हावेर्सिन फार्मूला: Difference between revisions
No edit summary |
m (added Category:Vigyan Ready using HotCat) |
||
Line 112: | Line 112: | ||
[[Category: Machine Translated Page]] | [[Category: Machine Translated Page]] | ||
[[Category:Created On 18/07/2023]] | [[Category:Created On 18/07/2023]] | ||
[[Category:Vigyan Ready]] |
Revision as of 11:30, 3 August 2023
हावेर्सिन सूत्र वृत्त पर दो बिंदुओं के मध्य उनके देशांतर और अक्षांश को देखते हुए विशाल-वृत्त की दूरी निर्धारित करता है। और मार्गदर्शन में महत्वपूर्ण, यह वृत्ताकार त्रिकोणमिति में अधिक सामान्य सूत्र का विशेष स्तिथि है, इस प्रकार से हावेर्सिन का नियम, जो की वृत्ताकार त्रिभुजों की भुजाओं और कोणों से संबंधित है।
इस प्रकार से अंग्रेजी में हैवर्साइन्स की प्रथम तालिका 1805 में जेम्स एंड्रयू द्वारा प्रकाशित की गई थी,[1] किन्तु फ्लोरियन काजोरी ने जोस डे मेंडोज़ा वाई रियोस द्वारा पूर्व किए गए प्रयोग का श्रेय दिया है[2][3] अतः हावेर्सिन शब्द 1835 में जेम्स इनमैन द्वारा गढ़ा गया था।[4][5]
चूंकि यह नाम इस तथ्य से अनुसरण करते हैं कि वे परंपरागत रूप से दिए गए हावेर्सिन फलन के संदर्भ में लिखा जाता है जो कि hav(θ) = sin2(θ/2) द्वारा दिया जाता है। इस प्रकार से सूत्रों को समान रूप से हावेर्साइन के किसी भी गुणज के रूप में लिखा जा सकता है, जैसे कि पुराने वर्साइन फलन (हावेर्साइन से दोगुना) है। किन्तु कंप्यूटर के आगमन से प्रथम, दो के कारकों द्वारा विभाजन और गुणन को समाप्त करना इतना सुविधाजनक प्रमाणित हुआ कि यह 19वीं और 20वीं सदी की प्रारंभ में मार्गदर्शन और त्रिकोणमितीय ग्रंथों में है वरसाइन मान और लघुगणक की तालिकाएं सम्मिलित की गईं है।[6][7][8] इन दिनों हावेर्सिन फॉर्म इस मायने में भी सुविधाजनक है कि इसमें sin2 फलन के सामने कोई गुणांक नहीं है।
निरूपण
मान लीजिए कि वृत्त पर किन्हीं दो बिंदुओं के मध्य केंद्रीय कोण θ है:
जहाँ :
- d वृत्त के उच्च वृत्त के अनुदिश दो बिंदुओं के मध्य की दूरी है (उच्च-वृत्त की दूरी देखें),
- r वृत्त की त्रिज्या है.
इस प्रकार से हावर्साइन सूत्र θ (अर्थात्, hav(θ)) की हैवर्साइन की गणना सीधे दो बिंदुओं के अक्षांश (φ द्वारा दर्शाया गया) और देशांतर (λ द्वारा दर्शाया गया) से करने की अनुमति देता है:
जहाँ
- φ1, φ2बिंदु 1 का अक्षांश और बिंदु 2 का अक्षांश हैं,
- λ1, λ2 बिंदु 1 का देशांतर और बिंदु 2 का देशांतर हैं।
अंत में, हैवरसाइन फलन hav(θ), जो ऊपर केंद्रीय कोण θ और अक्षांश और देशांतर में अंतर दोनों पर प्रयुक्त होता है, है
अतः हावेर्सिन फलन कोण θ के आधे वर्सिन की गणना करता है.
