छद्म-विभेदक संचालिका: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 69: Line 69:
\frac{1}{(2 \pi)^n} \int_{\mathbb{R}^n} e^{i x\cdot \xi} P(x,\xi) \hat{u}(\xi) \, d\xi </math>|{{EquationRef|2}}}}
\frac{1}{(2 \pi)^n} \int_{\mathbb{R}^n} e^{i x\cdot \xi} P(x,\xi) \hat{u}(\xi) \, d\xi </math>|{{EquationRef|2}}}}


जहाँ <math>\hat{u}(\xi)</math> यू का फूरियर रूपांतरण है और इंटीग्रैंड में प्रतीक P(x,ξ) एक निश्चित प्रतीक वर्ग से संबंधित है।
जहाँ <math>\hat{u}(\xi)</math> यू का फूरियर रूपांतरण है और इंटीग्रैंड में प्रतीक P(x,ξ) एक निश्चित प्रतीक वर्ग से संबंधित है। उदाहरण के लिए, यदि P(x,ξ)गुणधर्म के साथ '''R'''<sup>''n''</sup> × '''R'''<sup>''n''</sup> पर एक अपरिमित रूप से भिन्न फलन है
उदाहरण के लिए, यदि P(x,ξ)गुणधर्म के साथ '''R'''<sup>''n''</sup> × '''R'''<sup>''n''</sup> पर एक अपरिमित रूप से भिन्न फलन है


:<math> |\partial_\xi^\alpha \partial_x^\beta P(x,\xi)| \leq C_{\alpha,\beta} \, (1 + |\xi|)^{m - |\alpha|} </math>
:<math> |\partial_\xi^\alpha \partial_x^\beta P(x,\xi)| \leq C_{\alpha,\beta} \, (1 + |\xi|)^{m - |\alpha|} </math>
Line 105: Line 104:
* {{citation|first=Elias|last=Stein|authorlink=Elias Stein|title=Harmonic Analysis: Real-Variable Methods, Orthogonality and Oscillatory Integrals|publisher=Princeton University Press|year=1993}}.
* {{citation|first=Elias|last=Stein|authorlink=Elias Stein|title=Harmonic Analysis: Real-Variable Methods, Orthogonality and Oscillatory Integrals|publisher=Princeton University Press|year=1993}}.
* {{citation|last1= Atiyah|first1= Michael F. |author1-link=Michael Atiyah|last2=Singer|first2= Isadore M. |author2-link=Isadore Singer|title=The Index of Elliptic Operators I|journal= Annals of Mathematics |volume=87|pages= 484–530|year= 1968|doi= 10.2307/1970715|issue= 3|jstor=1970715}}
* {{citation|last1= Atiyah|first1= Michael F. |author1-link=Michael Atiyah|last2=Singer|first2= Isadore M. |author2-link=Isadore Singer|title=The Index of Elliptic Operators I|journal= Annals of Mathematics |volume=87|pages= 484–530|year= 1968|doi= 10.2307/1970715|issue= 3|jstor=1970715}}
==अग्रिम पठन==
==अग्रिम पठन==
* Nicolas Lerner, ''Metrics on the phase space and non-selfadjoint pseudo-differential operators''. Pseudo-Differential Operators. Theory and Applications, 3. Birkhäuser Verlag, Basel, 2010.  
* Nicolas Lerner, ''Metrics on the phase space and non-selfadjoint pseudo-differential operators''. Pseudo-Differential Operators. Theory and Applications, 3. Birkhäuser Verlag, Basel, 2010.  
Line 125: Line 122:
-->
-->
* André Unterberger, ''Pseudo-differential operators and applications: an introduction''. Lecture Notes Series, 46. Aarhus Universitet, Matematisk Institut, Aarhus, 1976.
* André Unterberger, ''Pseudo-differential operators and applications: an introduction''. Lecture Notes Series, 46. Aarhus Universitet, Matematisk Institut, Aarhus, 1976.
==बाहरी संबंध==
==बाहरी संबंध==
* [https://arxiv.org/abs/math.AP/9906155 Lectures on Pseudo-differential Operators] by [[Mark S. Joshi]] on arxiv.org.
* [https://arxiv.org/abs/math.AP/9906155 Lectures on Pseudo-differential Operators] by [[Mark S. Joshi]] on arxiv.org.

