \omega + \int f \, d\omega.</math>
:<math>\int d(f \omega) = \int df \wedge \omega + \int f \, d\omega.</math>
होने देना <math>f</math> विशेषता फलन पर संपर्क करें <math>M</math>. फिर दाहिनी ओर दूसरा पद जाता है <math>\int_M d \omega</math> जबकि पहला जाता है <math>-\int_{\partial M} \omega</math>, कलन के मौलिक प्रमेय को सिद्ध करने के समान तर्क द्वारा। <math>\square</math>
होने देना <math>f</math> विशेषता फलन पर संपर्क करें <math>M</math>. फिर दाहिनी ओर दूसरा पद जाता है <math>\int_M d \omega</math> जबकि पहला जाता है <math>-\int_{\partial M} \omega</math>, कलन के मौलिक प्रमेय को सिद्ध करने के समान तर्क द्वारा। <math>\square</math>
सूत्र कैलकुलस के मौलिक प्रमेय के साथ-साथ बहुपरिवर्तनीय कैलकुलस में स्टोक्स प्रमेय को सामान्यीकृत करता है। वास्तव में, यदि <math>M = [a, b]</math> एक अंतराल है और <math>\omega = f</math>, तब <math>d\omega = f' \, dx</math> और सूत्र कहता है:
सूत्र कैलकुलस के मौलिक प्रमेय के साथ-साथ बहुपरिवर्तनीय कैलकुलस में स्टोक्स प्रमेय को सामान्यीकृत करता है। वास्तव में, यदि <math>M = [a, b]</math> एक अंतराल है और <math>\omega = f</math>, तब <math>d\omega = f' \, dx</math> और सूत्र कहता है:
:<math>\int_M f' \, dx = f(b) - f(a)</math>.
:<math>\int_M f' \, dx = f(b) - f(a)</math>.
Line 217: Line 222:
:<math>\frac{\partial}{\partial z} = \frac{1}{2}\left( \frac{\partial}{\partial x} - i \frac{\partial}{\partial y} \right), \, \frac{\partial}{\partial \bar{z}} = \frac{1}{2}\left( \frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right).</math>
:<math>\frac{\partial}{\partial z} = \frac{1}{2}\left( \frac{\partial}{\partial x} - i \frac{\partial}{\partial y} \right), \, \frac{\partial}{\partial \bar{z}} = \frac{1}{2}\left( \frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right).</math>
इन नोटेशन में, एक फलन <math>f</math> [[होलोमोर्फिक फ़ंक्शन|होलोमोर्फिक फलन]] (समष्टि-विश्लेषणात्मक) है यदि और केवल यदि <math>\frac{\partial f}{\partial \bar z} = 0</math> (कौची-रीमैन समीकरण)।
इन नोटेशन में, एक फलन <math>f</math> [[होलोमोर्फिक फ़ंक्शन|होलोमोर्फिक फलन]] (समष्टि-विश्लेषणात्मक) है यदि और केवल यदि <math>\frac{\partial f}{\partial \bar z} = 0</math> (कौची-रीमैन समीकरण)।
इसके अतिरिक्त, हमारे पास है:
इसके अतिरिक्त, हमारे पास है:
:<math>df = \frac{\partial f}{\partial z}dz + \frac{\partial f}{\partial \bar{z}}d \bar{z}.</math>
:<math>df = \frac{\partial f}{\partial z}dz + \frac{\partial f}{\partial \bar{z}}d \bar{z}.</math>
होने देना <math>D_{\epsilon} = \{ z \in \mathbb{C} \mid \epsilon < |z - z_0| < r \}</math> केंद्र के साथ एक पंचर डिस्क बनें <math>z_0</math>.
होने देना <math>D_{\epsilon} = \{ z \in \mathbb{C} \mid \epsilon < |z - z_0| < r \}</math> केंद्र के साथ एक पंचर डिस्क बनें <math>z_0</math>.
तब से <math>1/(z - z_0)</math> पर होलोमोर्फिक है <math>D_{\epsilon}</math>, अपने पास:
तब से <math>1/(z - z_0)</math> पर होलोमोर्फिक है <math>D_{\epsilon}</math>, अपने पास:
:<math>d \left( \frac{f}{z-z_0} dz \right) = \frac{\partial f}{\partial \bar z} \frac{d \bar{z} \wedge dz}{z - z_0} </math>.
:<math>d \left( \frac{f}{z-z_0} dz \right) = \frac{\partial f}{\partial \bar z} \frac{d \bar{z} \wedge dz}{z - z_0} </math>.
Line 237: Line 244:
एक परिणाम है (पोंकारे लेम्मा) जो एक शर्त देता है जो गारंटी देता है कि बंद किए गए फॉर्म त्रुटिहीन  हैं। इसे बताने के लिए, हमें टोपोलॉजी से कुछ धारणाओं की आवश्यकता है। दो सतत मानचित्र दिए गए <math>f, g : X \to Y</math> के उपसमुच्चय के मध्य <math>\mathbb{R}^m, \mathbb{R}^n</math> (या अधिक सामान्यतः टोपोलॉजिकल स्पेस), से एक [[होमोटॉपी]] <math>f</math> को <math>g</math> एक सतत कार्य है <math>H : X \times [0, 1] \to Y</math> ऐसा है कि <math>f(x) = H(x, 0)</math> और <math>g(x) = H(x, 1)</math>. सहज रूप से, एक समरूपता एक फलन से दूसरे फलन की निरंतर भिन्नता है। एक समुच्चय में एक [[लूप (टोपोलॉजी)]]। <math>X</math> एक वक्र है जिसका प्रारंभिक बिंदु अंतिम बिंदु से मेल खाता है; अर्थात।, <math>c : [0, 1] \to X</math> ऐसा है कि <math>c(0) = c(1)</math>. फिर का एक उपसमुच्चय <math>\mathbb{R}^n</math> यदि प्रत्येक लूप एक स्थिर फलन के लिए समस्थानिक है तब इसे [[बस जुड़ा हुआ है]] कहा जाता है। सरलता से जुड़े समुच्चय का एक विशिष्ट उदाहरण एक डिस्क है <math>D = \{ (x, y) \mid \sqrt{x^2 + y^2} \le r \} \subset \mathbb{R}^2</math>. मुख्य रूप से, एक लूप दिया गया है <math>c : [0, 1] \to D</math>, हमारे पास समरूपता है <math>H : [0, 1]^2 \to D, \, H(x, t) = (1-t) c(x) + t c(0)</math> से <math>c</math> निरंतर कार्य के लिए <math>c(0)</math>. दूसरी ओर, एक छिद्रित डिस्क, बस कनेक्ट नहीं होती है।
एक परिणाम है (पोंकारे लेम्मा) जो एक शर्त देता है जो गारंटी देता है कि बंद किए गए फॉर्म त्रुटिहीन  हैं। इसे बताने के लिए, हमें टोपोलॉजी से कुछ धारणाओं की आवश्यकता है। दो सतत मानचित्र दिए गए <math>f, g : X \to Y</math> के उपसमुच्चय के मध्य <math>\mathbb{R}^m, \mathbb{R}^n</math> (या अधिक सामान्यतः टोपोलॉजिकल स्पेस), से एक [[होमोटॉपी]] <math>f</math> को <math>g</math> एक सतत कार्य है <math>H : X \times [0, 1] \to Y</math> ऐसा है कि <math>f(x) = H(x, 0)</math> और <math>g(x) = H(x, 1)</math>. सहज रूप से, एक समरूपता एक फलन से दूसरे फलन की निरंतर भिन्नता है। एक समुच्चय में एक [[लूप (टोपोलॉजी)]]। <math>X</math> एक वक्र है जिसका प्रारंभिक बिंदु अंतिम बिंदु से मेल खाता है; अर्थात।, <math>c : [0, 1] \to X</math> ऐसा है कि <math>c(0) = c(1)</math>. फिर का एक उपसमुच्चय <math>\mathbb{R}^n</math> यदि प्रत्येक लूप एक स्थिर फलन के लिए समस्थानिक है तब इसे [[बस जुड़ा हुआ है]] कहा जाता है। सरलता से जुड़े समुच्चय का एक विशिष्ट उदाहरण एक डिस्क है <math>D = \{ (x, y) \mid \sqrt{x^2 + y^2} \le r \} \subset \mathbb{R}^2</math>. मुख्य रूप से, एक लूप दिया गया है <math>c : [0, 1] \to D</math>, हमारे पास समरूपता है <math>H : [0, 1]^2 \to D, \, H(x, t) = (1-t) c(x) + t c(0)</math> से <math>c</math> निरंतर कार्य के लिए <math>c(0)</math>. दूसरी ओर, एक छिद्रित डिस्क, बस कनेक्ट नहीं होती है।


{{math_theorem|name=[[Poincaré lemma]]|math_statement=If <math>M</math> is a simply connected open subset of <math>\mathbb{R}^n</math>, then each closed 1-form on <math>M</math> is exact.}}
{{math_theorem|name=[[पोंकारे लेम्मा]]|math_statement=If <math>M</math> का एक सरल रूप से जुड़ा हुआ खुला उपसमुच्चय है <math>\mathbb{R}^n</math>, फिर प्रत्येक को 1-फॉर्म पर बंद कर दिया गया <math>M</math> सटीक है.}}


==वक्रों और सतहों की ज्यामिति==
==वक्रों और सतहों की ज्यामिति==
Line 248: Line 255:
गॉस-बोनट प्रमेय किसी सतह की टोपोलॉजी और उसकी ज्यामिति से संबंधित है।
गॉस-बोनट प्रमेय किसी सतह की टोपोलॉजी और उसकी ज्यामिति से संबंधित है।


{{math_theorem|name=The [[Gauss–Bonnet theorem]]|math_statement=<ref>{{harvnb|O'Neill|2006|loc=Theorem 6.10.}}</ref> For each bounded surface <math>M</math> in <math>\mathbb{R}^3</math>, we have:
{{math_theorem|name=[[गॉस-बोनट प्रमेय]]|math_statement=<ref>{{harvnb|O'Neill|2006|loc=Theorem 6.10.}}</ref> प्रत्येक घिरी हुई सतह के लिए <math>M</math> in <math>\mathbb{R}^3</math>, अपने पास:
:<math>2\pi \, \chi(M) = \int_M K \, dS</math>
:<math>2\pi \, \chi(M) = \int_M K \, dS</math>
where <math>\chi(M)</math> is the Euler characteristic of <math>M</math> and <math>K</math> the curvature.}}
where <math>\chi(M)</math> यूलर की विशेषता है <math>M</math> and <math>K</math> वक्रता.}}


