सामान्य रूप का खेल: Difference between revisions
(Created page with "{{Short description|Representation of a game in game theory}} {{Redirect|Matrix game|Chris Engle's game|Storytelling game#Alternate form role-playing games|the publisher|Matri...") |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Representation of a game in game theory}} | {{Short description|Representation of a game in game theory}} | ||
{{Redirect| | {{Redirect|आव्यूह खेल|क्रिस एंगल का खेल|कहानी कहने का खेल या वैकल्पिक रूप में भूमिका निभाने वाले खेल|प्रकाशक|आव्यूह खेल}} | ||
[[खेल सिद्धांत]] में, सामान्य रूप एक ''खेल'' का वर्णन है। व्यापक रूप वाले खेल के विपरीत, सामान्य-रूप का प्रतिनिधित्व ग्राफ़ (अलग-अलग गणित) नहीं होता है, | [[खेल सिद्धांत]] में, सामान्य रूप एक ''खेल'' का वर्णन है। व्यापक रूप वाले खेल के विपरीत, सामान्य-रूप का प्रतिनिधित्व ग्राफ़ (अलग-अलग गणित) नहीं होता है, किंतु एक [[मैट्रिक्स (गणित)|आव्यूह (गणित)]] के माध्यम से खेल का प्रतिनिधित्व करता है। चूँकि यह दृष्टिकोण सख्ती से प्रभुत्व वाली रणनीतियों और [[नैश संतुलन]] की पहचान करने में अधिक उपयोगी हो सकता है, किंतु व्यापक-रूप प्रतिनिधित्व की तुलना में कुछ जानकारी खो जाती है। किसी गेम के सामान्य रूप के प्रतिनिधित्व में प्रत्येक खिलाड़ी के लिए सभी बोधगम्य और बोधगम्य रणनीति (गेम सिद्धांत ), और उनके संबंधित भुगतान सम्मिलित होते हैं। | ||
पूर्ण जानकारी, संपूर्ण जानकारी के स्थिर खेलों में, खेल का एक सामान्य-रूप प्रतिनिधित्व खिलाड़ियों की रणनीति स्थानों और भुगतान कार्यों का एक विनिर्देश है। एक खिलाड़ी के लिए एक रणनीति स्थान उस खिलाड़ी के लिए उपलब्ध सभी रणनीतियों का सेट है, जबकि एक रणनीति खेल के हर चरण के लिए कार्य की एक पूरी योजना है, | पूर्ण जानकारी, संपूर्ण जानकारी के स्थिर खेलों में, खेल का एक सामान्य-रूप प्रतिनिधित्व खिलाड़ियों की रणनीति स्थानों और भुगतान कार्यों का एक विनिर्देश है। एक खिलाड़ी के लिए एक रणनीति स्थान उस खिलाड़ी के लिए उपलब्ध सभी रणनीतियों का सेट है, जबकि एक रणनीति खेल के हर चरण के लिए कार्य की एक पूरी योजना है, तथापि वह चरण वास्तव में खेल में उत्पन्न हुआ हो या नहीं। एक खिलाड़ी के लिए भुगतान खिलाड़ियों के रणनीति स्थानों के क्रॉस-उत्पाद से उस खिलाड़ी के भुगतान के सेट (सामान्य रूप से वास्तविक संख्याओं का सेट, जहां संख्या एक [[कार्डिनल उपयोगिता]] या क्रमिक उपयोगिता का प्रतिनिधित्व करती है - अधिकांशतः सामान्य में कार्डिनल-) की मैपिंग होती है। एक खिलाड़ी का फॉर्म प्रतिनिधित्व) अथार्त एक खिलाड़ी का भुगतान फलन अपने इनपुट के रूप में एक रणनीति प्रोफ़ाइल लेता है (जो कि प्रत्येक खिलाड़ी के लिए रणनीतियों का एक विनिर्देश है) और इसके आउटपुट के रूप में भुगतान का प्रतिनिधित्व उत्पन्न करता है। | ||
