द्विपद परीक्षण: Difference between revisions

From Vigyanwiki
(Created page with "{{Short description|Test of statistical significance}} {{refimprove|date=November 2016}} आंकड़ों में, द्विपद परीक्षण नमून...")
 
No edit summary
Line 1: Line 1:
{{Short description|Test of statistical significance}}
{{Short description|Test of statistical significance}}
{{refimprove|date=November 2016}}
आंकड़ों में, द्विपद परीक्षण नमूना डेटा का उपयोग करके दो श्रेणियों में टिप्पणियों के सैद्धांतिक रूप से अपेक्षित वितरण से विचलन के सांख्यिकीय महत्व का [[सटीक परीक्षण]] है।
आंकड़ों में, द्विपद परीक्षण नमूना डेटा का उपयोग करके दो श्रेणियों में टिप्पणियों के सैद्धांतिक रूप से अपेक्षित वितरण से विचलन के सांख्यिकीय महत्व का एक [[सटीक परीक्षण]] है।


==उपयोग==
==उपयोग==
Line 9: Line 8:
कहाँ <math>\pi_0</math> 0 और 1 के बीच उपयोगकर्ता द्वारा परिभाषित मान है।
कहाँ <math>\pi_0</math> 0 और 1 के बीच उपयोगकर्ता द्वारा परिभाषित मान है।


यदि आकार के एक नमूने में <math>n</math> वहाँ हैं <math>k</math> सफलताएँ, जबकि हम उम्मीद करते हैं <math>n\pi_0</math>, [[द्विपद वितरण]] का सूत्र इस मान को खोजने की संभावना देता है:
यदि आकार के नमूने में <math>n</math> वहाँ हैं <math>k</math> सफलताएँ, जबकि हम उम्मीद करते हैं <math>n\pi_0</math>, [[द्विपद वितरण]] का सूत्र इस मान को खोजने की संभावना देता है:


: <math>\Pr(X=k)=\binom{n}{k}p^k(1-p)^{n-k}</math>
: <math>\Pr(X=k)=\binom{n}{k}p^k(1-p)^{n-k}</math>
Line 15: Line 14:


: <math>p = \sum_{i=0}^k\Pr(X=i)=\sum_{i=0}^k\binom{n}{i}\pi_0^i(1-\pi_0)^{n-i}</math>
: <math>p = \sum_{i=0}^k\Pr(X=i)=\sum_{i=0}^k\binom{n}{i}\pi_0^i(1-\pi_0)^{n-i}</math>
यदि हम परीक्षण कर रहे हैं तो एक समान गणना की जा सकती है <math>\pi>\pi_0</math> से सीमा के योग का उपयोग करना <math>k</math> को <math>n</math> बजाय।
यदि हम परीक्षण कर रहे हैं तो समान गणना की जा सकती है <math>\pi>\pi_0</math> से सीमा के योग का उपयोग करना <math>k</math> को <math>n</math> बजाय।


गणना ए <math>p</math>-दो-पूंछ वाले परीक्षण के लिए मान थोड़ा अधिक जटिल है, क्योंकि द्विपद वितरण सममित नहीं है <math>\pi_0\neq 0.5</math>. इसका मतलब यह है कि हम इसे दोगुना नहीं कर सकते <math>p</math>-एक-पूंछ वाले परीक्षण से मूल्य। याद रखें कि हम उन घटनाओं पर विचार करना चाहते हैं जो हमारे द्वारा देखी गई घटना के समान, या उससे अधिक, चरम हैं, इसलिए हमें इस संभावना पर विचार करना चाहिए कि हम एक ऐसी घटना देखेंगे जिसकी संभावना जितनी, या उससे कम है <math>X=k</math>. होने देना <math>\mathcal{I}=\{i\colon\Pr(X=i)\leq \Pr(X=k)\}</math> ऐसी सभी घटनाओं को निरूपित करें। फिर दो पूँछ वाला <math>p</math>-मूल्य की गणना इस प्रकार की जाती है,
गणना ए <math>p</math>-दो-पूंछ वाले परीक्षण के लिए मान थोड़ा अधिक जटिल है, क्योंकि द्विपद वितरण सममित नहीं है <math>\pi_0\neq 0.5</math>. इसका मतलब यह है कि हम इसे दोगुना नहीं कर सकते <math>p</math>-एक-पूंछ वाले परीक्षण से मूल्य। याद रखें कि हम उन घटनाओं पर विचार करना चाहते हैं जो हमारे द्वारा देखी गई घटना के समान, या उससे अधिक, चरम हैं, इसलिए हमें इस संभावना पर विचार करना चाहिए कि हम ऐसी घटना देखेंगे जिसकी संभावना जितनी, या उससे कम है <math>X=k</math>. होने देना <math>\mathcal{I}=\{i\colon\Pr(X=i)\leq \Pr(X=k)\}</math> ऐसी सभी घटनाओं को निरूपित करें। फिर दो पूँछ वाला <math>p</math>-मूल्य की गणना इस प्रकार की जाती है,


