आंशिक आसवन: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 13: Line 13:
उपकरण को चित्र के अनुसार इकट्ठा किया गया है।(आरेख एक निरंतर तंत्र के विपरीत एक बैच तंत्र का प्रतिनिधित्व करता है।) मिश्रण को कुछ  प्रतिउच्छलन कण(या एक टेफ्लॉन लेपित चुंबकीय उत्तेजक पट्टी के साथ चुंबकीय उत्तेजक का उपयोग करने के लिए), और अंशांकन के साथ गोल-तल वाले फ्लास्क में डाल दिया जाता है अंशांकन स्तंभ शीर्ष में फिट किया गया है। भिन्नात्मक आसवन स्तंभ को अभी भी बर्तन के तल पर ऊष्मा स्रोत के साथ स्थापित किया गया है। जैसे -जैसे बर्तन से दूरी बढ़ती है, स्तंभ में एक तापमान प्रवणता बनती  है; यह शीर्ष पर सबसे ठंडा है और तल पर सबसे गर्म है। जैसा कि मिश्रित वाष्प तापमान  प्रवणता पर चढ़ती है, कुछ वाष्प संघनित होती है और तापमान  प्रवणता के साथ वाष्पीकृत होती है। हर बार वाष्प संघनित और वाष्पीकृत होती है, वाष्प में अधिक वाष्पशील घटक की संरचना बढ़ जाती है। यह स्तंभ की लंबाई के साथ वाष्प को विकृत करता है, और अंततः, वाष्प पूरी तरह से अधिक वाष्पशील घटक (या स्थिरक्वाथी) से बना होती है। वाष्प कांच के प्लेटफार्मों पर संघनित होती है, जिसे ट्रे के रूप में जाना जाता है, स्तंभ के अंदर, और नीचे के तरल में वापस चली जाती है,जिसे पश्चवहन आसुत कहते हैं।ऊष्मा की मात्रा और अंशांकन प्राप्त करने के लिए आवश्यक समय के संदर्भ में दक्षता को ऊन, एल्यूमीनियम पन्नी, या अधिमानतः एक निर्वात जैकेट जैसे रोधन में स्तंभके बाहर को रोधित करके सुधार किया जा सकता है। सबसे गर्म ट्रे सबसे नीचे है और सबसे ठंडी शीर्ष पर है। स्थिर-अवस्था स्थितियों में, प्रत्येक ट्रे पर वाष्प और तरल वाष्प-तरल संतुलन में होते हैं।  मिश्रण का सबसे वाष्पशील घटक स्तंभ के शीर्ष पर गैस के रूप में बाहर निकलता है। स्तंभ के शीर्ष पर वाष्प तब संघनित्र में गुजरती है, जो इसे तरलीकृत होने तक नीचे ठंडा करता है। अधिक ट्रे (गर्मी, प्रवाह, आदि की एक व्यावहारिक सीमा के लिए) के साथ पृथक्करण अधिक शुद्ध है। शुरू में, संघनित्र स्थिरक्वाथी रचना के करीब होगा, लेकिन जब इथेनॉल का अधिकांश हिस्सा निकाला गया है, तो संघनित धीरे -धीरे जल में तीव्र हो जाता है। ।{{citation needed|date=December 2013}} यह प्रक्रिया तब तक जारी रहती है जब तक कि सभी इथेनॉल मिश्रण से बाहर नहीं निकल जाते।इस बिंदु को थर्मामीटर पर दिखाए गए तापमान में तेज वृद्धि से पहचाना जा सकता है।
उपकरण को चित्र के अनुसार इकट्ठा किया गया है।(आरेख एक निरंतर तंत्र के विपरीत एक बैच तंत्र का प्रतिनिधित्व करता है।) मिश्रण को कुछ  प्रतिउच्छलन कण(या एक टेफ्लॉन लेपित चुंबकीय उत्तेजक पट्टी के साथ चुंबकीय उत्तेजक का उपयोग करने के लिए), और अंशांकन के साथ गोल-तल वाले फ्लास्क में डाल दिया जाता है अंशांकन स्तंभ शीर्ष में फिट किया गया है। भिन्नात्मक आसवन स्तंभ को अभी भी बर्तन के तल पर ऊष्मा स्रोत के साथ स्थापित किया गया है। जैसे -जैसे बर्तन से दूरी बढ़ती है, स्तंभ में एक तापमान प्रवणता बनती  है; यह शीर्ष पर सबसे ठंडा है और तल पर सबसे गर्म है। जैसा कि मिश्रित वाष्प तापमान  प्रवणता पर चढ़ती है, कुछ वाष्प संघनित होती है और तापमान  प्रवणता के साथ वाष्पीकृत होती है। हर बार वाष्प संघनित और वाष्पीकृत होती है, वाष्प में अधिक वाष्पशील घटक की संरचना बढ़ जाती है। यह स्तंभ की लंबाई के साथ वाष्प को विकृत करता है, और अंततः, वाष्प पूरी तरह से अधिक वाष्पशील घटक (या स्थिरक्वाथी) से बना होती है। वाष्प कांच के प्लेटफार्मों पर संघनित होती है, जिसे ट्रे के रूप में जाना जाता है, स्तंभ के अंदर, और नीचे के तरल में वापस चली जाती है,जिसे पश्चवहन आसुत कहते हैं।ऊष्मा की मात्रा और अंशांकन प्राप्त करने के लिए आवश्यक समय के संदर्भ में दक्षता को ऊन, एल्यूमीनियम पन्नी, या अधिमानतः एक निर्वात जैकेट जैसे रोधन में स्तंभके बाहर को रोधित करके सुधार किया जा सकता है। सबसे गर्म ट्रे सबसे नीचे है और सबसे ठंडी शीर्ष पर है। स्थिर-अवस्था स्थितियों में, प्रत्येक ट्रे पर वाष्प और तरल वाष्प-तरल संतुलन में होते हैं।  मिश्रण का सबसे वाष्पशील घटक स्तंभ के शीर्ष पर गैस के रूप में बाहर निकलता है। स्तंभ के शीर्ष पर वाष्प तब संघनित्र में गुजरती है, जो इसे तरलीकृत होने तक नीचे ठंडा करता है। अधिक ट्रे (गर्मी, प्रवाह, आदि की एक व्यावहारिक सीमा के लिए) के साथ पृथक्करण अधिक शुद्ध है। शुरू में, संघनित्र स्थिरक्वाथी रचना के करीब होगा, लेकिन जब इथेनॉल का अधिकांश हिस्सा निकाला गया है, तो संघनित धीरे -धीरे जल में तीव्र हो जाता है। ।{{citation needed|date=December 2013}} यह प्रक्रिया तब तक जारी रहती है जब तक कि सभी इथेनॉल मिश्रण से बाहर नहीं निकल जाते।इस बिंदु को थर्मामीटर पर दिखाए गए तापमान में तेज वृद्धि से पहचाना जा सकता है।


