सीव सिद्धांत: Difference between revisions
m (11 revisions imported from alpha:सीव_सिद्धांत) |
No edit summary |
||
Line 85: | Line 85: | ||
<references /> | <references /> | ||
{{DEFAULTSORT:Sieve Theory}} | {{DEFAULTSORT:Sieve Theory}} | ||
[[Category:Created On 27/06/2023|Sieve Theory]] | |||
[[Category:Lua-based templates|Sieve Theory]] | |||
[[Category: Machine Translated Page]] | [[Category:Machine Translated Page|Sieve Theory]] | ||
[[Category: | [[Category:Pages with script errors|Sieve Theory]] | ||
[[Category:Vigyan Ready]] | [[Category:Short description with empty Wikidata description|Sieve Theory]] | ||
[[Category:Templates Vigyan Ready|Sieve Theory]] | |||
[[Category:Templates that add a tracking category|Sieve Theory]] | |||
[[Category:Templates that generate short descriptions|Sieve Theory]] | |||
[[Category:Templates using TemplateData|Sieve Theory]] | |||
[[Category:चलनी सिद्धांत| चलनी सिद्धांत]] |
Latest revision as of 13:33, 3 August 2023
सीव सिद्धांत संख्या सिद्धांत में सामान्य तकनीकों का समुच्चय होता है, जिसे पूर्णांकों के छने हुए समुच्चयों की गणना करने, या अधिक यथार्थवादी रूप से आकार का अनुमान लगाने के लिए डिज़ाइन किया गया है। यह छने हुए समुच्चय का प्रोटोटाइपिक उदाहरण कुछ निर्धारित सीमा X तक अभाज्य संख्याओं का समुच्चय होता है। इसके अनुरूप, सीव का प्रोटोटाइपिक उदाहरण एराटोस्थनीज की सीव या अधिक सामान्य पौराणिक सीव होती है। इन विधि का उपयोग करके अभाज्य संख्याओं पर सीधा आक्रमण शीघ्र ही त्रुटि शब्दों के संचय के रास्ते में स्पष्ट रूप से दुर्गम बाधाओं तक पहुँच जाता है। बीसवीं शताब्दी में संख्या सिद्धांत के प्रमुख पहलुओं में से इसमें, सीव क्या होनी चाहिए, इसके अनुभवहीन विचार के साथ सामने वाले आक्रमण की कुछ कठिनाइयों से बचने के विधि खोजे गए थे।
सफल दृष्टिकोण संख्याओं के विशिष्ट छने हुए समुच्चय (उदाहरण के लिए अभाज्य संख्याओं का समुच्चय ) को दूसरे, सरल समुच्चय (उदाहरण के लिए लगभग अभाज्य संख्याओं का समुच्चय ) द्वारा अनुमानित करना है, जो सामान्यतः मूल समुच्चय से कुछ बड़ा होता है और इसका विश्लेषण करना आसान होता है। अधिक परिष्कृत सीव भी सीधे समुच्चयों के साथ काम नहीं करती हैं, किंतु इन समुच्चयों पर सावधानीपूर्वक चुने गए वजन कार्यों के अनुसार उनकी गिनती करती हैं (इन समुच्चयों के कुछ अवयवों को दूसरों की तुलना में अधिक "भार" देने के विकल्प) हैं। इसके अतिरिक्त, कुछ आधुनिक अनुप्रयोगों में, सीव का उपयोग छने हुए समुच्चय के आकार का अनुमान लगाने के लिए नहीं किया जाता है, किंतु यह ऐसे फलन का उत्पादन करने के लिए किया जाता है जो समुच्चय पर बड़ा होता है और अधिकत्तर इसके बाहर छोटा होता है, जबकि समुच्चय के विशिष्ट फलन की तुलना में विश्लेषण करना आसान होता है।
मूल सीव सिद्धांत
अंकन की जानकारी के लिए अंत में देखें।
हम गैर-ऋणात्मक संख्याओं के कुछ गणनीय अनुक्रम से प्रारंभ करते हैं। सबसे मूलभूत स्थिति में यह क्रम किसी समुच्चय का केवल संकेतक फलन है जिसे हम छानना चाहते हैं। चूँकि यह अमूर्तन अधिक सामान्य स्थितियों की अनुमति देता है। इसके पश्चात् हम अभाज्य संख्याओं का सामान्य समुच्चय प्रस्तुत करते हैं जिसे सिफ्टिंग सीमा कहा जाता है और फलन के रूप में तक उनका उत्पाद होता है
.
