फिशर-स्पीयर एस्टरीफिकेशन: Difference between revisions

From Vigyanwiki
No edit summary
 
Line 64: Line 64:
{{Alcohols}}
{{Alcohols}}
{{DEFAULTSORT:Fischer esterification}}
{{DEFAULTSORT:Fischer esterification}}
[[Category: संघनन प्रतिक्रियाएँ]] [[Category: एस्टरीफिकेशन प्रतिक्रियाएँ]] [[Category: प्रतिक्रियाओं को नाम दें]] [[Category: एमिल फिशर]] [[Category: 1895 विज्ञान में]] [[Category: 1895 जर्मनी में]]


 
[[Category:1895 जर्मनी में|Fischer esterification]]
 
[[Category:1895 विज्ञान में|Fischer esterification]]
[[Category: Machine Translated Page]]
[[Category:All articles with dead external links]]
[[Category:Created On 20/07/2023]]
[[Category:Articles with dead external links from December 2019]]
[[Category:Vigyan Ready]]
[[Category:Articles with hatnote templates targeting a nonexistent page|Fischer esterification]]
[[Category:Articles with permanently dead external links]]
[[Category:Collapse templates|Fischer esterification]]
[[Category:Coupling reactions|Fischer esterification]]
[[Category:Created On 20/07/2023|Fischer esterification]]
[[Category:Machine Translated Page|Fischer esterification]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists|Fischer esterification]]
[[Category:Pages with script errors|Fischer esterification]]
[[Category:Sidebars with styles needing conversion|Fischer esterification]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates Vigyan Ready|Fischer esterification]]
[[Category:Templates generating microformats|Fischer esterification]]
[[Category:Templates that are not mobile friendly|Fischer esterification]]
[[Category:Templates using TemplateData|Fischer esterification]]
[[Category:Wikipedia metatemplates|Fischer esterification]]
[[Category:एमिल फिशर|Fischer esterification]]
[[Category:एस्टरीफिकेशन प्रतिक्रियाएँ|Fischer esterification]]
[[Category:प्रतिक्रियाओं को नाम दें|Fischer esterification]]
[[Category:संघनन प्रतिक्रियाएँ|Fischer esterification]]

Latest revision as of 11:44, 3 August 2023

Esterification
Named after Hermann Emil Fischer
Arthur Speier
Reaction type Coupling reaction
Identifiers
Organic Chemistry Portal fischer-esterification
RSC ontology ID RXNO:0000167
फिशर-स्पीयर एस्टरीफिकेशन द्वारा मिथाइल बेंजोएट का संश्लेषण

फिशर एस्टरीफिकेशन या फिशर-स्पीयर एस्टरीफिकेशन एक अम्ल उत्प्रेरक की उपस्थिति में कार्बोज़ाइलिक अम्ल और अल्कोहल (रसायन) को रिफ्लक्स करके एक विशेष प्रकार का एस्टरीफिकेशन है। प्रतिक्रिया का वर्णन पहली बार 1895 में एमिल फिशर और आर्थर स्पीयर द्वारा किया गया था।[1] अधिकांश कार्बोक्जिलिक अम्ल प्रतिक्रिया के लिए उपयुक्त होते हैं, किन्तु अल्कोहल सामान्यतः प्राथमिक या माध्यमिक होना चाहिए। तृतीयक ऐल्कोहॉल में उन्मूलन प्रतिक्रिया की संभावना होती है। कार्बनिक रसायन विज्ञान की पाठ्यपुस्तकों में पाई जाने वाली समान्य अस्पष्टता के विपरीत, उत्पादों की लगभग मात्रात्मक उपज देने के लिए फिनोल को एस्ट्रिफ़ाइड भी किया जा सकता है।[2][3] फिशर एस्टरीफिकेशन के लिए सामान्यतः उपयोग किए जाने वाले उत्प्रेरक में सल्फ्यूरिक अम्ल , पी-टोल्यूनेसल्फ़ोनिक अम्ल और लुईस अम्ल जैसे स्कैंडियम (III) ट्राइफ्लेट सम्मिलित हैं। अधिक मूल्यवान या संवेदनशील सब्सट्रेट्स (उदाहरण के लिए, बायोमैटिरियल्स) के लिए स्टेग्लिच एस्टरीफिकेशन जैसी अन्य हल्की प्रक्रियाओं का उपयोग किया जाता है। प्रतिक्रिया अधिकांशतः विलायक के बिना की जाती है (विशेषकर जब अल्कोहल (रसायन विज्ञान) की एक बड़ी अभिकर्मक मात्रा का उपयोग किया जाता है) या डीन-स्टार्क आसवन की सुविधा के लिए एक विलायक या विलायक वर्गीकरण या गैर-ध्रुवीय विलायक (जैसे टोल्यूनि, हेक्सेन) में किया जाता है। डीन-स्टार्क विधि.[4] 60-110 डिग्री सेल्सियस के तापमान पर विशिष्ट प्रतिक्रिया समय 1-10 घंटे तक भिन्न होता है।