उपरोक्त स्पष्टीकरण सैद्धांतिक तरीके से अंशांकन कार्यों को दर्शाता है।सामान्य प्रयोगशाला अंशांकन स्तंभ सरल कांच की नलिकाएं (प्रायःनिर्वात-जैकेट, और कभी-कभी आंतरिक रूप से चांदी से युक्त) एक पैकिंग से भरा , प्रायःछोटे ग्लास हेलिक्स के साथ {{convert|4|to|7|mm}} व्यास होगा। इस तरह के एक स्तंभको सैद्धांतिक ट्रे की संख्या के संदर्भ में स्तंभ को निर्धारित करने के लिए एक ज्ञात मिश्रण प्रणाली के आसवन द्वारा अंशांकित किया जा सकता है। अंशांकन में सुधार करने के लिए उपकरण को कुछ प्रकार के पश्चवाही विखंडक(पश्चवाही तार, गागो, चुंबकीय झूलती हुई बाल्टी, आदि) के उपयोग से स्तंभ में संघनित करने के लिए सेट किया गया है - एक विशिष्ट सावधान अंशांकन लगभग 4: 1 के पश्चवाही अनुपात को नियोजित करेगा (4 भागों ने संघनित को वापस कर दिया और 1 भाग संघनित को हटा दिया)।
उपरोक्त स्पष्टीकरण सैद्धांतिक तरीके से अंशांकन कार्यों को दर्शाता है।सामान्य प्रयोगशाला अंशांकन स्तंभ सरल कांच की नलिकाएं (प्रायःनिर्वात-जैकेट, और कभी-कभी आंतरिक रूप से चांदी से युक्त) एक संकुलनसे भरा , प्रायःछोटे ग्लास हेलिक्स के साथ {{convert|4|to|7|mm}} व्यास होगा। इस तरह के एक स्तंभको सैद्धांतिक ट्रे की संख्या के संदर्भ में स्तंभ को निर्धारित करने के लिए एक ज्ञात मिश्रण प्रणाली के आसवन द्वारा अंशांकित किया जा सकता है। अंशांकन में सुधार करने के लिए उपकरण को कुछ प्रकार के पश्चवाही विखंडक(पश्चवाही तार, गागो, चुंबकीय झूलती हुई बाल्टी, आदि) के उपयोग से स्तंभ में संघनित करने के लिए सेट किया गया है - एक विशिष्ट सावधान अंशांकन लगभग 4: 1 के पश्चवाही अनुपात को नियोजित करेगा (4 भागों ने संघनित को वापस कर दिया और 1 भाग संघनित को हटा दिया)।


प्रयोगशाला आसवन में, कई प्रकार के संघनित्र सामान्यतः पाए जाते हैं। लिबिग संघनित्र केवल एक जल जैकेट के भीतर एक सीधी ट्यूब है और संघनित्र का सबसे सरल (और अपेक्षाकृत कम महंगा) रूप है। ग्राहम संघनित्र एक जल की जैकेट के भीतर एक सर्पिल ट्यूब है, और अल्लीन संघनित्र के अंदर की ट्यूब पर बड़े और छोटे संकोचनों की एक श्रृंखला होती है, प्रत्येक सतह क्षेत्र को बढ़ाती है जिस पर वाष्प घटक संघनित हो सकते हैं।
प्रयोगशाला आसवन में, कई प्रकार के संघनित्र सामान्यतः पाए जाते हैं। लिबिग संघनित्र केवल एक जल जैकेट के भीतर एक सीधी ट्यूब है और संघनित्र का सबसे सरल (और अपेक्षाकृत कम महंगा) रूप है। ग्राहम संघनित्र एक जल की जैकेट के भीतर एक सर्पिल ट्यूब है, और अल्लीन संघनित्र के अंदर की ट्यूब पर बड़े और छोटे संकोचनों की एक श्रृंखला होती है, प्रत्येक सतह क्षेत्र को बढ़ाती है जिस पर वाष्प घटक संघनित हो सकते हैं।
Line 42: Line 42:
आंशिक आसवन का उपयोग वायु पृथक्करण में भी किया जाता है, जिसमें तरल ऑक्सीजन, तरल नाइट्रोजन और अत्यधिक केंद्रित आर्गन का उत्पादन होता है।क्लोरोसिलेंस का आसवन भी एक अर्धचालक के रूप में उपयोग के लिए उच्च शुद्धता वाले सिलिकॉन के उत्पादन को सक्षम करता है।
आंशिक आसवन का उपयोग वायु पृथक्करण में भी किया जाता है, जिसमें तरल ऑक्सीजन, तरल नाइट्रोजन और अत्यधिक केंद्रित आर्गन का उत्पादन होता है।क्लोरोसिलेंस का आसवन भी एक अर्धचालक के रूप में उपयोग के लिए उच्च शुद्धता वाले सिलिकॉन के उत्पादन को सक्षम करता है।