== एक उदाहरण == | == एक उदाहरण == | ||
Line 21: | Line 21: | ||
| {{color|#009|3}}, {{color|#900|4}} | | {{color|#009|3}}, {{color|#900|4}} | ||
|} | |} | ||
प्रदान किया गया | प्रदान किया गया आव्यूह एक गेम का एक सामान्य-रूप प्रतिनिधित्व है जिसमें खिलाड़ी एक साथ चलते हैं (या कम से कम अपने कदम उठाने से पहले दूसरे खिलाड़ी की चाल का निरीक्षण नहीं करते हैं) और खेले गए कार्यों के संयोजन के लिए निर्दिष्ट भुगतान प्राप्त करते हैं। उदाहरण के लिए, यदि खिलाड़ी 1 शीर्ष पर खेलता है और खिलाड़ी 2 बाईं ओर खेलता है, तो खिलाड़ी 1 को 4 मिलते हैं और खिलाड़ी 2 को 3 मिलते हैं। प्रत्येक सेल में, पहला नंबर पंक्ति के खिलाड़ी को भुगतान दर्शाता है (इस स्थिति में खिलाड़ी 1), और दूसरा नंबर स्तम्भ प्लेयर को भुगतान का प्रतिनिधित्व करता है (इस स्थिति में प्लेयर 2)। | ||
=== अन्य प्रतिनिधित्व === | === अन्य प्रतिनिधित्व === | ||
फ़ाइल:2x2chart110602.pdf|thumb|दो-खिलाड़ियों, दो-रणनीति वाले खेलों की एक आंशिक टोपोलॉजी, जिसमें प्रिज़नर्स डिलमाइक, [[ हरिण का शिकार ]] और [[ चिकन (खेल) ]] जैसे गेम | '''फ़ाइल:2x2chart110602.pdf|thumb|दो-खिलाड़ियों, दो-रणनीति वाले खेलों की एक आंशिक टोपोलॉजी, जिसमें प्रिज़नर्स डिलमाइक, [[ हरिण का शिकार | हरिण का शिकार]] और [[ चिकन (खेल) | चिकन (खेल)]] जैसे गेम सम्मिलित हैं।''' | ||
अक्सर, [[सममित खेल]] (जहां भुगतान इस बात पर निर्भर नहीं होता है कि कौन सा खिलाड़ी प्रत्येक क्रिया को चुनता है) को केवल एक भुगतान के साथ दर्शाया जाता है। यह पंक्ति खिलाड़ी के लिए भुगतान है. उदाहरण के लिए, नीचे दाईं और बाईं ओर भुगतान | अक्सर, [[सममित खेल]] (जहां भुगतान इस बात पर निर्भर नहीं होता है कि कौन सा खिलाड़ी प्रत्येक क्रिया को चुनता है) को केवल एक भुगतान के साथ दर्शाया जाता है। यह पंक्ति खिलाड़ी के लिए भुगतान है. उदाहरण के लिए, नीचे दाईं और बाईं ओर भुगतान आव्यूह एक ही खेल का प्रतिनिधित्व करते हैं। | ||
{| style="margin:0 auto;text-align:center;" | {| style="margin:0 auto;text-align:center;" | ||
Line 61: | Line 61: | ||
|} | |} | ||
संबंधित भुगतान | संबंधित भुगतान आव्यूह वाले गेम के टोपोलॉजिकल स्पेस को भी मैप किया जा सकता है, आसन्न गेम में सबसे समान आव्यूह होते हैं। इससे पता चलता है कि कैसे वृद्धिशील प्रोत्साहन परिवर्तन खेल को बदल सकते हैं। | ||
== सामान्य रूप का उपयोग == | == सामान्य रूप का उपयोग == | ||
Line 80: | Line 80: | ||
| −2, −2 | | −2, −2 | ||
|} | |} | ||