दूरी d के लिए हल करने के लिए, h = hav(θ) पर आर्कवेर्सिन (व्युत्क्रम हावेर्सिन) प्रयुक्त करें या आर्कवेर्साइन (व्युत्क्रम साइन) फलन का उपयोग करें:
या अधिक स्पष्ट रूप से:
इन सूत्रों का उपयोग करते समय, किसी को यह सुनिश्चित करना चाहिए की अस्थिर स्थल त्रुटि के कारण h 1 से अधिक न हो (d केवल 0 ≤ h ≤ 1 वास्तविक संख्या है). यदि h केवल एंटीपोडल बिंदुओं (वृत्त के विपरीत पक्षों पर) के लिए 1 तक पहुंचता है - इस क्षेत्र में, जब परिमित परिशुद्धता का उपयोग किया जाता है, तो सूत्र में अपेक्षाकृत उच्च संख्यात्मक त्रुटियां उत्पन्न होती हैं। क्योंकि d तब उच्च होता है (πR के समीप, अर्ध परिधि)।, छोटी सी त्रुटि प्रायः इस असामान्य स्तिथियो में उच्च चिंता का विषय नहीं होती है (चूंकि अन्य विशाल-वृत्त दूरी सूत्र हैं जो इस समस्या से बचते हैं)। (उपरोक्त सूत्र कभी-कभी आर्कटिक स्पर्शरेखा फलन के संदर्भ में लिखा जाता है, किन्तु यह h = 1 के समीप समान संख्यात्मक समस्याओं से ग्रस्त है।)
जैसा कि नीचे वर्णित किया गया है, की समान सूत्र हावेर्सिन के अतिरिक्त कोसाइन (कभी-कभी कोसाइन का वृत्ताकार नियम कहा जाता है, इस समतल ज्यामिति के लिए कोसाइन के नियम के साथ भ्रमित नहीं होना चाहिए) का उपयोग करके लिखा जा सकता है, किन्तु यदि दो बिंदु साथ समीप हैं उदाहरण के लिए पृथ्वी पर एक किलोमीटर की दूरी पर) तो कोस cos(d/R) = 0.99999999, के साथ समाप्त हो सकता है, जिससे गलत उत्तर मिल सकता है। चूँकि हावर्साइन सूत्र साइन का उपयोग करता है, यह उस समस्या से बचाता है।
इस प्रकार से पृथ्वी पर प्रयुक्त होने पर कोई भी सूत्र केवल एक अनुमान है, जो की एक पूर्ण क्षेत्र नहीं है: "पृथ्वी त्रिज्या" R ध्रुवों पर 6356.752 किमी से लेकर भूमध्य रेखा पर 6378.137 किमी तक भिन्न होती है। इससे अधिक महत्वपूर्ण तथ्य यह है कि पृथ्वी की सतह पर उत्तर-दक्षिण रेखा की वक्रता त्रिज्या (अनुप्रयोग) भूमध्य रेखा (≈6335.439 किमी) की तुलना में ध्रुवों पर 1% अधिक है (≈6335.439 किमी) - इसलिए हैवरसाइन सूत्र और कोसाइन के नियम को 0.5% से उत्तम तक सही होने का प्रमाण नहीं दिया जा सकता है। किन्तु पृथ्वी की वृत्ताकारता पर विचार करने वाले अधिक स्पष्ट विधि विंसेंटी के सूत्रों द्वारा दिए गए हैं और भौगोलिक दूरी लेख में अन्य सूत्रों द्वारा दी गई हैं।
हैवर्साइन्स का नियम
इस प्रकार से इकाई वृत्त को देखते हुए, वृत्त की सतह पर एक "त्रिकोण" को वृत्त पर तीन बिंदुओं u, v, और w को जोड़ने वाले उच्च वृत्तों द्वारा परिभाषित किया गया है। यदि इन तीन भुजाओं की लंबाई a (से u को v), b (u से w तक), और c (v से w तक) है, और c के विपरीत कोने का कोण C, है तब हावेर्साइन का नियम यह दर्शाता है:[10]
चूँकि यह एक इकाई वृत्त है, इसलिए लंबाई a, b, और c वृत्त के केंद्र से उन भुजाओं द्वारा अंतरित कोणों (कांति में) के समान हैं (एक गैर-इकाई वृत्त के लिए, इनमें से प्रत्येक चाप की लंबाई वृत्त के त्रिज्या R से गुणा किए गए उसके केंद्रीय कोण के समान है)।