औद्योगिक उपयोगों में, कभी-कभी ट्रे के बदले में स्तंभ में एक पैकिंग पदार्थ का उपयोग किया जाता है, खासकर जब स्तंभ में कम दबाव बूँद की आवश्यकता होती है, जैसा कि निर्वात के अंतर्गत काम करते समय होता है।यह पैकिंग पदार्थ या तो यादृच्छिक ढंग से डंप की गई पैकिंग हो सकती है ({{convert|1|-|3|in|abbr=on}} चौड़ी) जैसे कि रैशिग गुटका या स्ट्रक्चर्ड धातु की चादर।विशिष्ट निर्माता कोच, सल्जर और अन्य कंपनियां हैं।तरल पदार्थ पैकिंग की सतह को गीला करते हैं और वाष्प इस गीली सतह पर गुजरते हैं, जहां द्रव्यमान हस्तांतरण होता है।पारंपरिक ट्रे आसवन के विपरीत, जिसमें प्रत्येक ट्रे वाष्प तरल संतुलन के एक अलग बिंदु का प्रतिनिधित्व करती है, एक पैक किए गए स्तंभ में वाष्प-तरल संतुलन वक्र निरंतर होता है।यद्यपि, संकुलित स्तंभो की मॉडलिंग करते समय अधिक पारंपरिक ट्रे से संबंधित संकुलित स्तंभ की पृथक्करण दक्षता को दर्शाने के लिए कई "सैद्धांतिक प्लेटों" की गणना करना उपयोगी होता है।अलग -अलग आकार की पैकिंग में अलग -अलग सतह क्षेत्र और छिद्र होते हैं।ये दोनों कारक संकुलन प्रदर्शन को प्रभावित करते हैं।
औद्योगिक उपयोगों में, कभी-कभी ट्रे के बदले में स्तंभ में एक संकुलनपदार्थ का उपयोग किया जाता है, खासकर जब स्तंभ में कम दबाव बूँद की आवश्यकता होती है, जैसा कि निर्वात के अंतर्गत काम करते समय होता है।यह संकुलनपदार्थ या तो यादृच्छिक ढंग से डंप की गई संकुलनहो सकती है ({{convert|1|-|3|in|abbr=on}} चौड़ी) जैसे कि रैशिग गुटका या स्ट्रक्चर्ड धातु की चादर।विशिष्ट निर्माता कोच, सल्जर और अन्य कंपनियां हैं।तरल पदार्थ संकुलनकी सतह को गीला करते हैं और वाष्प इस गीली सतह पर गुजरते हैं, जहां द्रव्यमान हस्तांतरण होता है।पारंपरिक ट्रे आसवन के विपरीत, जिसमें प्रत्येक ट्रे वाष्प तरल संतुलन के एक अलग बिंदु का प्रतिनिधित्व करती है, एक पैक किए गए स्तंभ में वाष्प-तरल संतुलन वक्र निरंतर होता है।यद्यपि, संकुलित स्तंभो की मॉडलिंग करते समय अधिक पारंपरिक ट्रे से संबंधित संकुलित स्तंभ की पृथक्करण दक्षता को दर्शाने के लिए कई "सैद्धांतिक प्लेटों" की गणना करना उपयोगी होता है।अलग -अलग आकार की संकुलनमें अलग -अलग सतह क्षेत्र और छिद्र होते हैं।ये दोनों कारक संकुलन प्रदर्शन को प्रभावित करते हैं।


=== औद्योगिक आसवन स्तंभों का डिज़ाइन ===
=== औद्योगिक आसवन स्तंभों का डिज़ाइन ===
Line 50: Line 50:
इसके अतिरिक्त, आसवन स्तंभों में उपयोग किए जाने वाले वाष्प-तरल संपर्क उपकरणों (प्लेटों या ट्रे के रूप में संदर्भित) की क्षमता सामान्यतः एक सैद्धांतिक {{percentage|100|100}} कुशल संतुलन चरण की तुलना में कम होती है। इसलिए, एक आसवन स्तंभ को सैद्धांतिक वाष्प-तरल संतुलन चरणों की संख्या से अधिक प्लेटों की आवश्यकता होती है।
इसके अतिरिक्त, आसवन स्तंभों में उपयोग किए जाने वाले वाष्प-तरल संपर्क उपकरणों (प्लेटों या ट्रे के रूप में संदर्भित) की क्षमता सामान्यतः एक सैद्धांतिक {{percentage|100|100}} कुशल संतुलन चरण की तुलना में कम होती है। इसलिए, एक आसवन स्तंभ को सैद्धांतिक वाष्प-तरल संतुलन चरणों की संख्या से अधिक प्लेटों की आवश्यकता होती है।