== विविधताओं की गणना ==
== विविधताओं की गणना ==


=== लैग्रेंज गुणक की विधि ===
=== लैग्रेंज गुणक की विधि ===
{{math_theorem|name=[[Lagrange multiplier]]|math_statement=<ref>{{harvnb|Spivak|1965|loc=Exercise 5-16.}}</ref> Let <math>g : U \to \mathbb{R}^r</math> be a differentiable function from an open subset of <math>\mathbb{R}^n</math> such that <math>g'</math> has rank <math>r</math> at every point in <math>g^{-1}(0)</math>. For a differentiable function <math>f : \mathbb{R}^n \to \mathbb{R}</math>, if <math>f</math> attains either a maximum or minimum at a point <math>p</math> in <math>g^{-1}(0)</math>, then there exists real numbers <math>\lambda_1, \dots, \lambda_r</math> such that
{{math_theorem|name=[[लैग्रेंज गुणक]]|math_statement=<ref>{{harvnb|Spivak|1965|loc=Exercise 5-16.}}</ref> Let <math>g : U \to \mathbb{R}^r</math> के खुले उपसमुच्चय से एक अवकलनीय फलन बनें <math>\mathbb{R}^n</math> such that <math>g'</math> has rank <math>r</math> at every point in <math>g^{-1}(0)</math>. For a differentiable function <math>f : \mathbb{R}^n \to \mathbb{R}</math>, if <math>f</math> एक बिंदु पर अधिकतम या न्यूनतम प्राप्त करता है <math>p</math> in <math>g^{-1}(0)</math>, तब वास्तविक संख्याएँ मौजूद होती हैं <math>\lambda_1, \dots, \lambda_r</math> such that
:<math>\nabla f(p) = \lambda_i \sum_{i=1}^r \nabla g_i(p)</math>.
:<math>\nabla f(p) = \lambda_i \sum_{i=1}^r \nabla g_i(p)</math>.
In other words, <math>p</math> is a [[stationary point]] of <math>f - \sum_1^r \lambda_i g_i</math>.}}
दूसरे शब्दों में, <math>p</math> is a [[stationary point]] of <math>f - \sum_1^r \lambda_i g_i</math>.}}


समुच्चय <math>g^{-1}(0)</math> सामान्यतः इसे बाधा कहा जाता है।
समुच्चय <math>g^{-1}(0)</math> सामान्यतः इसे बाधा कहा जाता है।
Line 275: Line 282:
माप-शून्य समुच्चय तक, दो कार्यों को अन्य कार्यों (जिन्हें परीक्षण फलन कहा जाता है) के विरुद्ध एकीकरण के माध्यम से सामान्तर या नहीं निर्धारित किया जा सकता है। अर्थात्, निम्नलिखित को कभी-कभी विविधताओं के कलन की मौलिक प्रमेयिका कहा जाता है:
माप-शून्य समुच्चय तक, दो कार्यों को अन्य कार्यों (जिन्हें परीक्षण फलन कहा जाता है) के विरुद्ध एकीकरण के माध्यम से सामान्तर या नहीं निर्धारित किया जा सकता है। अर्थात्, निम्नलिखित को कभी-कभी विविधताओं के कलन की मौलिक प्रमेयिका कहा जाता है:


{{math_theorem|name=Lemma<ref>{{harvnb|Hörmander|2015|loc=Theorem 1.2.5.}}</ref>|math_statement=If <math>f, g</math> are locally integrable functions on an open subset <math>M \subset \mathbb{R}^n</math> such that
{{math_theorem|name=लेम्मा<ref>{{harvnb|Hörmander|2015|loc=Theorem 1.2.5.}}</ref>|math_statement=If <math>f, g</math> एक खुले उपसमुच्चय पर स्थानीय रूप से एकीकृत कार्य हैं <math>M \subset \mathbb{R}^n</math> such that
:<math>\int (f - g) \varphi \, dx = 0</math>
:<math>\int (f - g) \varphi \, dx = 0</math>
for every <math>\varphi \in C_c^{\infty}(M)</math> (called a test function). Then <math>f = g</math> almost everywhere. If, in addition, <math>f, g</math> are continuous, then <math>f = g</math>.}}
for every <math>\varphi \in C_c^{\infty}(M)</math> (called a test function). Then <math>f = g</math> लगभग हर जगह। यदि, इसके अतिरिक्त, <math>f, g</math> तो फिर, निरंतर हैं <math>f = g</math>.}}


एक सतत कार्य दिया गया <math>f</math>, लेम्मा द्वारा, एक निरंतर भिन्न कार्य <math>u</math> इस प्रकार कि <math>\frac{\partial u}{\partial x_i} = f</math> यदि और केवल यदि
एक सतत कार्य दिया गया <math>f</math>, लेम्मा द्वारा, एक निरंतर भिन्न कार्य <math>u</math> इस प्रकार कि <math>\frac{\partial u}{\partial x_i} = f</math> यदि और केवल यदि
Line 298: Line 305:
:<math>\frac{\partial E_{z_0}}{\partial \bar z} = \delta_{z_0}.</math><ref>{{harvnb|Hörmander|2015|p=63}}</ref> सामान्यतः, एक सामान्यीकृत फलन को रैखिक आंशिक अंतर ऑपरेटर के लिए [[मौलिक समाधान]] कहा जाता है यदि ऑपरेटर का अनुप्रयोग डायराक डेल्टा है। इसलिए, ऊपर कहा गया है <math>E_{z_0}</math> विभेदक ऑपरेटर के लिए मौलिक समाधान है <math>\partial/\partial \bar z</math>.
:<math>\frac{\partial E_{z_0}}{\partial \bar z} = \delta_{z_0}.</math><ref>{{harvnb|Hörmander|2015|p=63}}</ref> सामान्यतः, एक सामान्यीकृत फलन को रैखिक आंशिक अंतर ऑपरेटर के लिए [[मौलिक समाधान]] कहा जाता है यदि ऑपरेटर का अनुप्रयोग डायराक डेल्टा है। इसलिए, ऊपर कहा गया है <math>E_{z_0}</math> विभेदक ऑपरेटर के लिए मौलिक समाधान है <math>\partial/\partial \bar z</math>.


{{See also|Limit of distributions}}
{{See also|वितरण की सीमा}}


=== हैमिल्टन-जैकोबी सिद्धांत ===
=== हैमिल्टन-जैकोबी सिद्धांत ===
{{main|Hamilton–Jacobi equation}}
{{main|हैमिल्टन-जैकोबी समीकरण}}
== मैनिफोल्ड्स पर कैलकुलस ==
== मैनिफोल्ड्स पर कैलकुलस ==


Line 311: Line 318:
*<math>\varphi_i : U_i \to \varphi_i(U_i)</math> एक समरूपता है और
*<math>\varphi_i : U_i \to \varphi_i(U_i)</math> एक समरूपता है और
*<math>\varphi_j \circ \varphi_i^{-1} : \varphi_i(U_i \cap U_j) \to \varphi_j(U_i \cap U_j)</math> चिकना है; इस प्रकार एक भिन्नतावाद।
*<math>\varphi_j \circ \varphi_i^{-1} : \varphi_i(U_i \cap U_j) \to \varphi_j(U_i \cap U_j)</math> चिकना है; इस प्रकार एक भिन्नतावाद।
परिभाषा के अनुसार, मैनिफोल्ड एक अधिकतम एटलस (जिसे एक [[भिन्न संरचना]] कहा जाता है) के साथ एक दूसरी-गणनीय हॉसडॉर्फ टोपोलॉजिकल स्पेस है; मैक्सिमम का कारणहै कि यह सख्ती से बड़े एटलस में सम्मिलित नहीं है। अनेक गुना का आयाम <math>M</math> मॉडल यूक्लिडियन स्पेस का आयाम है <math>\mathbb{R}^n</math>; अर्थात्, <math>n</math> और मैनिफोल्ड को एन-मैनिफोल्ड कहा जाता है जब इसका आयाम एन होता है। मैनिफ़ोल्ड पर एक फलन <math>M</math> यदि चिकनी कहा जाता है <math>f|_U \circ \varphi^{-1}</math> चिकनी है <math>\varphi(U)</math> प्रत्येक चार्ट के लिए <math>\varphi : U \to \mathbb{R}^n</math> भिन्न संरचना में.
परिभाषा के अनुसार, मैनिफोल्ड एक अधिकतम एटलस (जिसे एक [[भिन्न संरचना]] कहा जाता है) के साथ एक दूसरी-गणनीय हॉसडॉर्फ टोपोलॉजिकल स्पेस है; मैक्सिमम का कारण है कि यह सख्ती से बड़े एटलस में सम्मिलित नहीं है। अनेक गुना का आयाम <math>M</math> मॉडल यूक्लिडियन स्पेस का आयाम है <math>\mathbb{R}^n</math>; अर्थात्, <math>n</math> और मैनिफोल्ड को एन-मैनिफोल्ड कहा जाता है जब इसका आयाम एन होता है। मैनिफ़ोल्ड पर एक फलन <math>M</math> यदि चिकनी कहा जाता है <math>f|_U \circ \varphi^{-1}</math> चिकनी है <math>\varphi(U)</math> प्रत्येक चार्ट के लिए <math>\varphi : U \to \mathbb{R}^n</math> भिन्न संरचना में.