अदायगी | अदायगी आव्यूह प्रभुत्व वाली रणनीति को समाप्त करने की सुविधा प्रदान करता है, और इसका उपयोग समान्यत: इस अवधारणा को चित्रित करने के लिए किया जाता है। उदाहरण के लिए, प्रिजनर डिलेम्मा में, हम देख सकते हैं कि प्रत्येक कैदी या तो सहयोग कर सकता है या गलती कर सकता है। यदि वास्तव में एक कैदी गलती करता है, तो वह सरलता से छूट जाता है और दूसरा कैदी लंबे समय तक संवर्त रहता है। चूँकि , यदि वे दोनों पक्षत्याग करते हैं, तो उन दोनों को थोड़े समय के लिए संवर्त कर दिया जाएगा। कोई यह निर्धारित कर सकता है कि सहयोग पर दोष का सख्ती से प्रभुत्व है। प्रत्येक स्तम्भ में पहली संख्याओं की तुलना करनी चाहिए, इस स्थिति में 0 > −1 और −2 > −5। इससे पता चलता है कि स्तम्भ प्लेयर चाहे जो भी चुने, पंक्ति प्लेयर दोष चुनकर उत्तम प्रदर्शन करता है। इसी प्रकार, प्रत्येक पंक्ति में दूसरे भुगतान की तुलना की जाती है; पुनः 0 > −1 और −2 > −5. इससे पता चलता है कि कोई अंतर नहीं पड़ता कि पंक्ति क्या करती है, दोष चुनने से स्तम्भ उत्तम काम करता है। यह दर्शाता है कि इस खेल का अद्वितीय नैश संतुलन (दोष, दोष) है। | ||
=== सामान्य रूप में अनुक्रमिक खेल === | === सामान्य रूप में अनुक्रमिक खेल === | ||
Line 105: | Line 105: | ||
|align=center|3, 4 | |align=center|3, 4 | ||
|} | |} | ||
ये | ये आव्यूह केवल उन खेलों का प्रतिनिधित्व करते हैं जिनमें चालें एक साथ होती हैं (या, अधिक सामान्यतः, जानकारी पूर्ण जानकारी होती है)। उपरोक्त आव्यूह उस खेल का प्रतिनिधित्व नहीं करता है जिसमें खिलाड़ी 1 पहले चलता है, जिसे खिलाड़ी 2 द्वारा देखा जाता है, और फिर खिलाड़ी 2 चलता है, क्योंकि यह इस स्थिति में खिलाड़ी 2 की प्रत्येक रणनीति को निर्दिष्ट नहीं करता है। इस [[अनुक्रमिक खेल]] का प्रतिनिधित्व करने के लिए हमें खिलाड़ी 2 के सभी कार्यों को निर्दिष्ट करना होगा, यहां तक कि उन आकस्मिकताओं में भी जो खेल के समय कभी उत्पन्न नहीं हो सकती हैं। इस गेम में, खिलाड़ी 2 के पास पहले की तरह बाएँ और दाएँ क्रियाएँ हैं। पहले के विपरीत, उसके पास चार रणनीतियाँ हैं, जो खिलाड़ी 1 के कार्यों पर निर्भर करती हैं। रणनीतियाँ हैं: | ||
# यदि खिलाड़ी 1 टॉप खेलता है तो बाएँ और अन्यथा बाएँ | # यदि खिलाड़ी 1 टॉप खेलता है तो बाएँ और अन्यथा बाएँ | ||
# यदि खिलाड़ी 1 शीर्ष खेलता है तो बाएँ और अन्यथा दाएँ | # यदि खिलाड़ी 1 शीर्ष खेलता है तो बाएँ और अन्यथा दाएँ | ||
Line 119: | Line 119: | ||
::<math> S_i = \{1, 2, \ldots, k\}. </math> | ::<math> S_i = \{1, 2, \ldots, k\}. </math> | ||
एक शुद्ध रणनीति प्रोफ़ाइल खिलाड़ियों के लिए रणनीतियों का एक संघ है, जो कि एक आई-ट्यूपल है | |||
:<math> \vec{s} = (s_1, s_2, \ldots,s_I) </math> | :<math> \vec{s} = (s_1, s_2, \ldots,s_I) </math> | ||
Line 125: | Line 125: | ||
:<math> s_1 \in S_1, s_2 \in S_2, \ldots, s_I \in S_I </math> | :<math> s_1 \in S_1, s_2 \in S_2, \ldots, s_I \in S_I </math> | ||
अदायगी फलन एक फलन है | |||
:<math> u_i: S_1 \times S_2 \times \ldots \times S_I \rightarrow \mathbb{R}. </math> | :<math> u_i: S_1 \times S_2 \times \ldots \times S_I \rightarrow \mathbb{R}. </math> | ||