Revision as of 16:46, 26 July 2023

गणितीय विश्लेषण में एक छद्म-विभेदक ऑपरेटर, डिफरेंशियल ऑपरेटर की अवधारणा का एक विस्तार है। छद्म-अंतर ऑपरेटरों का उपयोग आंशिक अंतर समीकरण और क्वांटम क्षेत्र सिद्धांत के सिद्धांत में बड़े मापदंड पर किया जाता है, उदाहरण के लिए गणितीय मॉडल में जिसमें गैर-आर्किमिडीयन स्थान में अल्ट्रामेट्रिक छद्म-अंतर समीकरण सम्मिलित हैं।

इतिहास

छद्म-अंतर ऑपरेटरों का अध्ययन 1960 के दशक के मध्य में जोसेफ जे. कोह्न, लुई निरेनबर्ग, लार्स होर्मेंडर या होर्मेंडर, अनटरबर्गर और बोकोब्ज़ा के काम से प्रारंभ हुआ था।[1]

उन्होंने के-सिद्धांत के माध्यम से अतियाह-सिंगर इंडेक्स प्रमेय के दूसरे प्रमाण में प्रभावशाली भूमिका निभाई और अतियाह और सिंगर ने छद्म-विभेदक ऑपरेटरों के सिद्धांत को समझने में सहायता के लिए लार्स होर्मेंडर या होर्मेंडर को धन्यवाद दिया गया था।[2]

प्रेरणा

निरंतर गुणांक वाले रैखिक अंतर ऑपरेटर

स्थिर गुणांक वाले एक रैखिक अंतर ऑपरेटर पर विचार करें,

जो Rn में कॉम्पैक्ट समर्थन के साथ सुचारू कार्यों पर कार्य करता है। इस ऑपरेटर को फूरियर ट्रांसफॉर्म की संरचना के रूप में लिखा जा सकता है, जो बहुपद कार्य द्वारा एक सरल गुणन है (जिसे प्रतीक कहा जाता है)

और एक व्युत्क्रम फूरियर रूपांतरण, इस रूप में है:

 

 

 

 

(1)

यहाँ, एक बहु-सूचकांक है, सम्मिश्र संख्याएँ हैं, और

एक पुनरावृत्त आंशिक व्युत्पन्न है, जहां ∂j इसका अर्थ है j-वें चर के संबंध में विभेदन। हम स्थिरांकों का परिचय देते हैं फूरियर परिवर्तनों की गणना को सुविधाजनक बनाने के लिए उपयोग किया जाता है ।

सूत्र की व्युत्पत्ति (1)

एक सुचारू कार्य u का फूरियर रूपांतरण, Rn में कॉम्पैक्ट रूप से समर्थित है

और फूरियर का व्युत्क्रम सूत्र देता है

u के इस प्रतिनिधित्व में P(D) लगाकर और उपयोग करते है

व्यक्ति को सूत्र (1) प्राप्त होता है।

आंशिक अंतर समीकरणों के समाधान का प्रतिनिधित्व

आंशिक अवकल समीकरण को हल करने के लिए

हम (औपचारिक रूप से) दोनों पक्षों पर फूरियर रूपांतरण प्रयुक्त करते हैं और बीजगणितीय समीकरण प्राप्त करते हैं

यदि ξ ∈ Rn होने पर प्रतीक P(ξ) कभी भी शून्य नहीं होता है, तो P(ξ) से विभाजित करना संभव है:

फूरियर के व्युत्क्रम सूत्र द्वारा, एक समाधान है

यहाँ यह माना गया है कि:

  1. P(D) स्थिर गुणांक वाला एक रैखिक अंतर ऑपरेटर है,
  2. इसका प्रतीक P(ξ) कभी भी शून्य नहीं होता,
  3. u और दोनों में एक अच्छी तरह से परिभाषित फूरियर रूपांतरण है।

वितरण के सिद्धांत (गणित) का उपयोग करके अंतिम धारणा को अशक्त किया जा सकता है। पहली दो धारणाओं को इस प्रकार अशक्त किया जा सकता है।

अंतिम सूत्र में, प्राप्त करने के लिए ƒ का फूरियर रूपांतरण लिखें

यह सूत्र के समान है (1), सिवाय इसके कि 1/P(ξ) एक बहुपद फलन नहीं है, किंतु अधिक सामान्य प्रकार का फलन है।

छद्म-अंतर ऑपरेटरों की परिभाषा

यहां हम छद्म-विभेदक ऑपरेटरों को अंतर ऑपरेटरों के सामान्यीकरण के रूप में देखते हैं। हम सूत्र (1) का विस्तार इस प्रकार करते हैं। R पर एक छद्म-अंतर ऑपरेटर P(x,D)n एक ऑपरेटर है जिसका कार्य u(x) पर मान x का कार्य है:

 

 

 

 

(2)

जहाँ यू का फूरियर रूपांतरण है और इंटीग्रैंड में प्रतीक P(x,ξ) एक निश्चित प्रतीक वर्ग से संबंधित है। उदाहरण के लिए, यदि P(x,ξ)गुणधर्म के साथ Rn × Rn पर एक अपरिमित रूप से भिन्न फलन है

सभी x,ξ ∈Rn, सभी बहुसूचकांक α,β, कुछ स्थिरांक Cα, β और कुछ वास्तविक संख्या m के लिए, तो P प्रतीक वर्ग से संबंधित है होर्मेंडर का संबंधित ऑपरेटर P(x,D) को क्रम m का छद्म-अंतर ऑपरेटर कहा जाता है और यह वर्ग से संबंधित है।