मैनिफोल्ड [[पैराकॉम्पैक्ट स्पेस]] है; इसका निहितार्थ यह है कि यह किसी दिए गए खुले आवरण के अधीन एकता के विभाजन को स्वीकार करता है।
मैनिफोल्ड [[पैराकॉम्पैक्ट स्पेस]] है; इसका निहितार्थ यह है कि यह किसी दिए गए खुले आवरण के अधीन एकता के विभाजन को स्वीकार करता है।
Line 319: Line 326:
अगला प्रमेय अनेक गुनाओं के अनेक उदाहरण प्रस्तुत करता है।
अगला प्रमेय अनेक गुनाओं के अनेक उदाहरण प्रस्तुत करता है।


{{math_theorem|math_statement=<ref>{{harvnb|Spivak|1965|loc=Theorem 5-1.}}</ref> Let <math>g: U \to \mathbb{R}^r</math> be a differentiable map from an open subset <math>U \subset \mathbb{R}^n</math> such that <math>g'(p)</math> has rank <math>r</math> for every point <math>p</math> in <math>g^{-1}(0)</math>. Then the zero set <math>g^{-1}(0)</math> is an <math>(n-r)</math>-manifold.}}
{{math_theorem|math_statement=<ref>{{harvnb|Spivak|1965|loc=Theorem 5-1.}}</ref> Let <math>g: U \to \mathbb{R}^r</math> एक खुले उपसमुच्चय से भिन्न मानचित्र बनें <math>U \subset \mathbb{R}^n</math> ऐसा है कि <math>g'(p)</math> रैंक है <math>r</math> for every point <math>p</math> in <math>g^{-1}(0)</math>. Then the zero set <math>g^{-1}(0)</math> is an <math>(n-r)</math>-manifold.}}


उदाहरण के लिए, के लिए <math>g(x) = x_1^2 + \cdots + x_{n+1}^2 - 1</math>, व्युत्पन्न <math>g'(x) = \begin{bmatrix}2 x_1 & 2 x_2 & \cdots & 2 x_{n+1}\end{bmatrix}</math> हर बिंदु पर एक रैंक है <math>p</math> में <math>g^{-1}(0)</math>. इसलिए, n-गोला <math>g^{-1}(0)</math> एक एन-मैनिफोल्ड है।<!-- Remarkably, the converse of the theorem is also true; every manifold is a zero set of some <math>g</math>.{{fact}} a theorem of Whitney or Nash? -->
उदाहरण के लिए, के लिए <math>g(x) = x_1^2 + \cdots + x_{n+1}^2 - 1</math>, व्युत्पन्न <math>g'(x) = \begin{bmatrix}2 x_1 & 2 x_2 & \cdots & 2 x_{n+1}\end{bmatrix}</math> हर बिंदु पर एक रैंक है <math>p</math> में <math>g^{-1}(0)</math>. इसलिए, n-गोला <math>g^{-1}(0)</math> एक एन-मैनिफोल्ड है।<!-- Remarkably, the converse of the theorem is also true; every manifold is a zero set of some <math>g</math>.{{fact}} a theorem of Whitney or Nash? -->
Line 326: Line 333:
अनेक परिचित मैनिफोल्ड्स के उपसमुच्चय हैं <math>\mathbb{R}^n</math>. अगला सैद्धांतिक रूप से महत्वपूर्ण परिणाम कहता है कि किसी अन्य प्रकार की विविधता उपस्तिथ नहीं है। विसर्जन एक सहज मानचित्र है जिसका अंतर विशेषणात्मक होता है। एम्बेडिंग एक ऐसा विसर्जन है जो छवि के लिए होमियोमॉर्फिक (इस प्रकार भिन्न-रूपी) होता है।
अनेक परिचित मैनिफोल्ड्स के उपसमुच्चय हैं <math>\mathbb{R}^n</math>. अगला सैद्धांतिक रूप से महत्वपूर्ण परिणाम कहता है कि किसी अन्य प्रकार की विविधता उपस्तिथ नहीं है। विसर्जन एक सहज मानचित्र है जिसका अंतर विशेषणात्मक होता है। एम्बेडिंग एक ऐसा विसर्जन है जो छवि के लिए होमियोमॉर्फिक (इस प्रकार भिन्न-रूपी) होता है।


{{math_theorem|name=[[Whitney's embedding theorem]]|math_statement=Each <math>k</math>-manifold can be embedded into <math>\mathbb{R}^{2k}</math>.}}
{{math_theorem|name=[[व्हिटनी का एम्बेडिंग प्रमेय]]|math_statement=प्रत्येक <math>k</math>-मैनिफोल्ड को इसमें एम्बेड किया जा सकता है <math>\mathbb{R}^{2k}</math>.}}


इस बात का प्रमाण कि इसमें अनेकता समाहित की जा सकती है <math>\mathbb{R}^N</math> कुछ के लिए एन अधिक  आसान है और यहां आसानी से दिया जा सकता है। यह ज्ञात है {{citation needed|date=May 2022}} कि मैनिफोल्ड का एक सीमित एटलस होता है <math>\{ \varphi_i : U_i \to \mathbb{R}^n \mid 1 \le i \le r \}</math>. होने देना <math>\lambda_i</math> ऐसे सुचारु कार्य हों <math>\operatorname{Supp}(\lambda_i) \subset U_i</math> और <math>\{ \lambda_i = 1 \}</math> ढकना <math>M</math> (उदाहरण के लिए, एकता का विभाजन)। मानचित्र पर विचार करें
इस बात का प्रमाण कि इसमें अनेकता समाहित की जा सकती है <math>\mathbb{R}^N</math> कुछ के लिए एन अधिक  आसान है और यहां आसानी से दिया जा सकता है। यह ज्ञात है कि मैनिफोल्ड का एक सीमित एटलस होता है <math>\{ \varphi_i : U_i \to \mathbb{R}^n \mid 1 \le i \le r \}</math>. होने देना <math>\lambda_i</math> ऐसे सुचारु कार्य हों <math>\operatorname{Supp}(\lambda_i) \subset U_i</math> और <math>\{ \lambda_i = 1 \}</math> ढकना <math>M</math> (उदाहरण के लिए, एकता का विभाजन)। मानचित्र पर विचार करें
:<math>f = (\lambda_1 \varphi_1, \dots, \lambda_r \varphi_r, \lambda_1, \dots, \lambda_r) : M \to \mathbb{R}^{(k+1)r}</math>
:<math>f = (\lambda_1 \varphi_1, \dots, \lambda_r \varphi_r, \lambda_1, \dots, \lambda_r) : M \to \mathbb{R}^{(k+1)r}</math>
यह देखना आसान है <math>f</math> एक इंजेक्शन विसर्जन है. यह एम्बेडिंग नहीं हो सकता है. इसे ठीक करने के लिए, हम इसका उपयोग करेंगे:
यह देखना आसान है <math>f</math> एक इंजेक्शन विसर्जन है. यह एम्बेडिंग नहीं हो सकता है. इसे ठीक करने के लिए, हम इसका उपयोग करेंगे:
:<math>(f, g) : M \to \mathbb{R}^{(k+1)r+1}</math>
:<math>(f, g) : M \to \mathbb{R}^{(k+1)r+1}</math>
कहाँ <math>g</math> एक सहज उचित मानचित्र है. एक सुचारू उचित मानचित्र का अस्तित्व एकता के विभाजन का परिणाम है।<!-- give more details --> विसर्जन के चूँकिमें बाकी प्रमाण के लिए [http://math.uchicago.edu/~may/REU2019/REUPapers/Smith,Zoe.pdf] देखें। <math>\square</math>
कहाँ <math>g</math> एक सहज उचित मानचित्र है. एक सुचारू उचित मानचित्र का अस्तित्व एकता के विभाजन का परिणाम है।<!-- अधिक विवरण दें --> विसर्जन के चूँकिमें बाकी प्रमाण के लिए [http://math.uchicago.edu/~may/REU2019/REUPapers/Smith,Zoe.pdf] देखें। <math>\square</math>


नैश का एम्बेडिंग प्रमेय कहता है कि, यदि <math>M</math> रीमैनियन मीट्रिक से सुसज्जित है, तब एम्बेडिंग को बढ़ने के खर्च के साथ आइसोमेट्रिक माना जा सकता है <math>2k</math>; इसके लिए, [https://terrytao.wordpress.com/2016/05/11/notes-on-the-nash-embedding-theorem यह टी. ताओ का ब्लॉग] देखें।
नैश का एम्बेडिंग प्रमेय कहता है कि, यदि <math>M</math> रीमैनियन मीट्रिक से सुसज्जित है, तब एम्बेडिंग को बढ़ने के खर्च के साथ आइसोमेट्रिक माना जा सकता है <math>2k</math>; इसके लिए, [https://terrytao.wordpress.com/2016/05/11/notes-on-the-nash-embedding-theorem यह टी. ताओ का ब्लॉग] देखें।
Line 338: Line 345:
=== ट्यूबलर पड़ोस और ट्रांसवर्सलिटी ===
=== ट्यूबलर पड़ोस और ट्रांसवर्सलिटी ===
विधि ी रूप से महत्वपूर्ण परिणाम है:
विधि ी रूप से महत्वपूर्ण परिणाम है:
{{math_theorem|name=Tubular neighborhood theorem|math_theorem|Let ''M'' be a manifold and <math>N \subset M</math> a compact closed submanifold. Then there exists a neighborhood <math>U</math> of <math>N</math> such that <math>U</math> is diffeomorphic to the normal bundle <math>\nu_N = TM|_N/TN</math> to <math>i : N \hookrightarrow M</math> and <math>N</math> corresponds to the zero section of <math>\nu_i</math> under the diffeomorphism.}}
{{math_theorem|name=Tubular neighborhood theorem|गणित_प्रमेय|मान लीजिए ''M'' अनेक गुना है और <math>N \subset M</math> एक कॉम्पैक्ट बंद सबमैनिफोल्ड। फिर एक पड़ोस मौजूद है <math>U</math> of <math>N</math> such that <math>U</math> सामान्य बंडल से भिन्न है <math>\nu_N = TM|_N/TN</math> to <math>i : N \hookrightarrow M</math> and <math>N</math> के शून्य खंड से मेल खाता है <math>\nu_i</math> भिन्नता के अंतर्गत.}}


इसे मैनिफ़ोल्ड पर रीमैनियन मीट्रिक डालकर सिद्ध किया जा सकता है <math>M</math>. मुख्य रूप से, मीट्रिक का चुनाव सामान्य बंडल बनाता है <math>\nu_i</math> के लिए एक पूरक बंडल <math>TN</math>; अर्थात।, <math>TM|_N</math> का सीधा योग है <math>TN</math> और <math>\nu_N</math>. फिर, मीट्रिक का उपयोग करके, हमारे पास घातांकीय मानचित्र होता है <math>\exp : U \to V</math> कुछ पड़ोस के लिए <math>U</math> का <math>N</math> सामान्य बंडल में <math>\nu_N</math> किसी पड़ोस में <math>V</math> का <math>N</math> में <math>M</math>. यहां घातांकीय मानचित्र अंतःक्षेपी नहीं हो सकता है किन्तु इसे सिकुड़कर अंतःक्षेपी (इस प्रकार भिन्नरूपी) बनाना संभव है <math>U</math> (अभी के लिए, देखें [https://amathew.wordpress.com/2009/11/05/the-tubular-neighborhood-theorem/#more-636])।
इसे मैनिफ़ोल्ड पर रीमैनियन मीट्रिक डालकर सिद्ध किया जा सकता है <math>M</math>. मुख्य रूप से, मीट्रिक का चुनाव सामान्य बंडल बनाता है <math>\nu_i</math> के लिए एक पूरक बंडल <math>TN</math>; अर्थात।, <math>TM|_N</math> का सीधा योग है <math>TN</math> और <math>\nu_N</math>. फिर, मीट्रिक का उपयोग करके, हमारे पास घातांकीय मानचित्र होता है <math>\exp : U \to V</math> कुछ पड़ोस के लिए <math>U</math> का <math>N</math> सामान्य बंडल में <math>\nu_N</math> किसी पड़ोस में <math>V</math> का <math>N</math> में <math>M</math>. यहां घातांकीय मानचित्र अंतःक्षेपी नहीं हो सकता है किन्तु इसे सिकुड़कर अंतःक्षेपी (इस प्रकार भिन्नरूपी) बनाना संभव है <math>U</math> (अभी के लिए, देखें [https://amathew.wordpress.com/2009/11/05/the-tubular-neighborhood-theorem/#more-636])।