पश्चवाही संघनित किए गए अतिरिक्त उत्पाद के हिस्से को संदर्भित करता है जो टॉवर पर वापस आ जाता है। नीचे की ओर बहने वाला पश्चवाही ऊपर की ओर बहने वाले वाष्प को संघनित करने के लिए आवश्यक शीतलन प्रदान करता है। पश्चवाही अनुपात,जो ओवरहेड उत्पाद के लिए (आंतरिक)पश्चवाही का अनुपात है, इसके विपरीत आसवन उत्पादों के कुशल पृथक्करण के लिए आवश्यक चरणों की सैद्धांतिक संख्या से संबंधित है।
पश्चवाही संघनित किए गए अतिरिक्त उत्पाद के हिस्से को संदर्भित करता है जो टॉवर पर वापस आ जाता है। नीचे की ओर बहने वाला पश्चवाही ऊपर की ओर बहने वाले वाष्प को संघनित करने के लिए आवश्यक शीतलन प्रदान करता है। पश्चवाही अनुपात,जो अतिरिक्त उत्पाद के लिए (आंतरिक)पश्चवाही का अनुपात है, इसके विपरीत आसवन उत्पादों के कुशल पृथक्करण के लिए आवश्यक चरणों की सैद्धांतिक संख्या से संबंधित है।आंशिक आसवन टावरों या स्तंभों को कुशलता से आवश्यक पृथक्करण प्राप्त करने के लिए डिज़ाइन किया गया है। अंशांकन स्तंभों का डिज़ाइन सामान्यतः दो चरणों में बनाया जाता है; एक प्रक्रिया डिजाइन,उसके बाद एक यांत्रिक डिजाइन। प्रक्रिया डिजाइन का उद्देश्य पश्चवाही अनुपात, ताप पश्चवाही और अन्य ताप कर्तव्यों सहित आवश्यक सैद्धांतिक चरणों और धारा प्रवाह की संख्या की गणना करना है। दूसरी ओर, यांत्रिक डिजाइन का उद्देश्य टॉवर आंतरिक, स्तंभव्यास और ऊंचाई का चयन करना है। ज्यादातर कारकों में, अंशांकन टावरों का यांत्रिक डिजाइन सीधा नहीं है। टॉवर आंतरिक के कुशल चयन और स्तंभ ऊंचाई और व्यास की सटीक गणना के लिए, कई कारकों को ध्यान में रखा जाना चाहिए। डिजाइन गणना में सम्मिलित कुछ कारकों में फ़ीड लोड आकार और गुण और उपयोग किए गए आसवन स्तंभ के प्रकार सम्मिलितहैं।
आंशिक आसवन टावरों या स्तंभों को कुशलता से आवश्यक पृथक्करण प्राप्त करने के लिए डिज़ाइन किया गया है। अंशांकन स्तंभों का डिज़ाइन सामान्यतः दो चरणों में बनाया जाता है; एक प्रक्रिया डिजाइन, एक यांत्रिक डिजाइन के बाद। प्रक्रिया डिजाइन का उद्देश्य पश्चवाहीअनुपात, हीट पश्चवाहीऔर अन्य गर्मी कर्तव्यों सहित आवश्यक सैद्धांतिक चरणों और धारा प्रवाह की संख्या की गणना करना है। दूसरी ओर, यांत्रिक डिजाइन का उद्देश्य टॉवर इंटर्नल, स्तंभव्यास और ऊंचाई का चयन करना है। ज्यादातर कारकोंमें, अंशांकन टावरों का यांत्रिक डिजाइन सीधा नहीं है। टॉवर इंटर्नल के कुशल चयन और स्तंभ ऊंचाई और व्यास की सटीक गणना के लिए, कई कारकों को ध्यान में रखा जाना चाहिए। डिजाइन गणना में सम्मिलित कुछ कारकों में फ़ीड लोड आकार और गुण और उपयोग किए गए आसवन स्तंभके प्रकार सम्मिलितहैं।
 
Reflux refers to the portion of the condensed overhead product that is returned to the tower. The reflux flowing downwards provides the cooling required for condensing the vapors flowing upwards. The reflux ratio, which is the ratio of the (internal) reflux to the overhead product, is conversely related to the theoretical number of stages required for efficient separation of the distillation products. Fractional distillation towers or columns are designed to achieve the required separation efficiently. The design of fractionation columns is normally made in two steps; a process design, followed by a mechanical design. The purpose of the process design is to calculate the number of required theoretical stages and stream flows including the reflux ratio, heat reflux, and other heat duties. The purpose of the mechanical design, on the other hand, is to select the tower internals, column diameter, and height. In most cases, the mechanical design of fractionation towers is not straightforward. For the efficient selection of tower internals and the accurate calculation of column height and diameter, many factors must be taken into account. Some of the factors involved in design calculations include feed load size and properties and the type of distillation column used.
 
उपयोग किए गए दो प्रमुख प्रकार के आसवन स्तंभट्रे और पैकिंग स्तंभहैं। पैकिंग स्तंभसामान्यतः छोटे टावरों और लोड के लिए उपयोग किए जाते हैं जो संक्षारक या तापमान-संवेदनशील होते हैं या निर्वातसेवा के लिए जहां दबाव ड्रॉप महत्वपूर्ण है। दूसरी ओर, ट्रे कॉलम, उच्च तरल भार वाले बड़े स्तंभके लिए उपयोग किए जाते हैं। वे पहली बार 1820 के दशक में दृश्य पर दिखाई दिए। अधिकांश तेल रिफाइनरी संचालन में, ट्रे स्तंभमुख्य रूप से तेल शोधन के विभिन्न चरणों में पेट्रोलियम अंशों को अलग करने के लिए उपयोग किए जाते हैं।
 
तेल शोधन उद्योग में, अंशांकन टावरों का डिजाइन और संचालन अभी भी काफी हद तक एक अनुभवजन्य आधार पर पूरा किया जाता है। पेट्रोलियम अंशांकन स्तंभों के डिजाइन में सम्मिलितगणना में सामान्य अभ्यास में संख्यात्मक चार्ट, टेबल और जटिल अनुभवजन्य समीकरणों के उपयोग की आवश्यकता होती है। हाल के वर्षों में, हालांकि, आंशिक आसवन के लिए कुशल और विश्वसनीय कंप्यूटर-एडेड डिज़ाइन प्रक्रियाओं को विकसित करने के लिए काफी मात्रा में काम किया गया है।<ref>{{cite book |last=Ibrahim |first=Hassan Al-Haj |editor-last=Bennett |editor-first=Kelly |title=Matlab: Applications for the Practical Engineer |publisher=Sciyo |date=2014 |pages=139–171 |chapter=Chapter 5 |isbn= 978-953-51-1719-3}}</ref>