जिसकी इच्छित व्याख्या खेल के | जिसकी इच्छित व्याख्या खेल के परिणाम पर एकल खिलाड़ी को दिया जाने वाला पुरस्कार है। इसलिए , किसी खेल को पूरी तरह से निर्दिष्ट करने के लिए, खिलाड़ी सेट I= {1, 2, ..., I} में प्रत्येक खिलाड़ी के लिए भुगतान फलन निर्दिष्ट करना होगा। | ||
'परिभाषा': सामान्य रूप में एक खेल एक संरचना है | 'परिभाषा': सामान्य रूप में एक खेल एक संरचना है | ||
:<math> \Tau=\langle I, \mathbf{S}, \mathbf{u}\rangle </math> | :<math> \Tau=\langle I, \mathbf{S}, \mathbf{u}\rangle </math> | ||
जहाँ : | |||
:<math>I=\{1,2, \ldots , I\}</math> | :<math>I=\{1,2, \ldots , I\}</math> |
Revision as of 13:05, 25 July 2023
खेल सिद्धांत में, सामान्य रूप एक खेल का वर्णन है। व्यापक रूप वाले खेल के विपरीत, सामान्य-रूप का प्रतिनिधित्व ग्राफ़ (अलग-अलग गणित) नहीं होता है, किंतु एक आव्यूह (गणित) के माध्यम से खेल का प्रतिनिधित्व करता है। चूँकि यह दृष्टिकोण सख्ती से प्रभुत्व वाली रणनीतियों और नैश संतुलन की पहचान करने में अधिक उपयोगी हो सकता है, किंतु व्यापक-रूप प्रतिनिधित्व की तुलना में कुछ जानकारी खो जाती है। किसी गेम के सामान्य रूप के प्रतिनिधित्व में प्रत्येक खिलाड़ी के लिए सभी बोधगम्य और बोधगम्य रणनीति (गेम सिद्धांत ), और उनके संबंधित भुगतान सम्मिलित होते हैं।
पूर्ण जानकारी, संपूर्ण जानकारी के स्थिर खेलों में, खेल का एक सामान्य-रूप प्रतिनिधित्व खिलाड़ियों की रणनीति स्थानों और भुगतान कार्यों का एक विनिर्देश है। एक खिलाड़ी के लिए एक रणनीति स्थान उस खिलाड़ी के लिए उपलब्ध सभी रणनीतियों का सेट है, जबकि एक रणनीति खेल के हर चरण के लिए कार्य की एक पूरी योजना है, तथापि वह चरण वास्तव में खेल में उत्पन्न हुआ हो या नहीं। एक खिलाड़ी के लिए भुगतान खिलाड़ियों के रणनीति स्थानों के क्रॉस-उत्पाद से उस खिलाड़ी के भुगतान के सेट (सामान्य रूप से वास्तविक संख्याओं का सेट, जहां संख्या एक कार्डिनल उपयोगिता या क्रमिक उपयोगिता का प्रतिनिधित्व करती है - अधिकांशतः सामान्य में कार्डिनल-) की मैपिंग होती है। एक खिलाड़ी का फॉर्म प्रतिनिधित्व) अथार्त एक खिलाड़ी का भुगतान फलन अपने इनपुट के रूप में एक रणनीति प्रोफ़ाइल लेता है (जो कि प्रत्येक खिलाड़ी के लिए रणनीतियों का एक विनिर्देश है) और इसके आउटपुट के रूप में भुगतान का प्रतिनिधित्व उत्पन्न करता है।
एक उदाहरण
Player 2 Player 1 |
Left | Right |
---|---|---|
Top | 4, 3 | −1, −1 |
Bottom | 0, 0 | 3, 4 |
प्रदान किया गया आव्यूह एक गेम का एक सामान्य-रूप प्रतिनिधित्व है जिसमें खिलाड़ी एक साथ चलते हैं (या कम से कम अपने कदम उठाने से पहले दूसरे खिलाड़ी की चाल का निरीक्षण नहीं करते हैं) और खेले गए कार्यों के संयोजन के लिए निर्दिष्ट भुगतान प्राप्त करते हैं। उदाहरण के लिए, यदि खिलाड़ी 1 शीर्ष पर खेलता है और खिलाड़ी 2 बाईं ओर खेलता है, तो खिलाड़ी 1 को 4 मिलते हैं और खिलाड़ी 2 को 3 मिलते हैं। प्रत्येक सेल में, पहला नंबर पंक्ति के खिलाड़ी को भुगतान दर्शाता है (इस स्थिति में खिलाड़ी 1), और दूसरा नंबर स्तम्भ प्लेयर को भुगतान का प्रतिनिधित्व करता है (इस स्थिति में प्लेयर 2)।