कार्बोक्जिलिक अम्ल के साथ अल्कोहल के सीधे एसाइलेशन को एनहाइड्राइड (व्यर्थ परमाणु अर्थव्यवस्था) या अम्ल क्लोराइड (नमी के प्रति संवेदनशील) के साथ एसाइलेशन की तुलना में प्राथमिकता दी जाती है। प्रत्यक्ष एसाइलेशन का मुख्य हानि प्रतिकूल रासायनिक संतुलन है जिसे ठीक किया जाना चाहिए (उदाहरण के लिए अभिकर्मकों में से एक की बड़ी मात्रा में), या पानी को हटाकर (उदाहरण के लिए डीन-स्टार्क आसवन, निर्जल लवण का उपयोग करके)।[5] आणविक छलनी, या अम्ल उत्प्रेरक की स्टोइकोमेट्रिक मात्रा का उपयोग करते है)।

अवलोकन

फिशर एस्टरीफिकेशन कार्बोनिल कार्बन की इलेक्ट्रोफिलिसिटी और अल्कोहल की न्यूक्लियोफिलिसिटी के आधार पर न्यूक्लियोफिलिक एसाइल प्रतिस्थापन का एक उदाहरण है। चूँकि इलेक्ट्रोफाइल के रूप में कार्बोक्जिलिक अम्ल एस्टर की तुलना में कम प्रतिक्रियाशील होते हैं। इसके अतिरिक्त, तनु तटस्थ विलयनों में वे अवक्षेपित आयन होते हैं (और इस प्रकार इलेक्ट्रोफाइल के रूप में अप्रतिक्रियाशील होते हैं)। यद्यपि किसी भी उत्प्रेरक के बिना गतिज रूप से बहुत धीमी गति से (अधिकांश एस्टर मेटास्टेबल होते हैं), शुद्ध एस्टर पानी की उपस्थिति में स्वचालित रूप से हाइड्रोलाइज हो जाते हैं, इसलिए जब बिना सहायता के किया जाता है, तो इस प्रतिक्रिया के लिए उच्च उत्पत्ति अधिक प्रतिकूल होती है।

इस प्रतिकूल प्रतिक्रिया को अनुकूल प्रतिक्रिया में बदलने के लिए कई कदम उठाए जा सकते हैं।[4]

इस प्रतिक्रिया के लिए प्रतिक्रिया तंत्र में कई चरण होते हैं:

  1. अम्ल उत्प्रेरक से कार्बोनिल ऑक्सीजन में प्रोटॉन स्थानांतरण कार्बोनिल कार्बन के इलेक्ट्रोफाइल को बढ़ाता है।
  2. फिर कार्बोनिल कार्बन पर अल्कोहल के न्यूक्लियोफाइल ऑक्सीजन परमाणु द्वारा हमला किया जाता है
  3. ऑक्सोनियम आयन से अल्कोहल के दूसरे अणु में प्रोटॉन स्थानांतरण एक सक्रिय कॉम्प्लेक्स देता है
  4. सक्रिय कॉम्प्लेक्स के हाइड्रॉक्सी समूहों में से एक का प्रोटोनेशन एक नया ऑक्सोनियम आयन देता है।
  5. इस ऑक्सोनियम आयन से पानी की हानि और उसके बाद अवक्षेपण से एस्टर मिलता है।