उपयोग किए गए दो प्रमुख प्रकार के आसवन स्तंभ ट्रे और संकुलन स्तंभ हैं। संकुलन स्तंभसामान्यतः छोटे टावरों और भारों के लिए उपयोग किए जाते हैं जो संक्षारक या तापमान-संवेदनशील होते हैं या निर्वात सेवा के लिए जहां दबाव पात महत्वपूर्ण है। दूसरी ओर, ट्रे कॉलम, उच्च तरल भार वाले बड़े स्तंभ के लिए उपयोग किए जाते हैं। वे पहली बार 1820 के दशक में दृश्य पर दिखाई दिए। अधिकांश तेल रिफाइनरी संचालन में, ट्रे स्तंभ मुख्य रूप से तेल शोधन के विभिन्न चरणों में पेट्रोलियम अंशों को अलग करने के लिए उपयोग किए जाते हैं।


तेल शोधन उद्योग में, अंशांकन टावरों का डिजाइन और संचालन अभी भी काफी सीमा तक एक अनुभवजन्य आधार पर पूरा किया जाता है। पेट्रोलियम अंशांकन स्तंभों के डिजाइन में सम्मिलित गणना में सामान्य अभ्यास में संख्यात्मक चार्ट, टेबल और जटिल अनुभवजन्य समीकरणों के उपयोग की आवश्यकता होती है। हाल के वर्षों में, यद्यपि, आंशिक आसवन के लिए कुशल और विश्वसनीय कंप्यूटर सहायता प्राप्त डिज़ाइन प्रक्रियाओं को विकसित करने के लिए काफी मात्रा में काम किया गया है।<ref>{{cite book |last=Ibrahim |first=Hassan Al-Haj |editor-last=Bennett |editor-first=Kelly |title=Matlab: Applications for the Practical Engineer |publisher=Sciyo |date=2014 |pages=139–171 |chapter=Chapter 5 |isbn= 978-953-51-1719-3}}</ref>
== इतिहास ==
== इतिहास ==
कार्बनिक पदार्थों के आंशिक आसवन ने 9 वीं शताब्दी के कार्यों में एक महत्वपूर्ण भूमिका निभाई, जो इस्लामिक कीमियागर जाबिर इब्न हेयन के लिए जिम्मेदार है, उदाहरण के लिए, उदाहरण के लिए{{transl|ar|Kitāb al-Sabʿīn}}('द बुक ऑफ सेवेंटी'), शीर्षक के अंतर्गतगेरार्ड ऑफ क्रेमोना (सी। 1114–1187) द्वारा लैटिन में अनुवादित किया गया {{lang|la|Liber de septuaginta}}.<ref>{{Cite book|last=Kraus|first=Paul|author-link=Paul Kraus (Arabist)|year=1942–1943|title=Jâbir ibn Hayyân: Contribution à l'histoire des idées scientifiques dans l'Islam. I. Le corpus des écrits jâbiriens. II. Jâbir et la science grecque|publisher=Institut Français d'Archéologie Orientale|location=Cairo|oclc=468740510|isbn=9783487091150}} Vol. II, p. 5. On the attribution of the Latin translation to Gerard of Cremona, see {{cite journal|last1=Burnett|first1=Charles|year=2001|title=The Coherence of the Arabic-Latin Translation Program in Toledo in the Twelfth Century|journal=Science in Context|volume=14|issue=1–2|pages=249–288|doi=10.1017/S0269889701000096|s2cid=143006568}} p. 280; {{cite journal|last1=Moureau|first1=Sébastien|year=2020|title=Min al-kīmiyāʾ ad alchimiam. The Transmission of Alchemy from the Arab-Muslim World to the Latin West in the Middle Ages|journal=Micrologus|volume=28|issue=|pages=87–141|hdl=2078.1/211340|url=http://hdl.handle.net/2078.1/211340}} pp. 106, 111.</ref> जानवरों और सब्जी पदार्थों के आंशिक आसवन के साथ जाबिरियन प्रयोग, और कुछ हद तक खनिज पदार्थों के भी, मुख्य विषय का गठन किया {{lang|la|De anima in arte alkimiae}}, एक मूल रूप से अरबी काम ने एविसेना के लिए झूठे रूप से जिम्मेदार ठहराया, जिसे लैटिन में अनुवादित किया गया था और रोजर बेकन के लिए सबसे महत्वपूर्ण रसायनिक स्रोत बनाने के लिए आगे बढ़ेगा ({{circa|1220–1292}})।<ref>{{cite book|last1=Newman|first1=William R.|author1-link=William R. Newman|date=2000|chapter=Alchemy, Assaying, and Experiment|editor1-last=Holmes|editor1-first=Frederic L.|editor1-link=Frederic L. Holmes|editor2-last=Levere|editor2-first=Trevor H.|title=Instruments and Experimentation in the History of Chemistry|location=Cambridge|publisher=MIT Press|pages=35–54|isbn=9780262082822}} p. 44.</ref>
कार्बनिक पदार्थों के आंशिक आसवन ने 9 वीं शताब्दी के कार्यों में एक महत्वपूर्ण भूमिका निभाई, जो इस्लामिक कीमियागर जाबिर इब्न हेयन के लिए उत्तरदायी है, उदाहरण के लिए, उदाहरण के लिए{{transl|ar|Kitāb al-Sabʿīn}}('द बुक ऑफ सेवेंटी'), शीर्षक के अंतर्गतगे रार्ड ऑफ क्रेमोना (सी 1114–1187) द्वारा लैटिन में अनुवादित किया गया {{lang|la|Liber de septuaginta}}.<ref>{{Cite book|last=Kraus|first=Paul|author-link=Paul Kraus (Arabist)|year=1942–1943|title=Jâbir ibn Hayyân: Contribution à l'histoire des idées scientifiques dans l'Islam. I. Le corpus des écrits jâbiriens. II. Jâbir et la science grecque|publisher=Institut Français d'Archéologie Orientale|location=Cairo|oclc=468740510|isbn=9783487091150}} Vol. II, p. 5. On the attribution of the Latin translation to Gerard of Cremona, see {{cite journal|last1=Burnett|first1=Charles|year=2001|title=The Coherence of the Arabic-Latin Translation Program in Toledo in the Twelfth Century|journal=Science in Context|volume=14|issue=1–2|pages=249–288|doi=10.1017/S0269889701000096|s2cid=143006568}} p. 280; {{cite journal|last1=Moureau|first1=Sébastien|year=2020|title=Min al-kīmiyāʾ ad alchimiam. The Transmission of Alchemy from the Arab-Muslim World to the Latin West in the Middle Ages|journal=Micrologus|volume=28|issue=|pages=87–141|hdl=2078.1/211340|url=http://hdl.handle.net/2078.1/211340}} pp. 106, 111.</ref> जानवरों और सब्जी पदार्थों के आंशिक आसवन के साथ जाबिरियन प्रयोग, और कुछ हद तक खनिज पदार्थों के भी, मुख्य विषय का गठन किया {{lang|la|De anima in arte alkimiae}}, एक मूल रूप से अरबी काम ने एविसेना के लिए झूठे रूप से जिम्मेदार ठहराया, जिसे लैटिन में अनुवादित किया गया था और रोजर बेकन के लिए सबसे महत्वपूर्ण रसायनिक स्रोत बनाने के लिए आगे बढ़ेगा ({{circa|1220–1292}})।<ref>{{cite book|last1=Newman|first1=William R.|author1-link=William R. Newman|date=2000|chapter=Alchemy, Assaying, and Experiment|editor1-last=Holmes|editor1-first=Frederic L.|editor1-link=Frederic L. Holmes|editor2-last=Levere|editor2-first=Trevor H.|title=Instruments and Experimentation in the History of Chemistry|location=Cambridge|publisher=MIT Press|pages=35–54|isbn=9780262082822}} p. 44.</ref>
 