सीव सिद्धांत का लक्ष्य छानने के कार्य का अनुमान लगाना है
के स्थिति में यह केवल संख्याओं के उपसमूह की कार्डिनैलिटी की गणना करता है, जो कि के अभाज्य कारकों के सहअभाज्य हैं।
लीजेंड्रे की पहचान
हम लिजेंड्रे की पहचान के साथ छानने के कार्य को फिर से लिख सकते हैं
मोबियस फलन और के अवयवों से प्रेरित कुछ फलन का उपयोग करते है ।
उदाहरण
मान लीजिए कि और मोबियस फलन प्रत्येक प्राइम के लिए ऋणात्मक है, इसलिए हमें मिलता है
सर्वांगसमता योग का अनुमान
तब कोई यह मान लेता है कि को इस प्रकार लिखा जा सकता है
जहाँ घनत्व होता है, जिसका अर्थ है गुणात्मक कार्य
और यह X, का सन्निकटन होता है और कुछ शेष पद है। इससे छानने का कार्य बन जाता है
यह संक्षेप में
फिर कोई के लिए क्रमशः और की ऊपरी और निचली सीमाएं खोजकर सिफ्टिंग फलन का अनुमान लगाने का प्रयास करता है।
छानने के कार्य का आंशिक योग बारी-बारी से अधिक और कम होता है, इसलिए शेष अवधि बहुत बड़ी होती हैं। इसे सुधारने के लिए ब्रून का विचार यह था कि सिफ्टिंग फलन में को वजन अनुक्रम के साथ प्रतिस्थापित किया जाता हैं, जिसमें प्रतिबंधित मोबियस फलन सम्मिलित हों सकता हैं। इसमें दो उपयुक्त अनुक्रमों और को चुनना और सिफ्टिंग कार्यों को से निरूपित करना आवश्यक हैं और , कोई भी मूल स्थानांतरण कार्यों के लिए निचली और ऊपरी सीमाएं प्राप्त कर सकता है
तब से गुणनात्मक होता है, कोई पहचान के साथ भी काम कर सकता है |
नोटेशन: नोटेशन के संबंध में सावधानी का शब्द, साहित्य में व्यक्ति अतिरिक्त समुच्चय के साथ अनुक्रमों के समुच्चय की पहचान करता है। इसका अर्थ यह है कि कोई अनुक्रम को परिभाषित करने के लिए लिखता है। इसके अतिरिक्त साहित्य में योग को कभी-कभी किसी समुच्चय की कार्डिनैलिटी के रूप में नोट किया जाता है, जबकि हमने को पहले से ही इस समुच्चय की कार्डिनैलिटी के रूप में परिभाषित किया है। हमने और . के सबसे बड़े सामान्य भाजक के लिए अभाज्य संख्याओं और के समुच्चय को दर्शाने के लिए का उपयोग किया जाता है।
छानने के प्रकार
आधुनिक सीव में ब्रून सीव, सेलबर्ग सीव, तुरान सीव, बड़ी सीव , और गोल्डस्टन-पिंटज़-येल्ड्रिम सीव सम्मिलित हैं। सीव सिद्धांत का मूल उद्देश्य संख्या सिद्धांत में जुड़वां अभाज्य अनुमान जैसे अनुमानों को सिद्ध करने का प्रयास करना था। जबकि सीव सिद्धांत के मूल व्यापक उद्देश्य अभी भी अधिक सीमा तक अप्राप्त हैं, इसमें कुछ आंशिक सफलताएँ मिली हैं, विशेष रूप से अन्य संख्या सैद्धांतिक उपकरणों के संयोजन में मुख्य आकर्षण में सम्मिलित हैं |
- ब्रून का प्रमेय, जो दर्शाता है कि जुड़वां अभाज्य संख्याओं के व्युत्क्रमों का योग अभिसरण करता है (जबकि सभी अभाज्य अभाज्य संख्याओं के व्युत्क्रमों का योग भिन्न होता है) |
- चेन का प्रमेय, जो दिखाता है कि अनंत रूप से अनेक अभाज्य संख्याएँ होती हैं जैसे कि p + 2 या तो अभाज्य है या अर्ध अभाज्य (दो अभाज्य संख्याओं का गुणनफल) हैं | चेन जिंगरुन का समीप से संबंधित प्रमेय यह प्रमाणित करता है कि प्रत्येक पर्याप्त बड़ी सम संख्या अभाज्य और दूसरी संख्या का योग है जो या तो अभाज्य या अर्धभाज्य है। इन्हें क्रमशः जुड़वां प्राइम अनुमान और गोल्डबैक अनुमान से लगभग चूक माना जा सकता है।
- सीव सिद्धांत की मौलिक प्रमेयिका, जो प्रमाणित करती है कि यदि कोई N संख्याओं के समुच्चय को छान रहा है, तो वह पुनरावृत्तियों के पश्चात् सीव में बचे अवयवों की संख्या का स्पष्ट अनुमान लगा सकता है, परन्तु कि है पर्याप्त रूप से लघु (1/10 जैसे अंश यहां अधिक विशिष्ट हैं)। यह लेम्मा सामान्यतः अभाज्य संख्याओं को छानने के लिए बहुत अशक्त है (जिसके लिए सामान्यतः पुनरावृत्तियों जैसी किसी चीज की आवश्यकता होती है), किंतु लगभग अभाज्य संख्याओं के संबंध में परिणाम प्राप्त करने के लिए यह पर्याप्त हो सकती है।
- फ्रीडलैंडर-इवानीक प्रमेय, जो प्रमाणित करता है कि के रूप के अनंत रूप से अनेक अभाज्य होते हैं।
- झांग का प्रमेय (Zhang 2014), जो दर्शाता है कि सीमित दूरी के अंदर अभाज्य संख्याओं के अनंत जोड़े हैं। मेनार्ड-ताओ प्रमेय ((मेनार्ड 2015) ) झांग के प्रमेय को अभाज्य संख्याओं के इच्छानुसार से लंबे अनुक्रमों के लिए सामान्यीकृत करता है।