अम्ल फिशर एस्टरीफिकेशन के लिए एक सामान्य तंत्र नीचे दिखाया गया है।

फिशर एस्टरीफिकेशन तंत्र

लाभ और हानि

लाभ

अन्य एस्टरीकरण प्रक्रियाओं की तुलना में फिशर एस्टरीकरण के प्राथमिक लाभ इसकी सापेक्ष सादगी पर आधारित हैं। यदि अम्ल -संवेदनशील कार्यात्मक समूह कोई समस्या नहीं हैं, तो सीधी अम्लीय स्थितियों का उपयोग किया जा सकता है; सल्फ्यूरिक अम्ल का उपयोग किया जा सकता है; अशक्त अम्ल का उपयोग लंबी प्रतिक्रिया समय के साथ किया जा सकता है। क्योंकि उपयोग किए जाने वाले अभिकर्मक प्रत्यक्ष होते हैं, अपशिष्ट उत्पादों और अभिकर्मकों की हानिकारकता के संदर्भ में पर्यावरणीय प्रभाव कम होता है। एल्काइल हैलाइड संभावित ग्रीनहाउस गैस या ओजोन रिक्तीकरण, कार्सिनोजेन और संभावित पारिस्थितिक जहर हैं। अम्ल क्लोराइड वायुमंडलीय नमी के संपर्क में आने पर हाइड्रोजन क्लोराइड गैस विकसित करते हैं, संक्षारक होते हैं, पानी और अन्य न्यूक्लियोफाइल (कभी-कभी खतरनाक विधि से) के साथ तीव्रता से प्रतिक्रिया करते हैं; वे वांछित अल्कोहल के अतिरिक्त अन्य न्यूक्लियोफाइल द्वारा सरलता से बुझ जाते हैं; उनके सबसे समान्य संश्लेषण मार्गों में विषाक्त कार्बन मोनोआक्साइड या सल्फर डाइऑक्साइड गैसों का विकास सम्मिलित है (प्रयुक्त संश्लेषण प्रक्रिया के आधार पर)।

अम्ल एनहाइड्राइड एस्टर की तुलना में अधिक प्रतिक्रियाशील होते हैं क्योंकि छोड़ने वाला समूह एक कार्बोक्सिलेट आयन होता है - एल्कोऑक्साइड आयन की तुलना में एक उत्तम छोड़ने वाला समूह क्योंकि उनका ऋणात्मक चार्ज अधिक स्थानीयकृत होता है। चूँकि ऐसे मार्गों का परिणाम सामान्यतः व्यर्थ परमाणु अर्थव्यवस्था होता है। उदाहरण के लिए, एसिटिक एनहाईड्राइड के साथ इथेनॉल की प्रतिक्रिया में, एथिल एसीटेट बनता है और एसीटिक अम्ल एक छोड़ने वाले समूह के रूप में समाप्त हो जाता है, जो अम्ल एनहाइड्राइड की तुलना में अधिक कम प्रतिक्रियाशील होता है और यदि उत्पाद तुरंत एकत्र किया जाता है तो इसे उपोत्पाद (एस्टर उत्पाद के साथ व्यर्थ 1: 1 अनुपात में) के रूप में छोड़ दिया जाएगा। यदि स्थितियाँ पर्याप्त अम्लीय हैं, तो एसिटिक अम्ल को फिशर एस्टरीफिकेशन मार्ग के माध्यम से आगे प्रतिक्रिया दी जा सकती है, किन्तु बहुत धीमी गति से चूँकि कई सावधानीपूर्वक डिज़ाइन किए गए संश्लेषणों में, अभिकर्मकों को इस तरह डिज़ाइन किया जा सकता है कि अम्ल एनहाइड्राइड सीटू में उत्पन्न होते हैं और कार्बोक्जिलिक अम्ल उपोत्पाद पुनः सक्रिय होते हैं, और फिशर एस्टरीफिकेशन मार्ग आवश्यक रूप से एसिटिक एनहाइड्राइड मार्गों के साथ परस्पर अनन्य नहीं होते हैं। (इसके उदाहरणों में सामान्य स्नातक जैविक प्रयोगशाला प्रयोग सम्मिलित है जिसमें एस्पिरिन प्राप्त करने के लिए सैलिसिलिक एसिड का एसिटिलीकरण सम्मिलित है।)