: <math>p = \sum_{i\in\mathcal{I}}\Pr(X=i)=\sum_{i\in\mathcal{I}}\binom{n}{i}\pi_0^i(1-\pi_0)^{n-i}</math>
: <math>p = \sum_{i\in\mathcal{I}}\Pr(X=i)=\sum_{i\in\mathcal{I}}\binom{n}{i}\pi_0^i(1-\pi_0)^{n-i}</math>


==सामान्य उपयोग==
==सामान्य उपयोग==
द्विपद परीक्षण का एक सामान्य उपयोग उस मामले में होता है जहां [[शून्य परिकल्पना]] यह होती है कि दो श्रेणियां समान रूप से घटित होने की संभावना होती है (जैसे कि एक सिक्का उछालना), जिसका अर्थ है एक शून्य परिकल्पना <math>H_0\colon\pi=0.5</math>. इस मामले की श्रेणियों में अवलोकनों की महत्वपूर्ण संख्या बताने के लिए तालिकाएँ व्यापक रूप से उपलब्ध हैं। हालाँकि, जैसा कि नीचे दिए गए उदाहरण से पता चलता है, द्विपद परीक्षण इस मामले तक ही सीमित नहीं है।
द्विपद परीक्षण का सामान्य उपयोग उस मामले में होता है जहां [[शून्य परिकल्पना]] यह होती है कि दो श्रेणियां समान रूप से घटित होने की संभावना होती है (जैसे कि सिक्का उछालना), जिसका अर्थ है शून्य परिकल्पना <math>H_0\colon\pi=0.5</math>. इस मामले की श्रेणियों में अवलोकनों की महत्वपूर्ण संख्या बताने के लिए तालिकाएँ व्यापक रूप से उपलब्ध हैं। हालाँकि, जैसा कि नीचे दिए गए उदाहरण से पता चलता है, द्विपद परीक्षण इस मामले तक ही सीमित नहीं है।
 
जब दो से अधिक श्रेणियां हों, और एक सटीक परीक्षण की आवश्यकता हो, तो द्विपद परीक्षण के बजाय [[बहुपद वितरण]] पर आधारित [[बहुपद परीक्षण]] का उपयोग किया जाना चाहिए।<ref name="Howell">{{cite book|last1=Howell|first1=David C.|title=मनोविज्ञान के लिए सांख्यिकीय तरीके|date=2007|publisher=Thomson|location=Belmont, Calif.|isbn=978-0495012870|edition=6.}}</ref>
 


जब दो से अधिक श्रेणियां हों, और  सटीक परीक्षण की आवश्यकता हो, तो द्विपद परीक्षण के बजाय [[बहुपद वितरण]] पर आधारित [[बहुपद परीक्षण]] का उपयोग किया जाना चाहिए।<ref name="Howell">{{cite book|last1=Howell|first1=David C.|title=मनोविज्ञान के लिए सांख्यिकीय तरीके|date=2007|publisher=Thomson|location=Belmont, Calif.|isbn=978-0495012870|edition=6.}}</ref>
==बड़े नमूने==
==बड़े नमूने==
नीचे दिए गए उदाहरण जैसे बड़े नमूनों के लिए, द्विपद वितरण को सुविधाजनक [[निरंतर वितरण]] द्वारा अच्छी तरह से अनुमानित किया जाता है, और इन्हें वैकल्पिक परीक्षणों के आधार के रूप में उपयोग किया जाता है जो गणना करने में बहुत तेज़ होते हैं, जैसे कि पियर्सन का ची-स्क्वायर परीक्षण और [[ जी-परीक्षण ]]। हालाँकि, छोटे नमूनों के लिए ये अनुमान टूट जाते हैं, और द्विपद परीक्षण का कोई विकल्प नहीं है।
नीचे दिए गए उदाहरण जैसे बड़े नमूनों के लिए, द्विपद वितरण को सुविधाजनक [[निरंतर वितरण]] द्वारा अच्छी तरह से अनुमानित किया जाता है, और इन्हें वैकल्पिक परीक्षणों के आधार के रूप में उपयोग किया जाता है जो गणना करने में बहुत तेज़ होते हैं, जैसे कि पियर्सन का ची-स्क्वायर परीक्षण और [[ जी-परीक्षण |जी-परीक्षण]] । हालाँकि, छोटे नमूनों के लिए ये अनुमान टूट जाते हैं, और द्विपद परीक्षण का कोई विकल्प नहीं है।