सीव सिद्धांत की तकनीक
सीव सिद्धांत की तकनीकें अधिक शक्तिशाली हो सकती हैं, किंतु वह समता समस्या (सीव सिद्धांत) नामक बाधा से सीमित प्रतीत होती हैं, जो सामान्यतः यह प्रमाणित करती है कि सीव सिद्धांत विधियों में विषम संख्या में अभाज्य कारकों के साथ संख्याओं के मध्य अंतर करने में अत्यधिक कठिनाई होती है। और अभाज्य गुणनखंडों की सम संख्या वाली संख्या की यह समता समस्या अभी भी बहुत अच्छी तरह से समझी नहीं गई है।
संख्या सिद्धांत में अन्य विधि की तुलना में सीव सिद्धांत तुलनात्मक रूप से प्राथमिक होता है इस अर्थ में कि इसे बीजगणितीय संख्या सिद्धांत या विश्लेषणात्मक संख्या सिद्धांत से परिष्कृत अवधारणाओं की आवश्यकता नहीं होती है। फिर भी अधिक उन्नत सीव अभी भी बहुत सम्मिश्र और आलोचनावादी हो सकती हैं (विशेषकर जब संख्या सिद्धांत में अन्य गहरी तकनीकों के साथ संयुक्त) और संपूर्ण पाठ्यपुस्तकें संख्या सिद्धांत के इस एकल उपक्षेत्र के लिए समर्पित की गई हैं | यह उत्कृष्ट संदर्भ है (हैलबर्स्टम & रिचर्ट 1974) और अधिक आधुनिक पाठ ((इवानीएक & फ्रीडलैंडर 2010) है |
इस लेख में चर्चा की गई सीव विधियाँ पूर्णांक गुणनखंडन सीव विधियों जैसे कि द्विघात सीव और सामान्य संख्या क्षेत्र सीव से निकटता से संबंधित नहीं हैं। वह गुणनखंडन विधियाँ एराटोस्थनीज की सीव के विचार का उपयोग कुशलतापूर्वक यह निर्धारित करने के लिए करती हैं कि संख्याओं की सूची के किन सदस्यों को पूर्ण तरह से लघु अभाज्य संख्याओं में विभाजित किया जा सकता है।
साहित्य
- Cojocaru, Alina Carmen; Murty, M. Ram (2006), An introduction to sieve methods and their applications, London Mathematical Society Student Texts, vol. 66, Cambridge University Press, ISBN 0-521-84816-4, MR 2200366
- Motohashi, Yoichi (1983), Lectures on Sieve Methods and Prime Number Theory, Tata Institute of Fundamental Research Lectures on Mathematics and Physics, vol. 72, Berlin: Springer-Verlag, ISBN 3-540-12281-8, MR 0735437
- Greaves, George (2001), Sieves in number theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), vol. 43, Berlin: Springer-Verlag, doi:10.1007/978-3-662-04658-6, ISBN 3-540-41647-1, MR 1836967
- Harman, Glyn (2007). प्राइम-डिटेक्टिंग छलनी. London Mathematical Society Monographs. Vol. 33. Princeton, NJ: Princeton University Press. ISBN 978-0-691-12437-7. MR 2331072. Zbl 1220.11118.
- Halberstam, Heini; Richert, Hans-Egon (1974). छलनी के तरीके. London Mathematical Society Monographs. Vol. 4. London-New York: Academic Press. ISBN 0-12-318250-6. MR 0424730.
- Iwaniec, Henryk; Friedlander, John (2010), Opera de cribro, American Mathematical Society Colloquium Publications, vol. 57, Providence, RI: American Mathematical Society, ISBN 978-0-8218-4970-5, MR 2647984
- Hooley, Christopher (1976), Applications of sieve methods to the theory of numbers, Cambridge Tracts in Mathematics, vol. 70, Cambridge-New York-Melbourne: Cambridge University Press, ISBN 0-521-20915-3, MR 0404173
- Maynard, James (2015). "अभाज्य संख्याओं के बीच छोटे अंतराल". Annals of Mathematics. 181 (1): 383–413. arXiv:1311.4600. doi:10.4007/annals.2015.181.1.7. MR 3272929.
- Tenenbaum, Gérald (1995), Introduction to Analytic and Probabilistic Number Theory, Cambridge studies in advanced mathematics, vol. 46, Translated from the second French edition (1995) by C. B. Thomas, Cambridge University Press, pp. 56–79, ISBN 0-521-41261-7, MR 1342300
- Zhang, Yitang (2014). "अभाज्य संख्याओं के बीच सीमित अंतराल". Annals of Mathematics. 179 (3): 1121–1174. doi:10.4007/annals.2014.179.3.7. MR 3171761.
बाहरी संबंध
- Bredikhin, B.M. (2001) [1994], "Sieve method", Encyclopedia of Mathematics, EMS Press