फिशर एस्टरीफिकेशन मुख्य रूप से एक थर्मोडायनामिक नियंत्रण या थर्मोडायनामिक रूप से नियंत्रित प्रक्रिया है: इसकी धीमी गति के कारण, सबसे स्थिर एस्टर प्रमुख उत्पाद होता है। यह एक वांछनीय विशेषता हो सकती है यदि एकाधिक प्रतिक्रिया साइटें और साइड उत्पाद एस्टर से बचा जाना चाहिए। इसके विपरीत अम्ल एनहाइड्राइड या अम्ल क्लोराइड से जुड़ी तीव्र प्रतिक्रियाएं अधिकांशतः गतिज नियंत्रण या गतिज-नियंत्रित होती हैं।

हानि

फिशर एस्टरीफिकेशन मार्गों के प्राथमिक हानि इसकी थर्मोडायनामिक उत्क्रमणीयता और अपेक्षाकृत धीमी प्रतिक्रिया दर हैं - अधिकांशतः प्रतिक्रिया स्थितियों के आधार पर कई घंटों से लेकर वर्षों तक के मापदंड पर यदि मजबूत अम्ल के प्रति संवेदनशील अन्य कार्यात्मक समूह हैं, तो इसका समाधान असुविधाजनक हो सकता है, ऐसी स्थिति में अन्य उत्प्रेरक अम्ल को चुना जा सकता है। यदि उत्पाद एस्टर का क्वथनांक पानी या अभिकर्मकों से कम है, तो उत्पाद को पानी के अतिरिक्त आसुत किया जा सकता है; यह सामान्य है क्योंकि बिना प्रोटिक कार्यात्मक समूहों वाले एस्टर का क्वथनांक उनके प्रोटिक मूल अभिकर्मकों की तुलना में कम होता है। यदि एस्टर उत्पाद को अभिकर्मकों और उपोत्पादों से दूर आसुत किया जा सकता है तो शुद्धिकरण और निष्कर्षण सरल है, किन्तु प्रतिक्रिया दर धीमी हो सकती है क्योंकि इस परिदृश्य में समग्र प्रतिक्रिया तापमान सीमित हो सकता है। एक अधिक असुविधाजनक परिदृश्य यह है कि यदि अभिकर्मकों का क्वथनांक एस्टर उत्पाद या पानी की तुलना में कम है, तो ऐसी स्थिति में प्रतिक्रिया मिश्रण को ढंकना और रिफ्लक्स करना होगा और प्रारंभिक सामग्री की एक बड़ी मात्रा को जोड़ना होगा। इस स्थिति में निर्जल लवण, जैसे कि कॉपर (II) सल्फेट या पोटेशियम पाइरोसल्फेट, को भी हाइड्रेटेड बनाकर पानी को अलग करने के लिए जोड़ा जा सकता है, जिससे संतुलन एस्टर उत्पादों की ओर स्थानांतरित हो जाता है।[5] इन हाइड्रेटेड लवणों को अंतिम वर्कअप (रसायन विज्ञान) से पहले निथार दिया जाता है।