अन्य प्रतिनिधित्व
फ़ाइल:2x2chart110602.pdf|thumb|दो-खिलाड़ियों, दो-रणनीति वाले खेलों की एक आंशिक टोपोलॉजी, जिसमें प्रिज़नर्स डिलमाइक, हरिण का शिकार और चिकन (खेल) जैसे गेम सम्मिलित हैं।
अक्सर, सममित खेल (जहां भुगतान इस बात पर निर्भर नहीं होता है कि कौन सा खिलाड़ी प्रत्येक क्रिया को चुनता है) को केवल एक भुगतान के साथ दर्शाया जाता है। यह पंक्ति खिलाड़ी के लिए भुगतान है. उदाहरण के लिए, नीचे दाईं और बाईं ओर भुगतान आव्यूह एक ही खेल का प्रतिनिधित्व करते हैं।
|
|
संबंधित भुगतान आव्यूह वाले गेम के टोपोलॉजिकल स्पेस को भी मैप किया जा सकता है, आसन्न गेम में सबसे समान आव्यूह होते हैं। इससे पता चलता है कि कैसे वृद्धिशील प्रोत्साहन परिवर्तन खेल को बदल सकते हैं।
सामान्य रूप का उपयोग
प्रभुत्व वाली रणनीतियाँ
Player 2 Player 1 |
Cooperate | Defect |
---|---|---|
Cooperate | −1, −1 | −5, 0 |
Defect | 0, −5 | −2, −2 |
अदायगी आव्यूह प्रभुत्व वाली रणनीति को समाप्त करने की सुविधा प्रदान करता है, और इसका उपयोग समान्यत: इस अवधारणा को चित्रित करने के लिए किया जाता है। उदाहरण के लिए, प्रिजनर डिलेम्मा में, हम देख सकते हैं कि प्रत्येक कैदी या तो सहयोग कर सकता है या गलती कर सकता है। यदि वास्तव में एक कैदी गलती करता है, तो वह सरलता से छूट जाता है और दूसरा कैदी लंबे समय तक संवर्त रहता है। चूँकि , यदि वे दोनों पक्षत्याग करते हैं, तो उन दोनों को थोड़े समय के लिए संवर्त कर दिया जाएगा। कोई यह निर्धारित कर सकता है कि सहयोग पर दोष का सख्ती से प्रभुत्व है। प्रत्येक स्तम्भ में पहली संख्याओं की तुलना करनी चाहिए, इस स्थिति में 0 > −1 और −2 > −5। इससे पता चलता है कि स्तम्भ प्लेयर चाहे जो भी चुने, पंक्ति प्लेयर दोष चुनकर उत्तम प्रदर्शन करता है। इसी प्रकार, प्रत्येक पंक्ति में दूसरे भुगतान की तुलना की जाती है; पुनः 0 > −1 और −2 > −5. इससे पता चलता है कि कोई अंतर नहीं पड़ता कि पंक्ति क्या करती है, दोष चुनने से स्तम्भ उत्तम काम करता है। यह दर्शाता है कि इस खेल का अद्वितीय नैश संतुलन (दोष, दोष) है।
सामान्य रूप में अनुक्रमिक खेल
Player 2 Player 1 |
Left, Left | Left, Right | Right, Left | Right, Right |
---|---|---|---|---|
Top | 4, 3 | 4, 3 | −1, −1 | −1, −1 |
Bottom | 0, 0 | 3, 4 | 0, 0 | 3, 4 |