<!--The theorem applies in particular to the boundary of a compact manifold <math>M</math>. In that case, the normal bundle is trivial (as it is so for half-spaces) and so the theorem states that the boundary has a neighborhood diffeomorphic to <math>\partial M \times [0, 1)</math>.--><!-- An alternative approach is to use the [[Whitney extension theorem]], which should be mentioned. -->
 
<!--प्रमेय विशेष रूप से एक कॉम्पैक्ट मैनिफोल्ड की सीमा पर लागू होता है <math>M</math>. उस स्थिति में, सामान्य बंडल तुच्छ है (जैसा कि आधे-रिक्त स्थानों के लिए है) और इसलिए प्रमेय बताता है कि सीमा में पड़ोस भिन्न है <math>\partial M \times [0, 1)</math>.--><!-- एक वैकल्पिक दृष्टिकोण [[व्हिटनी एक्सटेंशन प्रमेय]] का उपयोग करना है, जिसका उल्लेख किया जाना चाहिए। -->
 




अनेक गुना और वितरण घनत्व पर एकीकरण
'''अनेक गुना और वितरण घनत्व पर एकीकरण'''


मैनिफोल्ड्स पर एकीकरण के विषय का प्रारंभिक बिंदु यह है कि मैनिफोल्ड्स पर कार्यों को एकीकृत करने का कोई अपरिवर्तनीय विधि नहीं है। यह स्पष्ट हो सकता है यदि हमने पूछा: एक परिमित-आयामी वास्तविक सदिश स्थान पर कार्यों का एकीकरण क्या है? (इसके विपरीत, विभेदीकरण करने का एक अपरिवर्तनीय विधि है, क्योंकि परिभाषा के अनुसार, मैनिफोल्ड एक विभेदक संरचना के साथ आता है)। एकीकरण सिद्धांत को अनेक गुना प्रस्तुतकरने के अनेक तरीके हैं:
मैनिफोल्ड्स पर एकीकरण के विषय का प्रारंभिक बिंदु यह है कि मैनिफोल्ड्स पर कार्यों को एकीकृत करने का कोई अपरिवर्तनीय विधि नहीं है। यह स्पष्ट हो सकता है यदि हमने पूछा: एक परिमित-आयामी वास्तविक सदिश स्थान पर कार्यों का एकीकरण क्या है? (इसके विपरीत, विभेदीकरण करने का एक अपरिवर्तनीय विधि है, क्योंकि परिभाषा के अनुसार, मैनिफोल्ड एक विभेदक संरचना के साथ आता है)। एकीकरण सिद्धांत को अनेक गुना प्रस्तुतकरने के अनेक तरीके हैं:
Line 356: Line 365:
== सामान्यीकरण ==
== सामान्यीकरण ==


=== अनंत-आयामी [[मानक स्थान]]ों तक विस्तार ===
=== अनंत-आयामी [[मानक स्थान|मानक स्थानों]] तक विस्तार ===


विभेदीकरण जैसी धारणाएँ मानक स्थानों तक फैली हुई हैं।
विभेदीकरण जैसी धारणाएँ मानक स्थानों तक फैली हुई हैं।
Line 371: Line 380:
{{reflist}}
{{reflist}}
== संदर्भ ==
== संदर्भ ==
*{{citation | last = do Carmo|first =Manfredo P. |authorlink=Manfredo do Carmo | title=Differential Geometry of Curves and Surfaces | publisher=Prentice-Hall | year=1976 | isbn = 978-0-13-212589-5}}
*{{citation | last = कार्मो करो|first =मैनफ्रेडो पी. |authorlink=मैनफ्रेडो डो कार्मो | title=वक्रों और सतहों की विभेदक ज्यामिति | publisher=शागिर्द कक्ष | year=1976 | isbn = 978-0-13-212589-5}}
*{{citation |last=Edwards |first=Charles Henry |title=Advanced Calculus of Several Variables |publisher=Dover Publications |location=Mineola, New York |year=1994 |orig-year=1973 |isbn=0-486-68336-2}}
*{{citation |last=एडवर्ड्स |first=चार्ल्स हेनरी |title=कई वेरिएबल्स का उन्नत कैलकुलस |publisher=डोवर प्रकाशन |location=माइनोला, न्यूयॉर्क |year=1994 |orig-year=1973 |isbn=0-486-68336-2}}
*{{citation |first=Gerald|last= Folland| author-link= Gerald Folland|title=Real Analysis: Modern Techniques and Their Applications|edition= 2nd}}
*{{citation |first=गेराल्ड|last= फोलैंड| author-link= जेराल्ड फोलैंड|title=वास्तविक विश्लेषण: आधुनिक तकनीकें और उनके अनुप्रयोग|edition= 2nd}}
*{{citation|title=Calcul Differentiel|language=fr|first=Henri|last= Cartan|authorlink= Henri Cartan|
*{{citation|title=कैलकुलेशन डिफरेंशियल|language=fr|first=हेनरी|last= कार्टन|authorlink= हेनरी कार्टन|
publisher=[[Éditions Hermann|Hermann]]|year= 1971|isbn=9780395120330}}
publisher=[[संस्करण हरमन|हरमन]]|year= 1971|isbn=9780395120330}}
*{{citation |first=Morris |last=Hirsch |title=Differential Topology |edition=2nd |publisher=Springer-Verlag |year=1994}}
*{{citation |first=मॉरिस |last=हिर्श |title=विभेदक टोपोलॉजी |edition=2nd |publisher=स्प्रिंगर-वेरलाग |year=1994}}
*{{citation|title=The Analysis of Linear Partial Differential Operators I: Distribution Theory and Fourier Analysis|series=Classics in Mathematics|first=Lars|last= Hörmander|authorlink=Lars Hörmander|publisher=Springer|year= 2015|edition=2nd|
*{{citation|title=The Analysis of Linear Partial Differential Operators I: Distribution Theory and Fourier Analysis|series=Classics in Mathematics|first=Lars|last= Hörmander|authorlink=Lars Hörmander|publisher=Springer|year= 2015|edition=2nd|
isbn= 9783642614972}}
isbn= 9783642614972}}

Revision as of 13:00, 26 July 2023

गणित में, यूक्लिडियन स्थान पर कैलकुलस, यूक्लिडियन स्पेस पर कार्यों के कैलकुलस के लिए एक या अनेक चर में कार्यों के कैलकुलस का एक सामान्यीकरण है। साथ ही एक परिमित-आयामी वास्तविक सदिश स्थान है। इस कैलकुलस को विशेष रूप से संयुक्त राज्य अमेरिका में उन्नत कैलकुलस के रूप में भी जाना जाता है। यह बहुपरिवर्तनीय कैलकुलस के समान है, किन्तु किसी भी तरह से अधिक परिष्कृत है क्योंकि यह रैखिक बीजगणित (या कुछ कार्यात्मक विश्लेषण) का अधिक व्यापक रूप से उपयोग करता है और अंतर ज्यामिति से कुछ अवधारणाओं को सम्मिलित करता है जैसे कि अंतर रूपों और अंतर रूपों के संदर्भ में स्टोक्स का सूत्र। रैखिक बीजगणित का यह व्यापक उपयोग बानाच रिक्त स्थान या टोपोलॉजिकल सदिश रिक्त स्थान पर कैलकुलस के लिए बहुपरिवर्तनीय कैलकुलस के प्राकृतिक सामान्यीकरण की भी अनुमति देता है।

यूक्लिडियन स्पेस पर कैलकुलस भी मैनिफोल्ड्स पर कैलकुलस का एक स्थानीय मॉडल है, जो मैनिफोल्ड्स पर कार्यों का एक सिद्धांत है।

मूलभूतधारणाएँ

एक वास्तविक चर में कार्य

यह खंड एक-चर कलन में फलन सिद्धांत की एक संक्षिप्त समीक्षा है।

एक वास्तविक-मूल्यवान कार्य पर निरंतर है यदि यह लगभग स्थिर है ; अर्थात।,

इसके विपरीत, फलन पर भिन्न है यदि यह लगभग रैखिक है ; अर्थात, कुछ वास्तविक संख्या है ऐसा है कि

[1]

(सरलता के लिए, मान लीजिए . तब फिर उपरोक्त का कारणयही है कहाँ h, 0 पर जाने की तुलना में तेजी से 0 पर जाता है और, इस अर्थ में, जैसा व्यवहार करता है .)

जो नंबर पर निर्भर करता है और इस प्रकार दर्शाया गया है . यदि खुले अंतराल पर अवकलनीय है और यदि पर एक सतत कार्य है , तब सी कहा जाता है1फलन. सामान्यतः अधिक, सी कहा जाता हैk फलन यदि यह व्युत्पन्न है सी हैk-1फलन। टेलर के प्रमेय में कहा गया है कि एक सीk फलन वास्तव में एक फलन है जिसे डिग्री k के बहुपद द्वारा अनुमानित किया जा सकता है।

यदि एक सी है1कार्य और कुछ के लिए , तब कोई या ; अर्थात, या तब किसी खुले अंतराल में सख्ती से बढ़ रहा है या सख्ती से घट रहा है। विशेष रूप से, कुछ खुले अंतराल के लिए विशेषण है युक्त . व्युत्क्रम फलन प्रमेय तब कहता है कि व्युत्क्रम फलन यू पर डेरिवेटिव के साथ अवकलनीय है: के लिए

मानचित्र और श्रृंखला नियम का व्युत्पन्न

कार्यों के लिए समतल में या अधिक सामान्यतः यूक्लिडियन स्थान पर परिभाषित , उन कार्यों पर विचार करना आवश्यक है जो सदिश-मूल्यवान या आव्युह-मूल्यवान हैं। इसे अपरिवर्तनीय तरीके से (अर्थात, समन्वय-मुक्त तरीके से) करना वैचारिक रूप से भी सहायक है। किसी बिंदु पर ऐसे मानचित्रों के व्युत्पन्न तब सदिश या रैखिक मानचित्र होते हैं, वास्तविक संख्याएँ नहीं।

होने देना एक खुले उपसमुच्चय से एक मानचित्र बनें का एक खुले उपसमुच्चय के लिए का . फिर नक्शा एक बिंदु पर अवकलनीय फलन कहा जाता है में यदि कोई (आवश्यक रूप से अद्वितीय) रैखिक परिवर्तन उपस्तिथ है , का व्युत्पन्न कहा जाता है पर , ऐसा है कि

कहाँ रैखिक परिवर्तन का अनुप्रयोग है को .[2] यदि पर भिन्न है , तब यह निरंतर है तब से

जैसा .