सबसे सामान्य (और सबसे आसान) सन्निकटन मानक सामान्य वितरण के माध्यम से होता है, जिसमें परीक्षण आँकड़ों का एक [[z-परीक्षण]] किया जाता है <math>Z</math>, द्वारा दिए गए
सबसे सामान्य (और सबसे आसान) सन्निकटन मानक सामान्य वितरण के माध्यम से होता है, जिसमें परीक्षण आँकड़ों का [[z-परीक्षण]] किया जाता है <math>Z</math>, द्वारा दिए गए


: <math>Z=\frac{k-n\pi}{\sqrt{n\pi(1-\pi)}}</math>
: <math>Z=\frac{k-n\pi}{\sqrt{n\pi(1-\pi)}}</math>
Line 42: Line 38:


: <math> Z=\frac{ \hat{p}-p_0 } { \sqrt{ \frac{p_0(1-p_0)}{n} } }</math>
: <math> Z=\frac{ \hat{p}-p_0 } { \sqrt{ \frac{p_0(1-p_0)}{n} } }</math>
द्वारा विभाजित करके <math>n</math> अंश और हर दोनों में, जो एक ऐसा रूप है जो कुछ पाठकों के लिए अधिक परिचित हो सकता है।
द्वारा विभाजित करके <math>n</math> अंश और हर दोनों में, जो ऐसा रूप है जो कुछ पाठकों के लिए अधिक परिचित हो सकता है।


==उदाहरण==
==उदाहरण==
मान लीजिए कि हमारे पास एक [[ विशेष प्रकार के बोर्ड या पट्टे के खेल जैसे शतरंज, साँप सीढ़ी आदि ]] है जो एक पासे के रोल पर निर्भर करता है और 6 को रोल करने को विशेष महत्व देता है। एक विशेष गेम में, पासे को 235 बार रोल किया जाता है, और 6 पासे को 51 बार घुमाया जाता है। यदि [[पासा]] निष्पक्ष है, तो हम 6 आने की उम्मीद करेंगे
मान लीजिए कि हमारे पास [[ विशेष प्रकार के बोर्ड या पट्टे के खेल जैसे शतरंज, साँप सीढ़ी आदि |विशेष प्रकार के बोर्ड या पट्टे के खेल जैसे शतरंज, साँप सीढ़ी आदि]] है जो पासे के रोल पर निर्भर करता है और 6 को रोल करने को विशेष महत्व देता है। विशेष गेम में, पासे को 235 बार रोल किया जाता है, और 6 पासे को 51 बार घुमाया जाता है। यदि [[पासा]] निष्पक्ष है, तो हम 6 आने की उम्मीद करेंगे


: <math>235\times1/6 = 39.17</math> बार. हमने अब देखा है कि यदि पासा उचित होता तो 6 की संख्या शुद्ध संयोग से हमारी अपेक्षा से अधिक है। लेकिन, क्या यह संख्या इतनी अधिक है कि हम पासे की निष्पक्षता के बारे में कोई निष्कर्ष निकाल सकें? इस प्रश्न का उत्तर द्विपद परीक्षण द्वारा दिया जा सकता है। हमारी शून्य परिकल्पना यह होगी कि पासा उचित है (पासे पर प्रत्येक संख्या आने की संभावना 1/6 है)।
: <math>235\times1/6 = 39.17</math> बार. हमने अब देखा है कि यदि पासा उचित होता तो 6 की संख्या शुद्ध संयोग से हमारी अपेक्षा से अधिक है। लेकिन, क्या यह संख्या इतनी अधिक है कि हम पासे की निष्पक्षता के बारे में कोई निष्कर्ष निकाल सकें? इस प्रश्न का उत्तर द्विपद परीक्षण द्वारा दिया जा सकता है। हमारी शून्य परिकल्पना यह होगी कि पासा उचित है (पासे पर प्रत्येक संख्या आने की संभावना 1/6 है)।
Line 58: Line 54:
यदि हमारे पास 5% का महत्व स्तर है, तो यह परिणाम (0.02654 <5%) इंगित करता है कि हमारे पास ऐसे सबूत हैं जो शून्य परिकल्पना को खारिज करने के लिए पर्याप्त महत्वपूर्ण हैं कि पासा उचित है।
यदि हमारे पास 5% का महत्व स्तर है, तो यह परिणाम (0.02654 <5%) इंगित करता है कि हमारे पास ऐसे सबूत हैं जो शून्य परिकल्पना को खारिज करने के लिए पर्याप्त महत्वपूर्ण हैं कि पासा उचित है।


