वर्गों का अवशिष्ट योग: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Statistical measure of the discrepancy between data and an estimation model}} | {{Short description|Statistical measure of the discrepancy between data and an estimation model}} | ||
आँकड़ों में वर्गों के अवशिष्ट [[योग]] (आरएसएस) को वर्ग अवशेषों के योग (एसएसआर) या त्रुटियों के वर्ग अनुमान के योग (एसएसई) के रूप में भी जाना जाता है। जो अवशिष्टों के [[वर्ग (अंकगणित)|वर्गों (अंकगणित)]] का योग है (डेटा के वास्तविक अनुभवजन्य मानो से अनुमानित विचलन)। यह डेटा और एक अनुमान आदर्श जैसे कि रैखिक प्रतिगमन के मध्य विसंगति का एक माप है। एक लघु आरएसएस डेटा के लिए आदर्श के उपयुक्त होने का संकेत देता है। इसका उपयोग पैरामीटर चयन और [[मॉडल चयन|आदर्श चयन]] में [[इष्टतमता मानदंड]] के रूप में किया जाता है। | |||
= | सामान्यतः, [[वर्गों का कुल योग]] = वर्गों का स्पष्ट योग + वर्गों का अवशिष्ट योग है। बहुभिन्नरूपी साधारण न्यूनतम वर्ग (ओएलएस) स्थिति में इसके प्रमाण के लिए, सामान्य साधारण न्यूनतम वर्ग आदर्श में वर्गों का स्पष्ट विभाजन देखें। | ||
एकल व्याख्यात्मक | ==एक व्याख्यात्मक परिवर्तनीय== | ||
एकल व्याख्यात्मक परिवर्तनीय वाले आदर्श में, आरएसएस इस प्रकार दिया गया है:<ref>{{Cite book|title=Correlation and regression analysis : a historian's guide|last=Archdeacon, Thomas J.|date=1994|publisher=University of Wisconsin Press|isbn=0-299-13650-7|pages=161–162|oclc=27266095}}</ref> | |||
:<math>\operatorname{RSS} = \sum_{i=1}^n (y_i - f(x_i))^2 </math> | :<math>\operatorname{RSS} = \sum_{i=1}^n (y_i - f(x_i))^2 </math> | ||
जिस स्थान पर ''y<sub>i</sub>'' पूर्वानुमानित किए जाने वाले परिवर्तनीय का ''i''<sup>th</sup> मान है ''x<sub>i</sub>'' व्याख्यात्मक परिवर्तनीय का ''i''<sup>th</sup> मान है और <math>f(x_i)</math> ''y<sub>i</sub>'' का अनुमानित मान है (जिसे <math>\hat{y_i}</math> भी कहा जाता है)। एक मानक रैखिक सरल प्रतिगमन आदर्श में, <math>y_i = \alpha + \beta x_i+\varepsilon_i\,</math>, जिस स्थान पर α और β गुणांक हैं, y और x क्रमशः प्रतिगमन और प्रतिगामी हैं, और ε त्रुटि पद है। अवशिष्टों के वर्गों का योग <math>\widehat{\varepsilon\,}_i</math> के वर्गों का योग है। अर्थात | |||
:<math>\operatorname{RSS} = \sum_{i=1}^n (\widehat{\varepsilon\,}_i)^2 = \sum_{i=1}^n (y_i - (\widehat{\alpha\,} + \widehat{\beta\,} x_i))^2 </math> | :<math>\operatorname{RSS} = \sum_{i=1}^n (\widehat{\varepsilon\,}_i)^2 = \sum_{i=1}^n (y_i - (\widehat{\alpha\,} + \widehat{\beta\,} x_i))^2 </math> | ||
जिस स्थान पर <math>\widehat{\alpha\,}</math> स्थिर पद <math>\alpha</math> का अनुमानित मान है और <math>\widehat{\beta\,}</math> प्रवणता गुणांक <math>\beta</math> का अनुमानित मान है। | |||
==ओएलएस वर्गों के अवशिष्ट योग के लिए | ==ओएलएस वर्गों के अवशिष्ट योग के लिए आव्युह अभिव्यक्ति== | ||