जैसा कि एक-चर चूँकिमें है, वहाँ है

श्रृंखला नियम — [3] Let ऊपर जैसा हो और कुछ खुले उपसमुच्चय के लिए एक मानचित्र of . If पर भिन्न है and पर भिन्न , फिर रचना पर भिन्न है व्युत्पन्न के साथ

यह बिल्कुल एक चर में कार्यों के लिए सिद्ध होता है। मुख्य रूप से, संकेतन के साथ , अपने पास:

यहाँ, तब से पर भिन्न है , दाईं ओर दूसरा पद शून्य हो जाता है . जहाँ तक पहले पद की बात है, इसे इस प्रकार लिखा जा सकता है:

अभी, निरंतरता दर्शाने वाले तर्क से पर , हम देखते हैं घिरा है। भी, जैसा तब से पर निरंतर है . इसलिए, पहला पद भी शून्य हो जाता है की भिन्नता से पर . वो नक्शा जैसा कि ऊपर कहा गया है निरंतर अवकलनीय या यदि यह डोमेन पर भिन्न है और डेरिवेटिव भी लगातार भिन्न होते हैं; अर्थात।, सतत है.

उपप्रमेय — If फिर, लगातार भिन्न होते हैं निरंतर भिन्न है।

एक रैखिक परिवर्तन के रूप में, एक द्वारा दर्शाया गया है -आव्युह, जिसे जैकोबियन आव्युह कहा जाता है का पर और हम इसे इस प्रकार लिखते हैं:

ले रहा होना , एक वास्तविक संख्या और जे-वें मानक आधार तत्व, हम देखते हैं कि भिन्नता पर तात्पर्य:

कहाँ के i-वें घटक को दर्शाता है . अर्थात प्रत्येक घटक पर भिन्न है व्युत्पन्न के साथ प्रत्येक चर में . जैकोबियन आव्युह के संदर्भ में, श्रृंखला नियम कहता है ; अर्थात, जैसे ,

जो शृंखला नियम का वह रूप है जो अधिकांशतः बताया जाता है।

उपरोक्त का आंशिक उलटा ही सही है। अर्थात्, यदि आंशिक व्युत्पन्न तब, सभी परिभाषित और निरंतर हैं निरंतर भिन्न है।[4] यह माध्य मूल्य असमानता का परिणाम है:

Mean value inequality — [5] Given the map as above and points in such that the line segment between lies in , if is continuous on and is differentiable on the interior, then, for any vector ,

where

(माध्य मूल्य असमानता का यह संस्करण माध्य मूल्य असमानता से अनुसरण करता है माध्य मान प्रमेय वेक्टर-मूल्यवान कार्यों के लिए माध्य मान प्रमेय § Notes फलन पर क्रियान्वित किया गया , जहां माध्य मूल्य असमानता पर प्रमाण दिया गया है।)

वास्तव में, चलो . हम ध्यान दें कि, यदि , तब

सरलता के लिए, मान लीजिए (सामान्य चूँकिके लिए तर्क समान है)। फिर, औसत मूल्य असमानता से, ऑपरेटर मानदंड के साथ ,

जो यह दर्शाता हे आवश्यकता अनुसार।

उदाहरण: चलो आकार n के सभी व्युत्क्रमणीय वास्तविक वर्ग आव्यूहों का समुच्चय बनें। टिप्पणी के एक खुले उपसमुच्चय के रूप में पहचाना जा सकता है निर्देशांक के साथ . फलन पर विचार करें = का व्युत्क्रम आव्युह पर परिभाषित . इसके व्युत्पन्न का अनुमान लगाने के लिए, मान लें अवकलनीय है और वक्र पर विचार करें कहाँ का कारणआव्युह घातांक है . श्रृंखला नियम द्वारा क्रियान्वित किया गया , अपने पास:

.

ले रहा , हम पाते हैं:

.

अभी, हमारे पास है:[6]

चूंकि ऑपरेटर मानदंड यूक्लिडियन मानदंड के सामान्तर है (कोई भी मानदंड एक दूसरे के समतुल्य हैं), इसका तात्पर्य है विभेदनीय है. अंत में, सूत्र से , हम इसका आंशिक व्युत्पन्न देखते हैं चिकने हैं (असीम रूप से भिन्न); कहाँ से, चिकना भी है.

उच्च डेरिवेटिव और टेलर सूत्र

यदि जहाँ भिन्न है एक खुला उपसमुच्चय है, तब व्युत्पन्न मानचित्र निर्धारित करते हैं , कहाँ सदिश स्थानों के मध्य समरूपता को दर्शाता है; अर्थात, रैखिक मानचित्र। यदि तब फिर, भिन्न-भिन्न है . यहाँ, का कोडोमेन द्विरेखीय मानचित्रों के स्थान से इसकी पहचान निम्न द्वारा की जा सकती है:

कहाँ और व्युत्क्रम के साथ विशेषण है द्वारा दिए गए .[lower-alpha 1] सामान्य रूप में, से एक नक्शा है के स्थान पर -बहुरेखीय मानचित्र .

जिस प्रकार एक आव्युह (जैकोबियन आव्युह) द्वारा दर्शाया जाता है, जब (एक द्विरेखीय मानचित्र एक द्विरेखीय रूप है), द्विरेखीय रूप एक आव्युह द्वारा दर्शाया जाता है जिसे हेस्सियन आव्युह कहा जाता है पर ; अर्थात्, वर्ग आव्युह आकार का ऐसा है कि , जहां परिंग का तात्पर्य किसी आंतरिक उत्पाद से है , और जैकोबियन आव्युह के अतिरिक्त और कोई नहीं है . वें>-वें की प्रविष्टि इस प्रकार स्पष्ट रूप से दिया गया है .

इसके अतिरिक्त, यदि अस्तित्व में है और निरंतर है, फिर आव्युह सममित आव्युह है, इस तथ्य को दूसरे डेरिवेटिव की समरूपता के रूप में जाना जाता है।[7] इसे औसत मूल्य असमानता का उपयोग करके देखा जाता है। वैक्टर के लिए में , औसत मूल्य असमानता का दो बार उपयोग करने पर, हमारे पास है:

जो कहते हैं

चूँकि दाहिना भाग सममित है , बाईं ओर भी ऐसा ही है: . प्रेरण द्वारा, यदि है , फिर k-बहुरेखीय मानचित्र सममित है; अर्थात, आंशिक व्युत्पन्न लेने का क्रम कोई मायने नहीं रखता।[7]

जैसा कि एक चर के चूँकिमें, टेलर श्रृंखला विस्तार को भागों द्वारा एकीकरण द्वारा सिद्ध किया जा सकता है:

टेलर के सूत्र में किसी फलन को चर द्वारा विभाजित करने का प्रभाव होता है, जिसे सूत्र के अगले विशिष्ट सैद्धांतिक उपयोग द्वारा चित्रित किया जा सकता है।

उदाहरण:[8] होने देना सदिश समष्टि के मध्य एक रेखीय मानचित्र बनें सुचारू कार्यों पर तेजी से घटते डेरिवेटिव के साथ; अर्थात।, किसी भी मल्टी-इंडेक्स के लिए . (अंतरिक्ष श्वार्ट्ज स्थान कहा जाता है।) प्रत्येक के लिए में , टेलर का सूत्र बताता है कि हम लिख सकते हैं:

साथ , कहाँ कॉम्पैक्ट समर्थन के साथ एक सुचारू कार्य है और . अभी, मान लीजिए निर्देशांक के साथ आवागमन; अर्थात।, . तब

.

उपरोक्त का मूल्यांकन करते हुए , हम पाते हैं दूसरे शब्दों में, किसी फलन द्वारा गुणन है ; अर्थात।, . अभी आगे मान लीजिये आंशिक भिन्नता के साथ आवागमन करता है। फिर हम उसे आसानी से देख पाते हैं एक स्थिरांक है; एक स्थिरांक से गुणा है.

(एक तरफ: उपरोक्त चर्चा फूरियर व्युत्क्रम सूत्र को लगभग सिद्ध करती है। वास्तव में, चलो फूरियर रूपांतरण और प्रतिबिंब बनें; अर्थात।, . फिर, इसमें सम्मिलित अभिन्न अंग से सीधे निपटते हुए, कोई भी देख सकता है निर्देशांक और आंशिक विभेदन के साथ आवागमन; इस तरह, एक स्थिरांक से गुणा है. यह लगभग एक प्रमाण है क्योंकि किसी को अभी भी इस स्थिरांक की गणना करनी है।)

टेलर सूत्र का आंशिक विपरीत भी है; बोरेल की लेम्मा और व्हिटनी विस्तार प्रमेय देखें।

व्युत्क्रम फलन प्रमेय और निमज्जन प्रमेय

व्युत्क्रम फलन प्रमेय — Let खुले उपसमुच्चय के बीच एक मानचित्र बनें in . If निरंतर भिन्न है (या अधिक सामान्यतः ) and विशेषण है, पड़ोस मौजूद हैं of और उलटा वह लगातार भिन्न होता है (या क्रमशः) ).

-मानचित्र के साथ - व्युत्क्रम को a कहा जाता है -विभिन्नरूपता. इस प्रकार, प्रमेय कहता है कि, एक मानचित्र के लिए एक बिंदु पर परिकल्पना को संतुष्ट करना , निकट एक भिन्नरूपता है प्रमाण के लिए देखें व्युत्क्रम फलन प्रमेय क्रमिक सन्निकटन का उपयोग करते हुए एक प्रमाण § Notes.

अंतर्निहित कार्य प्रमेय कहता है:[9] एक नक्शा दिया , यदि , है के एक पड़ोस में और का व्युत्पन्न पर उलटा है, तब एक भिन्न मानचित्र उपस्तिथ है कुछ पड़ोस के लिए का ऐसा है कि . प्रमेय व्युत्क्रम फलन प्रमेय से अनुसरण करता है; देखना व्युत्क्रम फलन प्रमेय निहित फलन प्रमेय § Notes.