आम तौर पर, जब हम किसी पासे की निष्पक्षता के लिए परीक्षण कर रहे होते हैं, तो हम यह भी रुचि रखते हैं कि क्या पासा अपेक्षा से कम 6 उत्पन्न करने के प्रति पक्षपाती है, न कि केवल अधिक 6 उत्पन्न करने के प्रति, जैसा कि हमने ऊपर एक-पूंछ वाले परीक्षण में माना था। दोनों पूर्वाग्रहों पर विचार करने के लिए, हम एक- और दो-पूंछ वाले परीक्षण|दो-पूंछ वाले परीक्षण का उपयोग करते हैं। ध्यान दें कि ऐसा करने के लिए हम केवल एक-पूंछ वाले पी-मूल्य को दोगुना नहीं कर सकते हैं जब तक कि घटना की संभावना 1/2 न हो। ऐसा इसलिए है क्योंकि द्विपद वितरण असममित हो जाता है क्योंकि संभावना 1/2 से विचलित हो जाती है। टू-टेल्ड पी-वैल्यू को परिभाषित करने की दो विधियाँ हैं। एक विधि इस संभावना का योग करना है कि अपेक्षित मूल्य से किसी भी दिशा में घटनाओं की संख्या में कुल विचलन या तो अपेक्षित मूल्य से अधिक या कम है। हमारे उदाहरण में ऐसा होने की संभावना 0.0437 है। दूसरी विधि में संभाव्यता की गणना करना शामिल है कि अपेक्षित मूल्य से विचलन प्रेक्षित मूल्य की तुलना में असंभावित या अधिक असंभावित है, अर्थात संभाव्यता घनत्व कार्यों की तुलना से। यह एक सूक्ष्म अंतर पैदा कर सकता है, लेकिन इस उदाहरण में 0.0437 की समान संभावना उत्पन्न होती है। दोनों मामलों में, दो-पूंछ वाले परीक्षण से 5% स्तर पर महत्व का पता चलता है, यह दर्शाता है कि देखी गई 6 की संख्या 5% स्तर पर अपेक्षित संख्या की तुलना में इस पासे के लिए काफी भिन्न थी।
आम तौर पर, जब हम किसी पासे की निष्पक्षता के लिए परीक्षण कर रहे होते हैं, तो हम यह भी रुचि रखते हैं कि क्या पासा अपेक्षा से कम 6 उत्पन्न करने के प्रति पक्षपाती है, न कि केवल अधिक 6 उत्पन्न करने के प्रति, जैसा कि हमने ऊपर एक-पूंछ वाले परीक्षण में माना था। दोनों पूर्वाग्रहों पर विचार करने के लिए, हम एक- और दो-पूंछ वाले परीक्षण|दो-पूंछ वाले परीक्षण का उपयोग करते हैं। ध्यान दें कि ऐसा करने के लिए हम केवल एक-पूंछ वाले पी-मूल्य को दोगुना नहीं कर सकते हैं जब तक कि घटना की संभावना 1/2 न हो। ऐसा इसलिए है क्योंकि द्विपद वितरण असममित हो जाता है क्योंकि संभावना 1/2 से विचलित हो जाती है। टू-टेल्ड पी-वैल्यू को परिभाषित करने की दो विधियाँ हैं। विधि इस संभावना का योग करना है कि अपेक्षित मूल्य से किसी भी दिशा में घटनाओं की संख्या में कुल विचलन या तो अपेक्षित मूल्य से अधिक या कम है। हमारे उदाहरण में ऐसा होने की संभावना 0.0437 है। दूसरी विधि में संभाव्यता की गणना करना शामिल है कि अपेक्षित मूल्य से विचलन प्रेक्षित मूल्य की तुलना में असंभावित या अधिक असंभावित है, अर्थात संभाव्यता घनत्व कार्यों की तुलना से। यह सूक्ष्म अंतर पैदा कर सकता है, लेकिन इस उदाहरण में 0.0437 की समान संभावना उत्पन्न होती है। दोनों मामलों में, दो-पूंछ वाले परीक्षण से 5% स्तर पर महत्व का पता चलता है, यह दर्शाता है कि देखी गई 6 की संख्या 5% स्तर पर अपेक्षित संख्या की तुलना में इस पासे के लिए काफी भिन्न थी।