इस प्रकार से इस नियम से पूर्व खंड के हैवर्साइन सूत्र को प्राप्त करने के लिए, कोई केवल विशेष स्तिथियो पर विचार करता है जहां u भौगोलिक उत्तरी ध्रुव है, जबकि v और w दो बिंदु हैं जिनका पृथक्करण d निर्धारित किया जाना है। उस स्थिति में, a और b π/2 − φ1,2 (अर्थात, सह-अक्षांश) हैं, C देशांतर पृथक्करण λ2 − λ1 है, और c वांछित d/R है। यह ध्यान में रखते हुए कि sin(π/2 − φ) = cos(φ), हैवरसाइन सूत्र शीघ्र अनुसरण करता है।
अतः हावेर्सिन के नियम को प्राप्त करने के लिए, कोसाइन के वृत्ताकार नियम से प्रारंभ की जाती है:
जैसा कि ऊपर उल्लेख किया गया है, यह सूत्र c को हल करने की महत्वपूर्ण विधि है जब c छोटा है। इसके अतिरिक्त , हम उस पहचान को प्रतिस्थापित करते हैं जिसमें cos(θ) = 1 − 2 hav(θ) है, और त्रिकोणमितीय पहचान cos(a − b) = cos(a) cos(b) + sin(a) sin(b) या जोड़/घटाव का उपयोग करते हैं, उपरोक्त हैवर्साइन्स का नियम प्राप्त करने के लिए उपयोग किया जाता है।
प्रमाण
चूंकि कोई सूत्र सिद्ध कर सकता है:
इस प्रकार से उनके अक्षांश और देशांतर द्वारा दिए गए बिंदुओं को कार्तीय समन्वय प्रणाली या तीन आयामों में परिवर्तित करके, फिर उनका डॉट उत्पाद लेकर किया जाता है।
दो बिंदुओं पर विचार करें इकाई क्षेत्र पर, उनके अक्षांश और देशांतर द्वारा दिया गया :
यह निरूपण वृत्ताकार समन्वय प्रणाली के समान हैं, चूंकि अक्षांश को भूमध्य रेखा से कोण के रूप में मापा जाता है, न कि उत्तरी ध्रुव से मापा जाता है। इन बिंदुओं का कार्टेशियन निर्देशांक में निम्नलिखित प्रतिनिधित्व है:
जहाँ से हम सीधे डॉट उत्पाद की गणना करने और आगे बढ़ने का प्रयास कर सकते हैं, चूंकि जब हम निम्नलिखित तथ्य पर विचार करते हैं तो सूत्र अधिक सरल हो जाते हैं: यदि हम व्रत को z-अक्ष के साथ घुमाते हैं तो दो बिंदुओं के मध्य की दूरी परिवर्तित नहीं होती है। यह वास्तव में में एक स्थिरांक जोड़ देता है, ध्यान दें कि समान विचार अक्षांशों को परिवर्तन करने के लिए प्रयुक्त नहीं होते हैं - अक्षांशों में एक स्थिरांक जोड़ने से बिंदुओं के मध्य की दूरी परिवर्तित हो सकती है। इस प्रकार से स्थिरांक , चुनकर और , समुच्चय करके, हमारे नए बिंदु बन जाते हैं:
मान लीजिये द्वारा और , के मध्य के कोण को दर्शाने से अब हमारे पास यह है:
यह भी देखें
- दृष्टि में कमी
- विंसेंटी के सूत्र
संदर्भ
- ↑ van Brummelen, Glen Robert (2013). स्वर्गीय गणित: गोलाकार त्रिकोणमिति की भूली हुई कला. Princeton University Press. ISBN 9780691148922. 0691148929. Retrieved 2015-11-10.
- ↑ de Mendoza y Ríos, Joseph (1795). चंद्र दूरी द्वारा देशांतर की गणना के कुछ नए तरीकों पर रिपोर्ट: और अन्य नेविगेशन समस्याओं के समाधान के लिए इसके सिद्धांत का अनुप्रयोग (in Spanish). Madrid, Spain: Imprenta Real.