एक अन्य परिणाम विसर्जन प्रमेय है।

यूक्लिडियन स्पेस पर इंटीग्रेबल फ़ंक्शंस

एक अंतराल का विभाजन एक सीमित क्रम है . एक विभाजन एक आयत का (अंतराल का उत्पाद) में फिर इसके किनारों के विभाजन सम्मिलित हैं ; अर्थात, यदि , तब के होते हैं ऐसा है कि का एक विभाजन है .[10] एक फलन दिया गया पर , फिर हम इसके ऊपरी रीमैन योग को इस प्रकार परिभाषित करते हैं:

कहाँ

  • का एक विभाजन तत्व है ; अर्थात।, कब का एक विभाजन है .[11]
  • आयतन का सामान्य यूक्लिडियन आयतन है; अर्थात।, .

निचला रीमैन योग का फिर प्रतिस्थापित करके परिभाषित किया जाता है द्वारा . अंत में, फलन यदि यह परिबद्ध है तब इसे पूर्णांकीय फलन कहा जाता है . उस स्थिति में, सामान्य मान को इस प्रकार दर्शाया जाता है .[12]

का एक उपसमुच्चय कहा जाता है कि प्रत्येक के लिए माप शून्य है , कुछ संभवतः अपरिमित रूप से अनेक आयतें हैं जिसके संघ में समुच्चय और सम्मिलित है [13] एक प्रमुख प्रमेय है

प्रमेय — [14] एक बंधा हुआ कार्य एक बंद आयत पर पूर्णांक है यदि और केवल यदि सेट हो माप शून्य है.

अगला प्रमेय हमें एक फलन के इंटीग्रल की गणना एक-चर में फलन के इंटीग्रल्स की पुनरावृत्ति के रूप में करने की अनुमति देता है:

फ़ुबिनी का प्रमेय — If एक बंद आयत पर एक सतत फलन है (वास्तव में, यह धारणा बहुत मजबूत है), तो

विशेष रूप से, एकीकरण का क्रम बदला जा सकता है।

अंततः, यदि एक परिबद्ध खुला उपसमुच्चय है और एक फलन चालू , फिर हम परिभाषित करते हैं कहाँ एक बंद आयत है जिसमें और पर विशेषता कार्य है ; अर्थात।, यदि और यदि परंतु अभिन्न है.[15]

सतह अभिन्न

यदि एक घिरी हुई सतह में द्वारा पैरामीट्रिज्ड किया गया है डोमेन के साथ , फिर एक मापने योग्य फलन का सतह अभिन्न अंग पर परिभाषित और निरूपित किया गया है:

यदि सदिश-मूल्यवान है, तब हम परिभाषित करते हैं

कहाँ के लिए एक बाहरी इकाई सामान्य सदिश है . तब से , अपने पास:

सदिश विश्लेषण

स्पर्शरेखा सदिश और सदिश क्षेत्र

होने देना एक अवकलनीय वक्र बनें। फिर वक्र का स्पर्शरेखा सदिश पर एक सदिश है बिंदु पर जिसके घटक इस प्रकार दिए गए हैं:

.[16]

उदाहरण के लिए, यदि एक हेलिक्स है, तब t पर स्पर्शरेखा सदिश है:

यह इस अंतर्ज्ञान से मेल खाता है कि हेलिक्स पर एक बिंदु एक स्थिर गति से ऊपर बढ़ता है।

यदि एक अवकलनीय वक्र या सतह है, फिर स्पर्शरेखा स्थान एक बिंदु पर p अवकलनीय वक्रों के सभी स्पर्शरेखा सदिशों का समुच्चय है साथ .

एक सदिश क्षेत्र X, M में प्रत्येक बिंदु p के लिए एक स्पर्शरेखा सदिश है पी पर एम से इस तरह कि असाइनमेंट सुचारू रूप से बदलता रहे।

विभेदक रूप

सदिश क्षेत्र की दोहरी धारणा एक विभेदक रूप है। एक खुला उपसमुच्चय दिया गया में , परिभाषा के अनुसार, एक विभेदक रूप|अंतर 1-रूप (अधिकांशतः केवल 1-रूप) एक बिंदु के लिए एक असाइनमेंट है में एक रैखिक कार्यात्मक स्पर्शरेखा स्थान पर को पर जिससे कि असाइनमेंट सुचारू रूप से बदलता रहे। एक (वास्तविक या समष्टि-मूल्यवान) सुचारू कार्य के लिए , 1-फॉर्म को परिभाषित करें द्वारा: एक स्पर्शरेखा सदिश के लिए पर ,

कहाँ के दिशात्मक व्युत्पन्न को दर्शाता है दिशा में पर .[17] उदाहरण के लिए, यदि है -th समन्वय फलन , तब ; अर्थात।, मानक आधार पर दोहरे आधार हैं . फिर प्रत्येक अंतर 1-रूप के रूप में विशिष्ट रूप से लिखा जा सकता है

कुछ सुचारु कार्यों के लिए पर (चूँकि, हर बिंदु के लिए , रैखिक कार्यात्मक का एक अनोखा रैखिक संयोजन है वास्तविक संख्या से अधिक)। अधिक सामान्यतः, एक अंतर k-फॉर्म एक बिंदु के लिए एक असाइनमेंट है में एक सदिश में -वीं बाहरी शक्ति दोहरे स्थान का का जिससे कि असाइनमेंट सुचारू रूप से बदलता रहे।[17]विशेष रूप से, 0-फ़ॉर्म एक सुचारु फलन के समान है। इसके अतिरिक्त, कोई भी -प्रपत्र विशिष्ट रूप से इस प्रकार लिखा जा सकता है:

कुछ सुचारु कार्यों के लिए .[17]

एक सुचारु कार्य की तरह, हम विभेदक रूपों को भिन्न और एकीकृत कर सकते हैं। यदि तब फिर यह एक सुचारु कार्य है इस प्रकार लिखा जा सकता है:[18]

तब से , अपने पास: . ध्यान दें कि, उपरोक्त अभिव्यक्ति में, बाईं ओर (जहां से दाईं ओर) निर्देशांक से स्वतंत्र है ; इस गुण को अंतर का अपरिवर्तनशीलता कहा जाता है।

संचालन इसे बाह्य व्युत्पन्न कहा जाता है और यह आवश्यकता के अनुसार आगमनात्मक रूप से किसी भी भिन्न रूप तक विस्तारित होता है (उत्पाद नियम)

कहाँ एक पी-फॉर्म और एक क्यू-फॉर्म हैं।

बाहरी व्युत्पन्न में वह महत्वपूर्ण गुण होता है ; वह है, बाहरी व्युत्पन्न एक भिन्न रूप का शून्य है. यह संपत्ति दूसरे डेरिवेटिव की समरूपता का परिणाम है (मिश्रित आंशिक सामान्तर हैं)।

सीमा और अभिविन्यास

एक वृत्त को दक्षिणावर्त या वामावर्त दिशा में उन्मुख किया जा सकता है। गणितीय रूप से, हम कहते हैं कि एक उपसमुच्चय का यदि सामान्य सदिशों का एक सुसंगत विकल्प हो तब उन्मुख होता है जो लगातार बदलता रहता है. उदाहरण के लिए, एक वृत्त या, अधिक सामान्यतः, एक n-गोले को उन्मुख किया जा सकता है; अर्थात, ओरिएंटेबल. दूसरी ओर, एक मोबियस पट्टी (आयत की दो विपरीत भुजाओं द्वारा घुमाकर प्राप्त की गई सतह) उन्मुख नहीं हो सकती: यदि हम एक सामान्य सदिश से प्रारंभ करते हैं और पट्टी के चारों ओर यात्रा करते हैं, तब अंत में सामान्य सदिश विपरीत दिशा की ओर संकेत करेगा।

प्रस्ताव — एक घिरा हुआ अलग-अलग क्षेत्र in आयाम का उन्मुख तभी होता है जब कहीं गायब होने वाला अस्तित्व मौजूद होता है -form on (वॉल्यूम फॉर्म कहा जाता है).

प्रस्ताव उपयोगी है क्योंकि यह हमें वॉल्यूम फॉर्म देकर एक अभिविन्यास देने की अनुमति देता है।

विभेदक रूपों का एकीकरण

यदि एक खुले उपसमुच्चय M पर एक विभेदक n-रूप है (कोई भी एन-फॉर्म वह फॉर्म है), फिर इसका एकीकरण खत्म हो गया मानक अभिविन्यास के साथ इसे इस प्रकार परिभाषित किया गया है:

यदि एम को मानक एक के विपरीत अभिविन्यास दिया गया है, तब दाहिनी ओर के ऋणात्मक के रूप में परिभाषित किया गया है।

फिर हमारे पास बाहरी व्युत्पन्न और एकीकरण से संबंधित मौलिक सूत्र है:

स्टोक्स का सूत्र — एक सीमाबद्ध क्षेत्र के लिए in आयाम का जिसकी सीमा अनंत अनेकों का मिलन है -subsets, if तब उन्मुख है

किसी भी अंतर के लिए -form सीमा पर of .

यहां सूत्र के प्रमाण का एक रेखाचित्र दिया गया है।[19] यदि पर एक सुचारू कार्य है कॉम्पैक्ट समर्थन के साथ, तब हमारे पास है:

(चूंकि, कैलकुलस के मौलिक प्रमेय द्वारा, उपरोक्त का मूल्यांकन समर्थन वाले समुच्चय की सीमाओं पर किया जा सकता है।) दूसरी ओर,

होने देना विशेषता फलन पर संपर्क करें . फिर दाहिनी ओर दूसरा पद जाता है जबकि पहला जाता है , कलन के मौलिक प्रमेय को सिद्ध करने के समान तर्क द्वारा।

सूत्र कैलकुलस के मौलिक प्रमेय के साथ-साथ बहुपरिवर्तनीय कैलकुलस में स्टोक्स प्रमेय को सामान्यीकृत करता है। वास्तव में, यदि एक अंतराल है और , तब और सूत्र कहता है:

.