==सांख्यिकीय सॉफ्टवेयर पैकेज में==
==सांख्यिकीय सॉफ्टवेयर पैकेज में==
Line 88: Line 84:
** <syntaxhighlight lang="python" inline>scipy.stats.binomtest(51, 235, 1.0/6, alternative='two-sided')</syntaxhighlight> (दो-पूंछ परीक्षण)
** <syntaxhighlight lang="python" inline>scipy.stats.binomtest(51, 235, 1.0/6, alternative='two-sided')</syntaxhighlight> (दो-पूंछ परीक्षण)
* [[MATLAB]] में, [http://www.mathworks.com/matlabcentral/fileexchange/24813-binomial-test myBinomTest] का उपयोग करें, जो Mathworks समुदाय फ़ाइल एक्सचेंज वेबसाइट के माध्यम से उपलब्ध है। myBinomTest किसी सफलता की अनुमानित संभावना को देखते हुए अवलोकनों के लिए सीधे पी-वैल्यू की गणना करेगा। <syntaxhighlight lang="matlab" inline>[pout]=myBinomTest(51, 235, 1/6)</syntaxhighlight> (आम तौर पर दो-पूंछ वाला, लेकिन वैकल्पिक रूप से एक-पूंछ वाला परीक्षण भी किया जा सकता है)।
* [[MATLAB]] में, [http://www.mathworks.com/matlabcentral/fileexchange/24813-binomial-test myBinomTest] का उपयोग करें, जो Mathworks समुदाय फ़ाइल एक्सचेंज वेबसाइट के माध्यम से उपलब्ध है। myBinomTest किसी सफलता की अनुमानित संभावना को देखते हुए अवलोकनों के लिए सीधे पी-वैल्यू की गणना करेगा। <syntaxhighlight lang="matlab" inline>[pout]=myBinomTest(51, 235, 1/6)</syntaxhighlight> (आम तौर पर दो-पूंछ वाला, लेकिन वैकल्पिक रूप से एक-पूंछ वाला परीक्षण भी किया जा सकता है)।
* [[ था ]] में, बिटेस्ट का उपयोग करें।
* [[ था | था]] में, बिटेस्ट का उपयोग करें।
* [[ Microsoft Excel ]] में, Binom.Dist का उपयोग करें। फ़ंक्शन पैरामीटर लेता है (सफलताओं की संख्या, परीक्षण, सफलता की संभावना, संचयी)। संचयी पैरामीटर एक बूलियन सही या गलत लेता है, जिसमें ट्रू इतनी सारी सफलताएं (एक बाएं-पूंछ वाला परीक्षण) खोजने की संचयी संभावना देता है, और गलत इतनी सारी सफलताएं पाने की सटीक संभावना देता है।
* [[ Microsoft Excel | Microsoft Excel]] में, Binom.Dist का उपयोग करें। फ़ंक्शन पैरामीटर लेता है (सफलताओं की संख्या, परीक्षण, सफलता की संभावना, संचयी)। संचयी पैरामीटर बूलियन सही या गलत लेता है, जिसमें ट्रू इतनी सारी सफलताएं ( बाएं-पूंछ वाला परीक्षण) खोजने की संचयी संभावना देता है, और गलत इतनी सारी सफलताएं पाने की सटीक संभावना देता है।


==यह भी देखें==
==यह भी देखें==
Line 99: Line 95:
{{reflist}}
{{reflist}}
* {{cite web|title=The binomial test|url=http://www.graphpad.com/guides/prism/6/statistics/index.htm?stat_binomial.htm|website=www.graphpad.com}}
* {{cite web|title=The binomial test|url=http://www.graphpad.com/guides/prism/6/statistics/index.htm?stat_binomial.htm|website=www.graphpad.com}}
==बाहरी संबंध==
==बाहरी संबंध==
* [https://stattrek.com/online-calculator/binomial.aspx Binomial Probability Calculator]
* [https://stattrek.com/online-calculator/binomial.aspx Binomial Probability Calculator]