 
== यह भी देखें ==
== यह भी देखें ==
*स्थिरक्वाथीआसवन
*स्थिरक्वाथीआसवन

Revision as of 15:25, 17 July 2023

आंशिक आसवन अपने घटक भागों, या अंशों में मिश्रण का पृथक्करण है।रासायनिक यौगिकों को उन्हें एक तापमान पर गर्म करके अलग किया जाता है जिस पर मिश्रण के एक या अधिक अंश वाष्पीकरण करेंगे।यह अंशांकन के लिए आसवन का उपयोग करता है।।सामान्यतः घटक भागों में क्वथनांक होते हैं जो एक वातावरण दबाव में एक दूसरे से 25 °C (45 °F) से कम में भिन्न होते हैं।यदि क्वथनांको में अंतर 25° C से अधिक है, तो एक साधारण आसवन का उपयोग सामान्यतः किया जाता है।इसका उपयोग कच्चे तेल को परिष्कृत करने के लिए किया जाता है।

प्रयोगशाला की स्थापना

एक प्रयोगशाला में आंशिक आसवन सामान्य प्रयोगशाला कांच के बने पदार्थ और उपकरणों का उपयोग करता है, जिसमें सामान्यतः एक बन्सन बर्नर, एक गोल-तल वाला फ्लास्क और एक संघनित्र सम्मिलित है, साथ ही एकल-पुष्पन अंशांकन स्तंभ भी सम्मिलित है।

आंशिक आसवन

एक उदाहरण के रूप में, जलऔर इथेनॉल के मिश्रण के आसवन पर विचार करें।इथेनॉल 78.4 °C (173.1 °F) पर उबलता है जबकि पानी 100 °C (212 °F)पर उबलता है।इसलिए, मिश्रण को गर्म करके, सबसे वाष्पशील घटक (इथेनॉल) तरल छोड़ने वाले वाष्प में अधिक से अधिक डिग्री तक सांद्रण करेगा।कुछ मिश्रण स्थिरक्वाथी बनाते हैं, जहां मिश्रण या तो घटक की तुलना में कम तापमान पर उबलता है।इस उदाहरण में, एक मिश्रण 96% इथेनॉल और 4% जल 78.2 °C (172.8 °F) पर उबलता है ; मिश्रण शुद्ध इथेनॉल की तुलना में अधिक अस्थिर है। इस कारण से, इथेनॉल को इथेनॉल-जलके मिश्रण के प्रत्यक्ष आंशिक आसवन द्वारा पूरी तरह से शुद्ध नहीं किया जा सकता है।