इसी प्रकार, यदि में एक उन्मुखी बंधी हुई सतह है और , तब और इसी तरह के लिए और . शर्तों को एकत्रित करने पर, हमें इस प्रकार मिलता है:

फिर, के एकीकरण की परिभाषा से , अपने पास कहाँ सदिश-वैल्यू फलन है और . अत: स्टोक्स का सूत्र बन जाता है

जो सतहों पर स्टोक्स प्रमेय का सामान्य रूप है। ग्रीन का प्रमेय भी स्टोक्स के सूत्र का एक विशेष मामला है।

स्टोक्स का सूत्र कॉची के अभिन्न सूत्र का एक सामान्य संस्करण भी उत्पन्न करता है। समष्टि चर के लिए इसे बताना और सिद्ध करना और संयुग्म आइए हम ऑपरेटरों का परिचय दें

इन नोटेशन में, एक फलन होलोमोर्फिक फलन (समष्टि-विश्लेषणात्मक) है यदि और केवल यदि (कौची-रीमैन समीकरण)।

इसके अतिरिक्त, हमारे पास है:

होने देना केंद्र के साथ एक पंचर डिस्क बनें .

तब से पर होलोमोर्फिक है , अपने पास:

.

स्टोक्स के सूत्र द्वारा,

दे फिर हमें मिलता है:[20][21]

घुमावदार संख्याएं और पोंकारे लेम्मा

एक भिन्न रूप यदि बंद और त्रुटिहीन रूप कहा जाता है और त्रुटिहीन यदि कहा जाता है कुछ भिन्न रूप के लिए (अधिकांशतः क्षमता कहा जाता है)। तब से , एक त्रुटिहीन प्रपत्र बंद है. किन्तु यह बातचीत सामान्य रूप से क्रियान्वित नहीं होती; कोई गैर-त्रुटिहीन बंद प्रपत्र हो सकता है. ऐसे फॉर्म का एक उत्कृष्ट उदाहरण है:[22]

,

जो कि एक भिन्न रूप है . मान लीजिए हम ध्रुवीय निर्देशांक पर स्विच करते हैं: कहाँ . तब

इससे यह पता नहीं चलता त्रुटिहीन है: समस्या यह है पर एक अच्छी तरह से परिभाषित सतत कार्य नहीं है . चूंकि कोई भी फलन पर साथ से भिन्न स्थिरांक से इसका कारणयह है त्रुटिहीन नहीं है. चूँकि, गणना यह दर्शाती है त्रुटिहीन है, उदाहरण के लिए, पर चूँकि हम ले सकते हैं वहाँ।

एक परिणाम है (पोंकारे लेम्मा) जो एक शर्त देता है जो गारंटी देता है कि बंद किए गए फॉर्म त्रुटिहीन हैं। इसे बताने के लिए, हमें टोपोलॉजी से कुछ धारणाओं की आवश्यकता है। दो सतत मानचित्र दिए गए के उपसमुच्चय के मध्य (या अधिक सामान्यतः टोपोलॉजिकल स्पेस), से एक होमोटॉपी को एक सतत कार्य है ऐसा है कि और . सहज रूप से, एक समरूपता एक फलन से दूसरे फलन की निरंतर भिन्नता है। एक समुच्चय में एक लूप (टोपोलॉजी) एक वक्र है जिसका प्रारंभिक बिंदु अंतिम बिंदु से मेल खाता है; अर्थात।, ऐसा है कि . फिर का एक उपसमुच्चय यदि प्रत्येक लूप एक स्थिर फलन के लिए समस्थानिक है तब इसे बस जुड़ा हुआ है कहा जाता है। सरलता से जुड़े समुच्चय का एक विशिष्ट उदाहरण एक डिस्क है . मुख्य रूप से, एक लूप दिया गया है , हमारे पास समरूपता है से निरंतर कार्य के लिए . दूसरी ओर, एक छिद्रित डिस्क, बस कनेक्ट नहीं होती है।

पोंकारे लेम्मा — If का एक सरल रूप से जुड़ा हुआ खुला उपसमुच्चय है , फिर प्रत्येक को 1-फॉर्म पर बंद कर दिया गया सटीक है.

वक्रों और सतहों की ज्यामिति

चलता हुआ फ्रेम

सदिश फ़ील्ड पर यदि वह प्रत्येक बिंदु पर एक-दूसरे के ओर्थोगोनल हैं, तब उन्हें फ़्रेम फ़ील्ड कहा जाता है; अर्थात।, प्रत्येक बिंदु पर.[23] मूल उदाहरण मानक फ़्रेम है ; अर्थात।, प्रत्येक बिंदु के लिए एक मानक आधार है में . दूसरा उदाहरण बेलनाकार फ्रेम है

[24]

किसी वक्र की ज्यामिति के अध्ययन के लिए, उपयोग किया जाने वाला महत्वपूर्ण फ्रेम फ़्रेनेट फ़्रेम है एक इकाई-गति वक्र पर इस प्रकार दिया गया:

गॉस-बोनट प्रमेय

गॉस-बोनट प्रमेय किसी सतह की टोपोलॉजी और उसकी ज्यामिति से संबंधित है।

गॉस-बोनट प्रमेय — [25] प्रत्येक घिरी हुई सतह के लिए in , अपने पास:

where यूलर की विशेषता है and वक्रता.

विविधताओं की गणना

लैग्रेंज गुणक की विधि

लैग्रेंज गुणक — [26] Let के खुले उपसमुच्चय से एक अवकलनीय फलन बनें such that has rank at every point in . For a differentiable function , if एक बिंदु पर अधिकतम या न्यूनतम प्राप्त करता है in , तब वास्तविक संख्याएँ मौजूद होती हैं such that

.

दूसरे शब्दों में, is a stationary point of .

समुच्चय सामान्यतः इसे बाधा कहा जाता है।

उदाहरण:[27] मान लीजिए हम वृत्त के मध्य न्यूनतम दूरी ज्ञात करना चाहते हैं और रेखा . इसका कारणहै कि हम फलन को छोटा करना चाहते हैं , एक बिंदु के मध्य की वर्ग दूरी वृत्त और एक बिंदु पर लाइन पर, बाधा के अनुसार . अपने पास:

जैकोबियन आव्युह के पश्चात् से हर स्थान 2 रैंक पर है , लैग्रेंज गुणक देता है:

यदि , तब , संभव नहीं। इस प्रकार, और

इससे यह बात आसानी से समझ में आ जाती है और . अत: न्यूनतम दूरी है (न्यूनतम दूरी स्पष्ट रूप से उपस्तिथ है)।

यहां रैखिक बीजगणित का एक अनुप्रयोग है।[28] होने देना एक परिमित-आयामी वास्तविक सदिश स्थान बनें और एक स्व-सहायक ऑपरेटर। हम दिखाएंगे के eigenvectors से युक्त एक आधार है (अर्थात।, विकर्णीय है) के आयाम पर प्रेरण द्वारा . आधार का चयन करना हम पहचान सकते हैं और आव्युह द्वारा दर्शाया गया है . फलन पर विचार करें , जहां ब्रैकेट का कारणआंतरिक उत्पाद है। तब . दूसरी ओर, के लिए , तब से सघन है, एक बिंदु पर अधिकतम या न्यूनतम प्राप्त करता है में . तब से , लैग्रेंज गुणक द्वारा, हम एक वास्तविक संख्या पाते हैं ऐसा है कि किन्तु इसका कारणहै . आगमनात्मक परिकल्पना द्वारा, स्व-सहायक संचालिका , ओर्थोगोनल पूरक , eigenvectors से युक्त एक आधार है। इसलिए, हमारा काम हो गया। .

अशक्त व्युत्पन्न

माप-शून्य समुच्चय तक, दो कार्यों को अन्य कार्यों (जिन्हें परीक्षण फलन कहा जाता है) के विरुद्ध एकीकरण के माध्यम से सामान्तर या नहीं निर्धारित किया जा सकता है। अर्थात्, निम्नलिखित को कभी-कभी विविधताओं के कलन की मौलिक प्रमेयिका कहा जाता है:

लेम्मा[29] — If एक खुले उपसमुच्चय पर स्थानीय रूप से एकीकृत कार्य हैं such that

for every (called a test function). Then लगभग हर जगह। यदि, इसके अतिरिक्त, तो फिर, निरंतर हैं .

एक सतत कार्य दिया गया , लेम्मा द्वारा, एक निरंतर भिन्न कार्य इस प्रकार कि यदि और केवल यदि

हरएक के लिए . किन्तु, भागों द्वारा एकीकरण द्वारा, बाईं ओर आंशिक व्युत्पन्न के उस पर ले जाया जा सकता है ; अर्थात।,

जहाँ से कोई सीमा शब्द नहीं है कॉम्पैक्ट समर्थन है. अभी मुख्य बात यह है कि यह अभिव्यक्ति यदि समझ में आती हो यह आवश्यक रूप से भिन्न नहीं है और इस प्रकार ऐसे फलन के व्युत्पन्न को समझने के लिए इसका उपयोग किया जा सकता है।

प्रत्येक स्थानीय रूप से एकीकृत फलन पर ध्यान दें रैखिक कार्यात्मकता को परिभाषित करता है पर और, इसके अतिरिक्त, प्रारंभिक लेम्मा के कारण, प्रत्येक स्थानीय रूप से एकीकृत फलन को ऐसे रैखिक फलनल के साथ पहचाना जा सकता है। इसलिए, सामान्यतः, यदि पर एक रैखिक कार्यात्मक है , फिर हम परिभाषित करते हैं रैखिक कार्यात्मक होना जहां ब्रैकेट का कारणहै . तब इसे इसका अशक्त व्युत्पन्न कहा जाता है इसके संबंध में . यदि निरंतर अवकलनीय है, तब इसका अशक्त व्युत्पन्न सामान्य के साथ मेल खाता है; अर्थात, रैखिक कार्यात्मक के सामान्य आंशिक व्युत्पन्न द्वारा निर्धारित रैखिक कार्यात्मक के समान है इसके संबंध में . एक सामान्य व्युत्पन्न को अधिकांशतः मौलिक व्युत्पन्न कहा जाता है। जब एक रैखिक कार्यात्मक पर एक निश्चित टोपोलॉजी के संबंध में निरंतर है , ऐसे रैखिक कार्यात्मक को वितरण (गणित) कहा जाता है, जो एक सामान्यीकृत फलन का एक उदाहरण है।

अशक्त व्युत्पन्न का एक उत्कृष्ट उदाहरण हेविसाइड फलन है , अंतराल पर विशेषता कार्य .[30] प्रत्येक परीक्षण फलन के लिए , अपने पास:

होने देना रैखिक कार्यात्मक को निरूपित करें , जिसे डिराक डेल्टा फलन कहा जाता है (चूँकि यह वास्तव में एक फलन नहीं है)। फिर उपरोक्त को इस प्रकार लिखा जा सकता है:

कॉची के अभिन्न सूत्र की अशक्त डेरिवेटिव के संदर्भ में समान व्याख्या है। समष्टि चर के लिए , होने देना . एक परीक्षण फलन के लिए , यदि डिस्क का समर्थन सम्मिलित है कॉची के अभिन्न सूत्र द्वारा, हमारे पास है:

तब से , इसका कारणयह है:

या

[31] सामान्यतः, एक सामान्यीकृत फलन को रैखिक आंशिक अंतर ऑपरेटर के लिए मौलिक समाधान कहा जाता है यदि ऑपरेटर का अनुप्रयोग डायराक डेल्टा है। इसलिए, ऊपर कहा गया है विभेदक ऑपरेटर के लिए मौलिक समाधान है .