Revision as of 15:05, 13 July 2023

आंकड़ों में, द्विपद परीक्षण नमूना डेटा का उपयोग करके दो श्रेणियों में टिप्पणियों के सैद्धांतिक रूप से अपेक्षित वितरण से विचलन के सांख्यिकीय महत्व का सटीक परीक्षण है।

उपयोग

द्विपद परीक्षण संभाव्यता के बारे में सांख्यिकीय परिकल्पना परीक्षण के लिए उपयोगी है () सफलता की:

कहाँ 0 और 1 के बीच उपयोगकर्ता द्वारा परिभाषित मान है।

यदि आकार के नमूने में वहाँ हैं सफलताएँ, जबकि हम उम्मीद करते हैं , द्विपद वितरण का सूत्र इस मान को खोजने की संभावना देता है:

यदि शून्य परिकल्पना सही थे, तो सफलताओं की अपेक्षित संख्या होगी . हम अपना पी-वैल्यू पाते हैं|-परिणाम को चरम या उससे अधिक देखने की संभावना पर विचार करके इस परीक्षण के लिए मूल्य। एक-पूंछ वाले परीक्षण के लिए, इसकी गणना करना सरल है। मान लीजिए कि हम परीक्षण करना चाहते हैं यदि . फिर हमारा -मूल्य होगा,

यदि हम परीक्षण कर रहे हैं तो समान गणना की जा सकती है से सीमा के योग का उपयोग करना को बजाय।

गणना ए -दो-पूंछ वाले परीक्षण के लिए मान थोड़ा अधिक जटिल है, क्योंकि द्विपद वितरण सममित नहीं है . इसका मतलब यह है कि हम इसे दोगुना नहीं कर सकते -एक-पूंछ वाले परीक्षण से मूल्य। याद रखें कि हम उन घटनाओं पर विचार करना चाहते हैं जो हमारे द्वारा देखी गई घटना के समान, या उससे अधिक, चरम हैं, इसलिए हमें इस संभावना पर विचार करना चाहिए कि हम ऐसी घटना देखेंगे जिसकी संभावना जितनी, या उससे कम है . होने देना ऐसी सभी घटनाओं को निरूपित करें। फिर दो पूँछ वाला -मूल्य की गणना इस प्रकार की जाती है,

सामान्य उपयोग

द्विपद परीक्षण का सामान्य उपयोग उस मामले में होता है जहां शून्य परिकल्पना यह होती है कि दो श्रेणियां समान रूप से घटित होने की संभावना होती है (जैसे कि सिक्का उछालना), जिसका अर्थ है शून्य परिकल्पना . इस मामले की श्रेणियों में अवलोकनों की महत्वपूर्ण संख्या बताने के लिए तालिकाएँ व्यापक रूप से उपलब्ध हैं। हालाँकि, जैसा कि नीचे दिए गए उदाहरण से पता चलता है, द्विपद परीक्षण इस मामले तक ही सीमित नहीं है।

जब दो से अधिक श्रेणियां हों, और सटीक परीक्षण की आवश्यकता हो, तो द्विपद परीक्षण के बजाय बहुपद वितरण पर आधारित बहुपद परीक्षण का उपयोग किया जाना चाहिए।[1]

बड़े नमूने

नीचे दिए गए उदाहरण जैसे बड़े नमूनों के लिए, द्विपद वितरण को सुविधाजनक निरंतर वितरण द्वारा अच्छी तरह से अनुमानित किया जाता है, और इन्हें वैकल्पिक परीक्षणों के आधार के रूप में उपयोग किया जाता है जो गणना करने में बहुत तेज़ होते हैं, जैसे कि पियर्सन का ची-स्क्वायर परीक्षण और जी-परीक्षण । हालाँकि, छोटे नमूनों के लिए ये अनुमान टूट जाते हैं, और द्विपद परीक्षण का कोई विकल्प नहीं है।

सबसे सामान्य (और सबसे आसान) सन्निकटन मानक सामान्य वितरण के माध्यम से होता है, जिसमें परीक्षण आँकड़ों का z-परीक्षण किया जाता है , द्वारा दिए गए

कहाँ आकार के नमूने में देखी गई सफलताओं की संख्या है और शून्य परिकल्पना के अनुसार सफलता की संभावना है। निरंतरता सुधार शुरू करके इस सन्निकटन में सुधार संभव है:

बहुत बड़े के लिए , यह निरंतरता सुधार महत्वहीन होगा, लेकिन मध्यवर्ती मूल्यों के लिए, जहां सटीक द्विपद परीक्षण काम नहीं करता है, यह काफी अधिक सटीक परिणाम देगा।