सामान्य प्रतिगमन | सामान्य प्रतिगमन आदर्श के साथ {{mvar|n}} अवलोकन और {{mvar|k}} व्याख्याकार, जिनमें से पहला एक स्थिर इकाई सदिश है जिसका गुणांक प्रतिगमन अवरोधन है | ||
:<math> y = X \beta + e</math> | :<math> y = X \beta + e</math> | ||
कहाँ {{mvar|y}} निर्भर | कहाँ {{mvar|y}} निर्भर परिवर्तनीय अवलोकनों का एक n × 1 सदिश है, जो n × k आव्युह का प्रत्येक स्तंभ है {{mvar|X}} k व्याख्याकारों में से एक पर अवलोकनों का एक सदिश है, <math>\beta </math> वास्तविक गुणांकों का एक k × 1 सदिश है, और {{mvar|e}} वास्तविक अंतर्निहित त्रुटियों का एक n× 1 सदिश है। के लिए सामान्य न्यूनतम वर्ग अनुमानक <math>\beta</math> है | ||
:<math> X \hat \beta = y \iff</math> | :<math> X \hat \beta = y \iff</math> | ||
:<math> X^\operatorname{T} X \hat \beta = X^\operatorname{T} y \iff</math> | :<math> X^\operatorname{T} X \hat \beta = X^\operatorname{T} y \iff</math> | ||
:<math> \hat \beta = (X^\operatorname{T} X)^{-1}X^\operatorname{T} y.</math> | :<math> \hat \beta = (X^\operatorname{T} X)^{-1}X^\operatorname{T} y.</math> | ||
अवशिष्ट सदिश <math>\hat e = y - X \hat \beta = y - X (X^\operatorname{T} X)^{-1}X^\operatorname{T} y</math>; | अवशिष्ट सदिश <math>\hat e = y - X \hat \beta = y - X (X^\operatorname{T} X)^{-1}X^\operatorname{T} y</math>; तब वर्गों का शेष योग है: | ||
:<math>\operatorname{RSS} = \hat e ^\operatorname{T} \hat e = \| \hat e \|^2 </math>, | :<math>\operatorname{RSS} = \hat e ^\operatorname{T} \hat e = \| \hat e \|^2 </math>, | ||
{{anchor|Norm of residuals}}(अवशेषों के सदिश मानदंड के वर्ग के | {{anchor|Norm of residuals}}(अवशेषों के सदिश मानदंड के वर्ग के सामान्तर)। पूरे में: | ||
:<math>\operatorname{RSS} = y^\operatorname{T} y - y^\operatorname{T} X(X^\operatorname{T} X)^{-1} X^\operatorname{T} y = y^\operatorname{T} [I - X(X^\operatorname{T} X)^{-1} X^\operatorname{T}] y = y^\operatorname{T} [I - H] y</math>, | :<math>\operatorname{RSS} = y^\operatorname{T} y - y^\operatorname{T} X(X^\operatorname{T} X)^{-1} X^\operatorname{T} y = y^\operatorname{T} [I - X(X^\operatorname{T} X)^{-1} X^\operatorname{T}] y = y^\operatorname{T} [I - H] y</math>, | ||
कहाँ {{mvar|H}} [[टोपी मैट्रिक्स]], या रैखिक प्रतिगमन में प्रक्षेपण | कहाँ {{mvar|H}} [[टोपी मैट्रिक्स|टोपी आव्युह]], या रैखिक प्रतिगमन में प्रक्षेपण आव्युह है। | ||
== पियर्सन के उत्पाद-क्षण सहसंबंध के साथ संबंध == | == पियर्सन के उत्पाद-क्षण सहसंबंध के साथ संबंध == | ||
Line 57: | Line 58: | ||
*आंकड़ों में त्रुटियाँ और अवशेष | *आंकड़ों में त्रुटियाँ और अवशेष | ||
*[[वर्गों के योग का अभाव]] | *[[वर्गों के योग का अभाव]] | ||
*[[मतलब चुकता त्रुटि]] | *[[मतलब चुकता त्रुटि|कारणचुकता त्रुटि]] | ||
*कम ची-स्क्वेर्ड आँकड़ा, स्वतंत्रता की डिग्री के अनुसार आरएसएस | *कम ची-स्क्वेर्ड आँकड़ा, स्वतंत्रता की डिग्री के अनुसार आरएसएस | ||
*[[वर्ग विचलन]] | *[[वर्ग विचलन]] |