हैमिल्टन-जैकोबी सिद्धांत

मैनिफोल्ड्स पर कैलकुलस

अनेक गुना की परिभाषा

इस अनुभाग के लिए सामान्य टोपोलॉजी में कुछ पृष्ठभूमि की आवश्यकता होती है।

अनेक गुना एक हॉसडॉर्फ टोपोलॉजिकल स्पेस है जिसे स्थानीय रूप से यूक्लिडियन स्पेस द्वारा मॉडल किया गया है। परिभाषा के अनुसार, एक टोपोलॉजिकल स्पेस का एटलस (गणित) मानचित्रों का एक समुच्चय है , जिसे चार्ट कहा जाता है, जैसे कि

  • का एक खुला आवरण हैं ; अर्थात, प्रत्येक खुला है और ,
  • एक समरूपता है और
  • चिकना है; इस प्रकार एक भिन्नतावाद।

परिभाषा के अनुसार, मैनिफोल्ड एक अधिकतम एटलस (जिसे एक भिन्न संरचना कहा जाता है) के साथ एक दूसरी-गणनीय हॉसडॉर्फ टोपोलॉजिकल स्पेस है; मैक्सिमम का कारण है कि यह सख्ती से बड़े एटलस में सम्मिलित नहीं है। अनेक गुना का आयाम मॉडल यूक्लिडियन स्पेस का आयाम है ; अर्थात्, और मैनिफोल्ड को एन-मैनिफोल्ड कहा जाता है जब इसका आयाम एन होता है। मैनिफ़ोल्ड पर एक फलन यदि चिकनी कहा जाता है चिकनी है प्रत्येक चार्ट के लिए भिन्न संरचना में.

मैनिफोल्ड पैराकॉम्पैक्ट स्पेस है; इसका निहितार्थ यह है कि यह किसी दिए गए खुले आवरण के अधीन एकता के विभाजन को स्वीकार करता है।

यदि ऊपरी आधे स्थान द्वारा प्रतिस्थापित किया जाता है , तब हमें सीमा के साथ अनेक गुना की धारणा प्राप्त होती है। बिंदुओं का समूह जो की सीमा को दर्शाता है चार्ट के अंतर्गत इसे दर्शाया गया है और की सीमा कहलाती है . यह सीमा टोपोलॉजिकल सीमा नहीं हो सकती है . के आंतरिक भाग के पश्चात् से से भिन्न है , मैनिफोल्ड खाली सीमा के साथ एक मैनिफोल्ड-विथ-बाउंड्री है।

अगला प्रमेय अनेक गुनाओं के अनेक उदाहरण प्रस्तुत करता है।

Theorem — [32] Let एक खुले उपसमुच्चय से भिन्न मानचित्र बनें ऐसा है कि रैंक है for every point in . Then the zero set is an -manifold.

उदाहरण के लिए, के लिए , व्युत्पन्न हर बिंदु पर एक रैंक है में . इसलिए, n-गोला एक एन-मैनिफोल्ड है। प्रमेय को व्युत्क्रम फलन प्रमेय के परिणाम के रूप में सिद्ध किया गया है।

अनेक परिचित मैनिफोल्ड्स के उपसमुच्चय हैं . अगला सैद्धांतिक रूप से महत्वपूर्ण परिणाम कहता है कि किसी अन्य प्रकार की विविधता उपस्तिथ नहीं है। विसर्जन एक सहज मानचित्र है जिसका अंतर विशेषणात्मक होता है। एम्बेडिंग एक ऐसा विसर्जन है जो छवि के लिए होमियोमॉर्फिक (इस प्रकार भिन्न-रूपी) होता है।

व्हिटनी का एम्बेडिंग प्रमेय — प्रत्येक -मैनिफोल्ड को इसमें एम्बेड किया जा सकता है .

इस बात का प्रमाण कि इसमें अनेकता समाहित की जा सकती है कुछ के लिए एन अधिक आसान है और यहां आसानी से दिया जा सकता है। यह ज्ञात है कि मैनिफोल्ड का एक सीमित एटलस होता है . होने देना ऐसे सुचारु कार्य हों और ढकना (उदाहरण के लिए, एकता का विभाजन)। मानचित्र पर विचार करें

यह देखना आसान है एक इंजेक्शन विसर्जन है. यह एम्बेडिंग नहीं हो सकता है. इसे ठीक करने के लिए, हम इसका उपयोग करेंगे:

कहाँ एक सहज उचित मानचित्र है. एक सुचारू उचित मानचित्र का अस्तित्व एकता के विभाजन का परिणाम है। विसर्जन के चूँकिमें बाकी प्रमाण के लिए [1] देखें।

नैश का एम्बेडिंग प्रमेय कहता है कि, यदि रीमैनियन मीट्रिक से सुसज्जित है, तब एम्बेडिंग को बढ़ने के खर्च के साथ आइसोमेट्रिक माना जा सकता है ; इसके लिए, यह टी. ताओ का ब्लॉग देखें।

ट्यूबलर पड़ोस और ट्रांसवर्सलिटी

विधि ी रूप से महत्वपूर्ण परिणाम है:

Tubular neighborhood theorem — मान लीजिए M अनेक गुना है और एक कॉम्पैक्ट बंद सबमैनिफोल्ड। फिर एक पड़ोस मौजूद है of such that सामान्य बंडल से भिन्न है to and के शून्य खंड से मेल खाता है भिन्नता के अंतर्गत.

इसे मैनिफ़ोल्ड पर रीमैनियन मीट्रिक डालकर सिद्ध किया जा सकता है . मुख्य रूप से, मीट्रिक का चुनाव सामान्य बंडल बनाता है के लिए एक पूरक बंडल ; अर्थात।, का सीधा योग है और . फिर, मीट्रिक का उपयोग करके, हमारे पास घातांकीय मानचित्र होता है कुछ पड़ोस के लिए का सामान्य बंडल में किसी पड़ोस में का में . यहां घातांकीय मानचित्र अंतःक्षेपी नहीं हो सकता है किन्तु इसे सिकुड़कर अंतःक्षेपी (इस प्रकार भिन्नरूपी) बनाना संभव है (अभी के लिए, देखें [2])।



अनेक गुना और वितरण घनत्व पर एकीकरण

मैनिफोल्ड्स पर एकीकरण के विषय का प्रारंभिक बिंदु यह है कि मैनिफोल्ड्स पर कार्यों को एकीकृत करने का कोई अपरिवर्तनीय विधि नहीं है। यह स्पष्ट हो सकता है यदि हमने पूछा: एक परिमित-आयामी वास्तविक सदिश स्थान पर कार्यों का एकीकरण क्या है? (इसके विपरीत, विभेदीकरण करने का एक अपरिवर्तनीय विधि है, क्योंकि परिभाषा के अनुसार, मैनिफोल्ड एक विभेदक संरचना के साथ आता है)। एकीकरण सिद्धांत को अनेक गुना प्रस्तुतकरने के अनेक तरीके हैं:

  • विभेदक रूपों को एकीकृत करें।
  • किसी उपाय के विरुद्ध एकीकरण करें।
  • मैनिफोल्ड को रीमानियन मेट्रिक से सुसज्जित करें और ऐसे मेट्रिक के विरुद्ध एकीकरण करें।

उदाहरण के लिए, यदि एक मैनिफ़ोल्ड यूक्लिडियन स्थान में अंतर्निहित है , फिर यह परिवेशी यूक्लिडियन स्थान से प्रतिबंधित लेबेस्ग माप प्राप्त करता है और फिर दूसरा दृष्टिकोण काम करता है। पहला दृष्टिकोण अनेक स्थितियों में ठीक है, किन्तु इसके लिए मैनिफोल्ड को उन्मुख करने की आवश्यकता होती है (और एक गैर-उन्मुख मैनिफोल्ड है जो पैथोलॉजिकल नहीं है)। तीसरा दृष्टिकोण सामान्यीकरण करता है और यह घनत्व की धारणा को जन्म देता है।

सामान्यीकरण

अनंत-आयामी मानक स्थानों तक विस्तार

विभेदीकरण जैसी धारणाएँ मानक स्थानों तक फैली हुई हैं।

यह भी देखें

टिप्पणियाँ

  1. This is just the tensor-hom adjunction.

उद्धरण

  1. Spivak 1965, Ch 2. Basic definitions.
  2. Hörmander 2015, Definition 1.1.4.
  3. Hörmander 2015, (1.1.3.)
  4. Hörmander 2015, Theorem 1.1.6.
  5. Hörmander 2015, (1.1.2)'
  6. Hörmander 2015, p. 8
  7. 7.0 7.1 Hörmander 2015, Theorem 1.1.8.
  8. Hörmander 2015, Lemma 7.1.4.
  9. Spivak 1965, Theorem 2-12.
  10. Spivak 1965, p. 46
  11. Spivak 1965, p. 47
  12. Spivak 1965, p. 48
  13. Spivak 1965, p. 50
  14. Spivak 1965, Theorem 3-8.
  15. Spivak 1965, p. 55
  16. Spivak 1965, Exercise 4.14.
  17. 17.0 17.1 17.2 Spivak 1965, p. 89
  18. Spivak 1965, Theorem 4-7.
  19. Hörmander 2015, p. 151
  20. Theorem 1.2.1. in Hörmander, Lars (1990). An Introduction to Complex Analysis in Several Variables (Third ed.). North Holland..
  21. Spivak 1965, Exercise 4-33.
  22. Spivak 1965, p. 93
  23. O'Neill 2006, Definition 6.1.
  24. O'Neill 2006, Example 6.2. (1)
  25. O'Neill 2006, Theorem 6.10.
  26. Spivak 1965, Exercise 5-16.
  27. Edwards 1994, Ch. II, $ 5. Example 9.
  28. Spivak 1965, Exercise 5-17.
  29. Hörmander 2015, Theorem 1.2.5.
  30. Hörmander 2015, Example 3.1.2.
  31. Hörmander 2015, p. 63
  32. Spivak 1965, Theorem 5-1.

संदर्भ