मापे गए नमूना अनुपात के संदर्भ में अंकन में , अनुपात के लिए शून्य परिकल्पना , और नमूना आकार , कहाँ और , कोई ऊपर दिए गए z-परीक्षण को पुनर्व्यवस्थित और लिख सकता है

द्वारा विभाजित करके अंश और हर दोनों में, जो ऐसा रूप है जो कुछ पाठकों के लिए अधिक परिचित हो सकता है।

उदाहरण

मान लीजिए कि हमारे पास विशेष प्रकार के बोर्ड या पट्टे के खेल जैसे शतरंज, साँप सीढ़ी आदि है जो पासे के रोल पर निर्भर करता है और 6 को रोल करने को विशेष महत्व देता है। विशेष गेम में, पासे को 235 बार रोल किया जाता है, और 6 पासे को 51 बार घुमाया जाता है। यदि पासा निष्पक्ष है, तो हम 6 आने की उम्मीद करेंगे

बार. हमने अब देखा है कि यदि पासा उचित होता तो 6 की संख्या शुद्ध संयोग से हमारी अपेक्षा से अधिक है। लेकिन, क्या यह संख्या इतनी अधिक है कि हम पासे की निष्पक्षता के बारे में कोई निष्कर्ष निकाल सकें? इस प्रश्न का उत्तर द्विपद परीक्षण द्वारा दिया जा सकता है। हमारी शून्य परिकल्पना यह होगी कि पासा उचित है (पासे पर प्रत्येक संख्या आने की संभावना 1/6 है)।

द्विपद परीक्षण का उपयोग करके इस प्रश्न का उत्तर खोजने के लिए, हम द्विपद वितरण का उपयोग करते हैं

संभाव्यता जन समारोह के साथ .

जैसा कि हमने अपेक्षित मूल्य से अधिक मूल्य देखा है, हम शून्य के तहत 51 6 या उससे अधिक देखने की संभावना पर विचार कर सकते हैं, जो एक- और दो-पूंछ वाले परीक्षणों का गठन करेगा। एक-पूंछ वाला परीक्षण (यहां हम मूल रूप से परीक्षण कर रहे हैं कि क्या यह पासा अपेक्षा से अधिक 6 उत्पन्न करने के प्रति पक्षपाती है)। शून्य परिकल्पना के तहत 235 के नमूने में 51 या अधिक 6s की संभावना की गणना करने के लिए हम ठीक 51 6s, ठीक 52 6s, और इसी तरह ठीक 235 6s प्राप्त करने की प्रायिकता तक की संभावनाओं को जोड़ते हैं:

यदि हमारे पास 5% का महत्व स्तर है, तो यह परिणाम (0.02654 <5%) इंगित करता है कि हमारे पास ऐसे सबूत हैं जो शून्य परिकल्पना को खारिज करने के लिए पर्याप्त महत्वपूर्ण हैं कि पासा उचित है।

आम तौर पर, जब हम किसी पासे की निष्पक्षता के लिए परीक्षण कर रहे होते हैं, तो हम यह भी रुचि रखते हैं कि क्या पासा अपेक्षा से कम 6 उत्पन्न करने के प्रति पक्षपाती है, न कि केवल अधिक 6 उत्पन्न करने के प्रति, जैसा कि हमने ऊपर एक-पूंछ वाले परीक्षण में माना था। दोनों पूर्वाग्रहों पर विचार करने के लिए, हम एक- और दो-पूंछ वाले परीक्षण|दो-पूंछ वाले परीक्षण का उपयोग करते हैं। ध्यान दें कि ऐसा करने के लिए हम केवल एक-पूंछ वाले पी-मूल्य को दोगुना नहीं कर सकते हैं जब तक कि घटना की संभावना 1/2 न हो। ऐसा इसलिए है क्योंकि द्विपद वितरण असममित हो जाता है क्योंकि संभावना 1/2 से विचलित हो जाती है। टू-टेल्ड पी-वैल्यू को परिभाषित करने की दो विधियाँ हैं। विधि इस संभावना का योग करना है कि अपेक्षित मूल्य से किसी भी दिशा में घटनाओं की संख्या में कुल विचलन या तो अपेक्षित मूल्य से अधिक या कम है। हमारे उदाहरण में ऐसा होने की संभावना 0.0437 है। दूसरी विधि में संभाव्यता की गणना करना शामिल है कि अपेक्षित मूल्य से विचलन प्रेक्षित मूल्य की तुलना में असंभावित या अधिक असंभावित है, अर्थात संभाव्यता घनत्व कार्यों की तुलना से। यह सूक्ष्म अंतर पैदा कर सकता है, लेकिन इस उदाहरण में 0.0437 की समान संभावना उत्पन्न होती है। दोनों मामलों में, दो-पूंछ वाले परीक्षण से 5% स्तर पर महत्व का पता चलता है, यह दर्शाता है कि देखी गई 6 की संख्या 5% स्तर पर अपेक्षित संख्या की तुलना में इस पासे के लिए काफी भिन्न थी।