ये आव्यूह केवल उन खेलों का प्रतिनिधित्व करते हैं जिनमें चालें एक साथ होती हैं (या, अधिक सामान्यतः, जानकारी पूर्ण जानकारी होती है)। उपरोक्त आव्यूह उस खेल का प्रतिनिधित्व नहीं करता है जिसमें खिलाड़ी 1 पहले चलता है, जिसे खिलाड़ी 2 द्वारा देखा जाता है, और फिर खिलाड़ी 2 चलता है, क्योंकि यह इस स्थिति में खिलाड़ी 2 की प्रत्येक रणनीति को निर्दिष्ट नहीं करता है। इस अनुक्रमिक खेल का प्रतिनिधित्व करने के लिए हमें खिलाड़ी 2 के सभी कार्यों को निर्दिष्ट करना होगा, यहां तक कि उन आकस्मिकताओं में भी जो खेल के समय कभी उत्पन्न नहीं हो सकती हैं। इस गेम में, खिलाड़ी 2 के पास पहले की तरह बाएँ और दाएँ क्रियाएँ हैं। पहले के विपरीत, उसके पास चार रणनीतियाँ हैं, जो खिलाड़ी 1 के कार्यों पर निर्भर करती हैं। रणनीतियाँ हैं:
- यदि खिलाड़ी 1 टॉप खेलता है तो बाएँ और अन्यथा बाएँ
- यदि खिलाड़ी 1 शीर्ष खेलता है तो बाएँ और अन्यथा दाएँ
- यदि खिलाड़ी 1 टॉप खेलता है तो दाएँ और अन्यथा बाएँ
- अगर खिलाड़ी 1 टॉप खेलता है तो सही और अन्यथा सही
दाईं ओर इस खेल का सामान्य-रूप प्रतिनिधित्व है।
सामान्य सूत्रीकरण
किसी खेल को सामान्य रूप में लाने के लिए, हमें निम्नलिखित डेटा प्रदान किया जाता है:
खिलाड़ियों का एक सीमित सेट I है, प्रत्येक खिलाड़ी को i द्वारा दर्शाया जाता है। प्रत्येक खिलाड़ी के पास शुद्ध रणनीति की एक सीमित k संख्या होती है
एक शुद्ध रणनीति प्रोफ़ाइल खिलाड़ियों के लिए रणनीतियों का एक संघ है, जो कि एक आई-ट्यूपल है
ऐसा है कि
अदायगी फलन एक फलन है
जिसकी इच्छित व्याख्या खेल के परिणाम पर एकल खिलाड़ी को दिया जाने वाला पुरस्कार है। इसलिए , किसी खेल को पूरी तरह से निर्दिष्ट करने के लिए, खिलाड़ी सेट I= {1, 2, ..., I} में प्रत्येक खिलाड़ी के लिए भुगतान फलन निर्दिष्ट करना होगा।
'परिभाषा': सामान्य रूप में एक खेल एक संरचना है
जहाँ :
खिलाड़ियों का एक समूह है,
शुद्ध रणनीति सेटों का एक आई-टुपल है, प्रत्येक खिलाड़ी के लिए एक, और
भुगतान कार्यों का एक I-टुपल है।
संदर्भ
- Fudenberg, D.; Tirole, J. (1991). Game Theory. MIT Press. ISBN 0-262-06141-4.
- Leyton-Brown, Kevin; Shoham, Yoav (2008). Essentials of Game Theory: A Concise, Multidisciplinary Introduction. San Rafael, CA: Morgan & Claypool Publishers. ISBN 978-1-59829-593-1.. An 88-page mathematical introduction; free online at many universities.
- Luce, R. D.; Raiffa, H. (1989). Games and Decisions. Dover Publications. ISBN 0-486-65943-7.
- Shoham, Yoav; Leyton-Brown, Kevin (2009). Multiagent Systems: Algorithmic, Game-Theoretic, and Logical Foundations. New York: Cambridge University Press. ISBN 978-0-521-89943-7.. A comprehensive reference from a computational perspective; see Chapter 3. Downloadable free online.
- Weibull, J. (1996). Evolutionary Game Theory. MIT Press. ISBN 0-262-23181-6.
- J. von Neumann and O. Morgenstern, Theory of games and Economic Behavior, John Wiley Science Editions, 1964. Which was originally published in 1944 by Princeton University Press.