{{cite book}}
: CS1 maint: unrecognized language (link) - ↑ Cajori, Florian (1952) [1929]. गणितीय संकेतन का इतिहास. Vol. 2 (2 (3rd corrected printing of 1929 issue) ed.). Chicago: Open court publishing company. p. 172. ISBN 978-1-60206-714-1. 1602067147. Retrieved 2015-11-11.
हैवरसाइन सबसे पहले जोस डे मेंडोज़ा वाई रियोस (मैड्रिड, 1801, 1805, 1809) के लघुगणकीय छंदों की तालिकाओं में दिखाई देता है, और बाद में जेम्स इनमैन (1821) के नेविगेशन पर एक ग्रंथ में दिखाई देता है।
(एनबी। आईएसबीएन और कोसिमो, इंक., न्यूयॉर्क, 2013 द्वारा दूसरे संस्करण के पुनर्मुद्रण के लिए लिंक।) - ↑ Inman, James (1835) [1821]. नेविगेशन और समुद्री खगोल विज्ञान: ब्रिटिश नाविकों के उपयोग के लिए (3 ed.). London, UK: W. Woodward, C. & J. Rivington. Retrieved 2015-11-09. (चौथा संस्करण: [1]।)
- ↑ "haversine". Oxford English Dictionary (2nd ed.). Oxford University Press. 1989.
- ↑ H. B. Goodwin, The haversine in nautical astronomy, Naval Institute Proceedings, vol. 36, no. 3 (1910), pp. 735–746: Evidently if a Table of Haversines is employed we shall be saved in the first instance the trouble of dividing the sum of the logarithms by two, and in the second place of multiplying the angle taken from the tables by the same number. This is the special advantage of the form of table first introduced by Professor Inman, of the Portsmouth Royal Navy College, nearly a century ago.
- ↑ W. W. Sheppard and C. C. Soule, Practical navigation (World Technical Institute: Jersey City, 1922).
- ↑ E. R. Hedrick, Logarithmic and Trigonometric Tables (Macmillan, New York, 1913).
- ↑ Gade, Kenneth (2010). "एक गैर-एकवचन क्षैतिज स्थिति प्रतिनिधित्व". Journal of Navigation. 63 (3): 395–417. Bibcode:2010JNav...63..395G. doi:10.1017/S0373463309990415. ISSN 0373-4633.
- ↑ Korn, Grandino Arthur; Korn, Theresa M. (2000) [1922]. "Appendix B: B9. Plane and Spherical Trigonometry: Formulas Expressed in Terms of the Haversine Function". वैज्ञानिकों और इंजीनियरों के लिए गणितीय पुस्तिका: संदर्भ और समीक्षा के लिए परिभाषाएँ, प्रमेय और सूत्र (3rd ed.). Mineola, New York: Dover Publications. pp. 892–893. ISBN 978-0-486-41147-7.
अग्रिम पठन
- U. S. Census Bureau Geographic Information Systems FAQ, (content has been moved to What is the best way to calculate the distance between 2 points?)
- R. W. Sinnott, "Virtues of the Haversine", Sky and Telescope 68 (2), 159 (1984).
- Deriving the haversine formula, Ask Dr. Math (Apr. 20–21, 1999).[dead link] Archived 20 January 2020 at the Wayback Machine
- Romuald Ireneus 'Scibor-Marchocki, Spherical trigonometry, Elementary-Geometry Trigonometry web page (1997).
- W. Gellert, S. Gottwald, M. Hellwich, H. Kästner, and H. Küstner, The VNR Concise Encyclopedia of Mathematics, 2nd ed., ch. 12 (Van Nostrand Reinhold: New York, 1989).
बाहरी संबंध
- Implementations of the haversine formula in 91 languages at rosettacode.org and in 17 languages on codecodex.com Archived 2018-08-14 at the Wayback Machine
- Other implementations in C++, C (MacOS), Pascal Archived 2019-01-16 at the Wayback Machine, Python, Ruby, JavaScript, PHP Archived 2018-08-12 at the Wayback Machine,Matlab Archived 2020-05-13 at the Wayback Machine, MySQL