Revision as of 16:13, 13 July 2023
आँकड़ों में वर्गों के अवशिष्ट योग (आरएसएस) को वर्ग अवशेषों के योग (एसएसआर) या त्रुटियों के वर्ग अनुमान के योग (एसएसई) के रूप में भी जाना जाता है। जो अवशिष्टों के वर्गों (अंकगणित) का योग है (डेटा के वास्तविक अनुभवजन्य मानो से अनुमानित विचलन)। यह डेटा और एक अनुमान आदर्श जैसे कि रैखिक प्रतिगमन के मध्य विसंगति का एक माप है। एक लघु आरएसएस डेटा के लिए आदर्श के उपयुक्त होने का संकेत देता है। इसका उपयोग पैरामीटर चयन और आदर्श चयन में इष्टतमता मानदंड के रूप में किया जाता है।
सामान्यतः, वर्गों का कुल योग = वर्गों का स्पष्ट योग + वर्गों का अवशिष्ट योग है। बहुभिन्नरूपी साधारण न्यूनतम वर्ग (ओएलएस) स्थिति में इसके प्रमाण के लिए, सामान्य साधारण न्यूनतम वर्ग आदर्श में वर्गों का स्पष्ट विभाजन देखें।
एक व्याख्यात्मक परिवर्तनीय
एकल व्याख्यात्मक परिवर्तनीय वाले आदर्श में, आरएसएस इस प्रकार दिया गया है:[1]
जिस स्थान पर yi पूर्वानुमानित किए जाने वाले परिवर्तनीय का ith मान है xi व्याख्यात्मक परिवर्तनीय का ith मान है और yi का अनुमानित मान है (जिसे भी कहा जाता है)। एक मानक रैखिक सरल प्रतिगमन आदर्श में, , जिस स्थान पर α और β गुणांक हैं, y और x क्रमशः प्रतिगमन और प्रतिगामी हैं, और ε त्रुटि पद है। अवशिष्टों के वर्गों का योग के वर्गों का योग है। अर्थात
जिस स्थान पर स्थिर पद का अनुमानित मान है और प्रवणता गुणांक का अनुमानित मान है।
ओएलएस वर्गों के अवशिष्ट योग के लिए आव्युह अभिव्यक्ति
सामान्य प्रतिगमन आदर्श के साथ n अवलोकन और k व्याख्याकार, जिनमें से पहला एक स्थिर इकाई सदिश है जिसका गुणांक प्रतिगमन अवरोधन है
कहाँ y निर्भर परिवर्तनीय अवलोकनों का एक n × 1 सदिश है, जो n × k आव्युह का प्रत्येक स्तंभ है X k व्याख्याकारों में से एक पर अवलोकनों का एक सदिश है, वास्तविक गुणांकों का एक k × 1 सदिश है, और e वास्तविक अंतर्निहित त्रुटियों का एक n× 1 सदिश है। के लिए सामान्य न्यूनतम वर्ग अनुमानक है
अवशिष्ट सदिश ; तब वर्गों का शेष योग है:
- ,
(अवशेषों के सदिश मानदंड के वर्ग के सामान्तर)। पूरे में:
- ,
कहाँ H टोपी आव्युह, या रैखिक प्रतिगमन में प्रक्षेपण आव्युह है।
पियर्सन के उत्पाद-क्षण सहसंबंध के साथ संबंध
न्यूनतम वर्ग|न्यूनतम-वर्ग प्रतिगमन रेखा द्वारा दी गई है
- ,
कहाँ और , कहाँ और इसलिए,
कहाँ पियर्सन सहसंबंध गुणांक|पियर्सन उत्पाद-क्षण सहसंबंध द्वारा दिया गया है इसलिए,
यह भी देखें
- अकैके सूचना मानदंड#न्यूनतम वर्गों के साथ तुलना
- ची-वर्ग वितरण#अनुप्रयोग
- स्वतंत्रता की डिग्री (सांख्यिकी)#वर्गों का योग और स्वतंत्रता की डिग्री
- आंकड़ों में त्रुटियाँ और अवशेष
- वर्गों के योग का अभाव
- कारणचुकता त्रुटि
- कम ची-स्क्वेर्ड आँकड़ा, स्वतंत्रता की डिग्री के अनुसार आरएसएस
- वर्ग विचलन
- वर्गों का योग (सांख्यिकी)
संदर्भ
- ↑ Archdeacon, Thomas J. (1994). Correlation and regression analysis : a historian's guide. University of Wisconsin Press. pp. 161–162. ISBN 0-299-13650-7. OCLC 27266095.
- Draper, N.R.; Smith, H. (1998). Applied Regression Analysis (3rd ed.). John Wiley. ISBN 0-471-17082-8.