सांख्यिकीय सॉफ्टवेयर पैकेज में

सांख्यिकीय उद्देश्यों के लिए उपयोग किए जाने वाले अधिकांश सॉफ़्टवेयर में द्विपद परीक्षण उपलब्ध हैं। जैसे

  • आर (प्रोग्रामिंग भाषा) में उपरोक्त उदाहरण की गणना निम्नलिखित कोड से की जा सकती है:
    • binom.test(51, 235, 1/6, alternative = "less") (एक-पूंछ परीक्षण)
    • binom.test(51, 235, 1/6, alternative = "greater") (एक-पूंछ परीक्षण)
    • binom.test(51, 235, 1/6, alternative = "two.sided") (दो-पूंछ परीक्षण)
  • जावा (प्रोग्रामिंग भाषा) में अपाचे कॉमन्स लाइब्रेरी का उपयोग करना:
    • new BinomialTest().binomialTest(235, 51, 1.0 / 6, AlternativeHypothesis.LESS_THAN) (एक-पूंछ परीक्षण)
    • new BinomialTest().binomialTest(235, 51, 1.0 / 6, AlternativeHypothesis.GREATER_THAN) (एक-पूंछ परीक्षण)
    • new BinomialTest().binomialTest(235, 51, 1.0 / 6, AlternativeHypothesis.TWO_SIDED) (दो-पूंछ परीक्षण)
  • एसएएस (सॉफ्टवेयर) में परीक्षण फ्रीक्वेंसी प्रक्रिया में उपलब्ध है
    PROC FREQ DATA=DiceRoll ;
    	TABLES Roll / BINOMIAL (P=0.166667) ALPHA=0.05 ;
    	EXACT  BINOMIAL ;
    	WEIGHT Freq ;
    RUN;
    
  • एसपीएसएस में परीक्षण का उपयोग मेनू विश्लेषण > नॉनपैरामीट्रिक परीक्षण > द्विपद के माध्यम से किया जा सकता है
     npar tests 
     /binomial (.5) = node1 node2.
    
  • पायथन (प्रोग्रामिंग भाषा) में, SciPy का उपयोग करें binomtest:
    • scipy.stats.binomtest(51, 235, 1.0/6, alternative='greater') (एक-पूंछ परीक्षण)
    • scipy.stats.binomtest(51, 235, 1.0/6, alternative='two-sided') (दो-पूंछ परीक्षण)
  • MATLAB में, myBinomTest का उपयोग करें, जो Mathworks समुदाय फ़ाइल एक्सचेंज वेबसाइट के माध्यम से उपलब्ध है। myBinomTest किसी सफलता की अनुमानित संभावना को देखते हुए अवलोकनों के लिए सीधे पी-वैल्यू की गणना करेगा। [pout]=myBinomTest(51, 235, 1/6) (आम तौर पर दो-पूंछ वाला, लेकिन वैकल्पिक रूप से एक-पूंछ वाला परीक्षण भी किया जा सकता है)।
  • था में, बिटेस्ट का उपयोग करें।
  • Microsoft Excel में, Binom.Dist का उपयोग करें। फ़ंक्शन पैरामीटर लेता है (सफलताओं की संख्या, परीक्षण, सफलता की संभावना, संचयी)। संचयी पैरामीटर बूलियन सही या गलत लेता है, जिसमें ट्रू इतनी सारी सफलताएं ( बाएं-पूंछ वाला परीक्षण) खोजने की संचयी संभावना देता है, और गलत इतनी सारी सफलताएं पाने की सटीक संभावना देता है।

यह भी देखें

  • पी-वैल्यू|पी-वैल्यू
  • महिला_चख_चाय

संदर्भ

  1. Howell, David C. (2007). मनोविज्ञान के लिए सांख्यिकीय तरीके (6. ed.). Belmont, Calif.: Thomson. ISBN 978-0495012870.

बाहरी संबंध