उपकरण को चित्र के अनुसार इकट्ठा किया गया है।(आरेख एक निरंतर तंत्र के विपरीत एक बैच तंत्र का प्रतिनिधित्व करता है।) मिश्रण को कुछ प्रतिउच्छलन कण(या एक टेफ्लॉन लेपित चुंबकीय उत्तेजक पट्टी के साथ चुंबकीय उत्तेजक का उपयोग करने के लिए), और अंशांकन के साथ गोल-तल वाले फ्लास्क में डाल दिया जाता है अंशांकन स्तंभ शीर्ष में फिट किया गया है। भिन्नात्मक आसवन स्तंभ को अभी भी बर्तन के तल पर ऊष्मा स्रोत के साथ स्थापित किया गया है। जैसे -जैसे बर्तन से दूरी बढ़ती है, स्तंभ में एक तापमान प्रवणता बनती है; यह शीर्ष पर सबसे ठंडा है और तल पर सबसे गर्म है। जैसा कि मिश्रित वाष्प तापमान प्रवणता पर चढ़ती है, कुछ वाष्प संघनित होती है और तापमान प्रवणता के साथ वाष्पीकृत होती है। हर बार वाष्प संघनित और वाष्पीकृत होती है, वाष्प में अधिक वाष्पशील घटक की संरचना बढ़ जाती है। यह स्तंभ की लंबाई के साथ वाष्प को विकृत करता है, और अंततः, वाष्प पूरी तरह से अधिक वाष्पशील घटक (या स्थिरक्वाथी) से बना होती है। वाष्प कांच के प्लेटफार्मों पर संघनित होती है, जिसे ट्रे के रूप में जाना जाता है, स्तंभ के अंदर, और नीचे के तरल में वापस चली जाती है,जिसे पश्चवहन आसुत कहते हैं।ऊष्मा की मात्रा और अंशांकन प्राप्त करने के लिए आवश्यक समय के संदर्भ में दक्षता को ऊन, एल्यूमीनियम पन्नी, या अधिमानतः एक निर्वात जैकेट जैसे रोधन में स्तंभके बाहर को रोधित करके सुधार किया जा सकता है। सबसे गर्म ट्रे सबसे नीचे है और सबसे ठंडी शीर्ष पर है। स्थिर-अवस्था स्थितियों में, प्रत्येक ट्रे पर वाष्प और तरल वाष्प-तरल संतुलन में होते हैं। मिश्रण का सबसे वाष्पशील घटक स्तंभ के शीर्ष पर गैस के रूप में बाहर निकलता है। स्तंभ के शीर्ष पर वाष्प तब संघनित्र में गुजरती है, जो इसे तरलीकृत होने तक नीचे ठंडा करता है। अधिक ट्रे (गर्मी, प्रवाह, आदि की एक व्यावहारिक सीमा के लिए) के साथ पृथक्करण अधिक शुद्ध है। शुरू में, संघनित्र स्थिरक्वाथी रचना के करीब होगा, लेकिन जब इथेनॉल का अधिकांश हिस्सा निकाला गया है, तो संघनित धीरे -धीरे जल में तीव्र हो जाता है। ।[citation needed] यह प्रक्रिया तब तक जारी रहती है जब तक कि सभी इथेनॉल मिश्रण से बाहर नहीं निकल जाते।इस बिंदु को थर्मामीटर पर दिखाए गए तापमान में तेज वृद्धि से पहचाना जा सकता है।

उपरोक्त स्पष्टीकरण सैद्धांतिक तरीके से अंशांकन कार्यों को दर्शाता है।सामान्य प्रयोगशाला अंशांकन स्तंभ सरल कांच की नलिकाएं (प्रायःनिर्वात-जैकेट, और कभी-कभी आंतरिक रूप से चांदी से युक्त) एक संकुलनसे भरा , प्रायःछोटे ग्लास हेलिक्स के साथ 4 to 7 millimetres (0.16 to 0.28 in) व्यास होगा। इस तरह के एक स्तंभको सैद्धांतिक ट्रे की संख्या के संदर्भ में स्तंभ को निर्धारित करने के लिए एक ज्ञात मिश्रण प्रणाली के आसवन द्वारा अंशांकित किया जा सकता है। अंशांकन में सुधार करने के लिए उपकरण को कुछ प्रकार के पश्चवाही विखंडक(पश्चवाही तार, गागो, चुंबकीय झूलती हुई बाल्टी, आदि) के उपयोग से स्तंभ में संघनित करने के लिए सेट किया गया है - एक विशिष्ट सावधान अंशांकन लगभग 4: 1 के पश्चवाही अनुपात को नियोजित करेगा (4 भागों ने संघनित को वापस कर दिया और 1 भाग संघनित को हटा दिया)।

प्रयोगशाला आसवन में, कई प्रकार के संघनित्र सामान्यतः पाए जाते हैं। लिबिग संघनित्र केवल एक जल जैकेट के भीतर एक सीधी ट्यूब है और संघनित्र का सबसे सरल (और अपेक्षाकृत कम महंगा) रूप है। ग्राहम संघनित्र एक जल की जैकेट के भीतर एक सर्पिल ट्यूब है, और अल्लीन संघनित्र के अंदर की ट्यूब पर बड़े और छोटे संकोचनों की एक श्रृंखला होती है, प्रत्येक सतह क्षेत्र को बढ़ाती है जिस पर वाष्प घटक संघनित हो सकते हैं।

वैकल्पिक सेट-अप एक बहु-बहिर्गम आसवन गृहीता फ्लास्क (गाय या सुअर के रूप में संदर्भित) का उपयोग संघनित्र को तीन या चार गृहीता फ्लास्क को जोड़ने के लिए कर सकते हैं। गाय या सुअर को मोड़कर, आसुत को किसी भी चुने हुए गृहीता में सम्मिलित किया जा सकता है। क्योंकि गृहीता को आसवन प्रक्रिया के समय हटाने और प्रतिस्थापित करने की आवश्यकता नहीं होती है, इसलिए इस प्रकार का उपकरण उपयोगी होता है जब वायु-संवेदनशील रसायनों के लिए एक अक्रिय वातावरण के अंतर्गत या कम दबाव में आसवित होता है। एक पर्किन त्रिभुज एक वैकल्पिक उपकरण है जिसका उपयोग प्रायः इन स्थितियों में किया जाता है क्योंकि यह निकाय के बाकी हिस्सों से गृहीता के पृथक्करण की अनुमति देता है, लेकिन प्रत्येक अंश के लिए एक एकल गृहीता को हटाने और फिर से हटाने की आवश्यकता होती है।