गुण

सुचारू परिबद्ध गुणांक वाले क्रम m के रैखिक विभेदक परिचालक, क्रम m के छद्म-अंतर परिचालक हैं। दो छद्म-विभेदक ऑपरेटरों P, Q की संरचना PQ फिर से एक छद्म-अंतर ऑपरेटर है और PQ के प्रतीक की गणना P और Q के प्रतीकों का उपयोग करके की जा सकती है। एक छद्म-अंतर ऑपरेटर का जोड़ और स्थानान्तरण एक छद्म-अंतर ऑपरेटर विभेदक ऑपरेटर है

यदि क्रम m का एक विभेदक संचालिका (समान रूप से) अण्डाकार (आदेश m का) और व्युत्क्रमणीय है, तो इसका व्युत्क्रम क्रम −m का एक छद्म विभेदक संचालिका है, और इसके प्रतीक की गणना की जा सकती है। इसका अर्थ यह है कि कोई छद्म-विभेदक ऑपरेटरों के सिद्धांत का उपयोग करके रैखिक अण्डाकार अंतर समीकरणों को कम या अधिक स्पष्ट रूप से हल कर सकता है।

विभेदक ऑपरेटर इस अर्थ में स्थानीय होते हैं कि ऑपरेटर के प्रभाव को निर्धारित करने के लिए किसी को केवल एक बिंदु के पड़ोस में कार्य के मान की आवश्यकता होती है। छद्म-अंतर ऑपरेटर छद्म-स्थानीय होते हैं, जिसका अनौपचारिक अर्थ यह है कि जब श्वार्ट्ज वितरण पर प्रयुक्त किया जाता है तो वे उन बिंदुओं पर एक विलक्षणता नहीं बनाते हैं जहां वितरण पहले से ही सुचारू था।

जिस प्रकार एक विभेदक संचालिका को D = −id/dx के रूप में व्यक्त किया जा सकता है

D में एक बहुपद p (जिसे प्रतीक कहा जाता है) के लिए, एक छद्म-अंतर ऑपरेटर के कार्यों के अधिक सामान्य वर्ग में एक प्रतीक होता है। सामान्यतः कोई छद्म-अंतर ऑपरेटरों के विश्लेषण में किसी समस्या को उनके प्रतीकों से जुड़ी बीजगणितीय समस्याओं के अनुक्रम में कम कर सकता है, और यह माइक्रोलोकल विश्लेषण का सार है।

छद्म-विभेदक ऑपरेटर का कर्नेल

छद्म-अंतर ऑपरेटरों को कर्नेल द्वारा दर्शाया जा सकता है। विकर्ण पर कर्नेल की विलक्षणता संबंधित ऑपरेटर की डिग्री पर निर्भर करती है। वास्तव में, यदि प्रतीक उपरोक्त अंतर असमानताओं को m ≤ 0 के साथ संतुष्ट करता है, तो यह दिखाया जा सकता है कि कर्नेल एक विलक्षण अभिन्न कर्नेल है।

यह भी देखें

फ़ुटनोट

  1. Stein 1993, Chapter 6
  2. Atiyah & Singer 1968, p. 486

संदर्भ

  • Stein, Elias (1993), Harmonic Analysis: Real-Variable Methods, Orthogonality and Oscillatory Integrals, Princeton University Press.
  • Atiyah, Michael F.; Singer, Isadore M. (1968), "The Index of Elliptic Operators I", Annals of Mathematics, 87 (3): 484–530, doi:10.2307/1970715, JSTOR 1970715

अग्रिम पठन

  • Nicolas Lerner, Metrics on the phase space and non-selfadjoint pseudo-differential operators. Pseudo-Differential Operators. Theory and Applications, 3. Birkhäuser Verlag, Basel, 2010.
  • Michael E. Taylor, Pseudodifferential Operators, Princeton Univ. Press 1981. ISBN 0-691-08282-0
  • M. A. Shubin, Pseudodifferential Operators and Spectral Theory, Springer-Verlag 2001. ISBN 3-540-41195-X
  • Francois Treves, Introduction to Pseudo Differential and Fourier Integral Operators, (University Series in Mathematics), Plenum Publ. Co. 1981. ISBN 0-306-40404-4
  • F. G. Friedlander and M. Joshi, Introduction to the Theory of Distributions, Cambridge University Press 1999. ISBN 0-521-64971-4
  • Hörmander, Lars (1987). The Analysis of Linear Partial Differential Operators III: Pseudo-Differential Operators. Springer. ISBN 3-540-49937-7.
  • André Unterberger, Pseudo-differential operators and applications: an introduction. Lecture Notes Series, 46. Aarhus Universitet, Matematisk Institut, Aarhus, 1976.

बाहरी संबंध