वाइन एजिंग में

उम्र बढ़ने की प्रक्रिया के समय वाइन और अन्य मादक पेय पदार्थों में होने वाला प्राकृतिक एस्टरीफिकेशन अम्ल -उत्प्रेरित एस्टरीफिकेशन का एक उदाहरण है। समय के साथ, पुरानी वाइन में एसिटिक अम्ल और टैनिन (शराब) की अम्लता अन्य कार्बनिक अम्लों (एसिटिक अम्ल सहित) को उत्प्रेरक रूप से प्रोटोनेट कर देगी, जिससे इथेनॉल को न्यूक्लियोफाइल के रूप में प्रतिक्रिया करने के लिए प्रोत्साहित किया जाएगा। जिसमे यह परिणामस्वरूप, एथिल एसीटेट - इथेनॉल और एसिटिक अम्ल का एस्टर - वाइन में सबसे प्रचुर मात्रा में पाया जाने वाला एस्टर है। कार्बनिक अल्कोहल (जैसे फिनोल युक्त यौगिक) और कार्बनिक अम्ल के अन्य संयोजन वाइन में विभिन्न प्रकार के एस्टर का कारण बनते हैं, जो उनके विभिन्न स्वादों, गंध और स्वाद में योगदान करते हैं। निःसंदेह! जब सल्फ्यूरिक अम्ल की स्थिति की तुलना की जाती है, तो वाइन में अम्ल की स्थिति हल्की होती है, इसलिए उपज कम होती है ( अधिकांशतः मात्रा के गणना से प्रतिशत बिंदु के दसवें या सौवें भाग में) और एस्टर को जमा होने में वर्षों लग जाते हैं।

भिन्नताएँ

टेट्राब्यूटाइलमोनियम ट्राइब्रोमाइड (टीबीएटीबी) इस प्रतिक्रिया के लिए एक प्रभावी किन्तु अपरंपरागत उत्प्रेरक के रूप में काम कर सकता है।[6] ऐसा माना जाता है कि टीबीएटीबी द्वारा छोड़ा गया है और हाइड्रोब्रोमिक अम्ल कार्बोक्जिलिक अम्ल के अतिरिक्त अल्कोहल को प्रोटोनेट करता है, जिससे कार्बोक्सिलेट वास्तविक न्यूक्लियोफाइल बन जाता है। यह मानक एस्टरीफिकेशन तंत्र का व्युत्क्रम होगा। इस विधि का एक उदाहरण हिमनद अम्लीय अम्ल और टीबीएटीबी का उपयोग करके एसाइलेशन 3-फेनिलप्रोपेनॉल है। प्रतिक्रिया पानी को हटाने की आवश्यकता के बिना 95% रासायनिक उपज में 15 मिनट में एस्टर उत्पन्न करती है।

यह भी देखें

संदर्भ

  1. Emil Fischer, Arthur Speier (1895). "एस्टर का प्रतिनिधित्व". Chemische Berichte. 28 (3): 3252–3258. doi:10.1002/cber.189502803176.
  2. Offenhauer, Robert D. (1964). "फिनोल का प्रत्यक्ष एस्टरीफिकेशन". Journal of Chemical Education. 41 (1): 39. Bibcode:1964JChEd..41...39O. doi:10.1021/ed041p39.
  3. Hocking, M.B. (1980). "Phenyl acetate preparation from phenol and acetic acid: Reassessment of a common textbook misconception". Journal of Chemical Education. 57 (7): 527. Bibcode:1980JChEd..57..527H. doi:10.1021/ed057p527.
  4. 4.0 4.1 Furniss, Brian; Hannaford, Antony; Smith, Peter; Tatchell, Austin (1996). Vogel's Textbook of Practical Organic Chemistry 5th Ed. London: Longman Science & Technical. pp. 695–697 & 699–704. ISBN 9780582462366.
  5. 5.0 5.1 Tingle, J. Bishop (1906). "Reports: Esterification". American Chemical Journal. 35: 368–369. Retrieved 19 January 2016.
  6. Tetrabutylammonium tribromide mediated condensation of carboxylic acids with alcohols Sarala Naik, Veerababurao Kavala, Rangam Gopinath, and Bhisma K. Patel Arkivoc 2006 (i) 119-127 Online Article[permanent dead link]


बाहरी संबंध