निर्वात आसवन निकाय कम दबाव में काम करते हैं, जिससे पदार्थ के क्वथनांक को कम किया जाता है। प्रतिउच्छलन दाने , यद्यपि, कम दबावों में अप्रभावी हो जाते हैं।

औद्योगिक आसवन

विशिष्ट औद्योगिक आंशिक आसवन स्तंभ

आंशिक आसवन पेट्रोलियम रिफाइनरियों, शैलरसायनऔर रासायनिक संयंत्रों, प्राकृतिक गैस प्रसंस्करण और निम्नतापी वायु पृथक्करण संयंत्रों में उपयोग किए जाने वाले पृथक्करण प्रौद्योगिकी का सबसे सामान्य रूप है।[1][2] ज्यादातर कारकों में, आसवन को एक निरंतर स्थिर स्थिति में संचालित किया जाता है।नए फ़ीड को हमेशा आसवन स्तंभ में जोड़ा जा रहा है और उत्पादों को हमेशा हटाया जा रहा है।फ़ीड, गर्मी, परिवेश के तापमान या संघनन में परिवर्तन के कारण प्रक्रिया बाधित होती है, जोड़े जाने वाले फ़ीड की मात्रा और निकाले जाने वाले उत्पाद की मात्रा सामान्य रूप से बराबर होती है।इस निरंतर, स्थिर-अवस्था को आंशिक आसवन के रूप में जाना जाता है।

औद्योगिक आसवन सामान्यतः बड़े, ऊर्ध्वाधर बेलनाकार स्तंभों में किया जाता है, जिन्हें आसवन या अंशांकन टावरों या आसवन स्तंभों के रूप में जाना जाता है जिनका व्यास लगभग 0.65 to 6 meters (2 to 20 ft) और ऊंचाई लगभग 6 to 60 meters (20 to 197 ft) या इससे अधिक होती है।आसवन टावरों में स्तंभ के अंतराल पर तरल बहिर्गम होते हैं जो विभिन्न अंशों या उत्पादों की वापसी की अनुमति देते हैं, जिनमें अलग -अलग क्वथनांक या क्वथन परास होते हैं।स्तंभों के अंदर उत्पाद के तापमान को बढ़ाकर, विभिन्न उत्पादों को अलग किया जाता है।सबसे हल्के उत्पाद (सबसे कम क्वथनांक वाले) स्तंभों के ऊपर से बाहर निकलते हैं और सबसे भारी उत्पाद (उच्चतम क्वथनांक वाले) स्तंभ के नीचे से बाहर निकलते हैं।

उदाहरण के लिए, भिन्नात्मक आसवन का उपयोग तेल रिफाइनरियों में कच्चे तेल को विभिन्न क्वथनांक वाले विभिन्न हाइड्रोकार्बन वाले उपयोगी पदार्थों (या अंशों) में अलग करने के लिए किया जाता है। उच्च क्वथनांक वाले कच्चे तेल के अंश:

  • अधिक कार्बन परमाणु होते हैं
  • उच्च आणविक भार होते है
  • कम ब्रांकेड-चेन अल्केन्स हैं
  • गहरे रंग के होते हैं
  • अधिक श्यान होते हैं
  • प्रज्वलित और जलाने के लिए अधिक कठिन हैं
एक विशिष्ट औद्योगिक आसवन टॉवर का आरेख

बड़े पैमाने पर औद्योगिक टावर्स उत्पादों के अधिक पूर्ण पृथक्करण को प्राप्त करने के लिए पश्चवाही का उपयोग करते हैं।[3] पश्चवाही एक आसवन या अंशांकन टॉवर से संघनित अतिरिक्ततरल उत्पाद के हिस्से को संदर्भित करता है जो टॉवर के ऊपरी हिस्से में वापस आ जाता है जैसा कि एक विशिष्ट, बड़े पैमाने पर औद्योगिक आसवन टॉवर के योजना बद्ध आरेख में दिखाया गया है।टॉवर के अंदर, नीचे की ओर बहने वाला पश्चवाही तरल ऊपर की ओर बहने वाले वाष्प को संघनित करने के लिए आवश्यक शीतलन प्रदान करता है, जिससे आसवन टॉवर की प्रभावशीलता बढ़ जाती है।अधिक पश्चवाही सैद्धांतिक प्लेटों की एक दी गई संख्या के लिए प्रदान किया जाता है, अधिक उबलते पदार्थों से कम उबलते पदार्थ के टॉवर को अलग करने के लिए अच्छा है।वैकल्पिक रूप से, दिए गए वांछित पृथक्करण के लिए जितना अधिक पश्चवाही प्रदान किया जाएगा, उतनी ही कम सैद्धांतिक प्लेटों की आवश्यकता होगी।

कच्चे तेल को आंशिक आसवन द्वारा अंशों में अलग किया जाता है।अंशांकन स्तंभ के शीर्ष पर अंशों में तल पर अंशों की तुलना में कम क्वथनांक होते हैं।सभी अंशों को अन्य शोधन इकाइयों में आगे संसाधित किया जाता है।

आंशिक आसवन का उपयोग वायु पृथक्करण में भी किया जाता है, जिसमें तरल ऑक्सीजन, तरल नाइट्रोजन और अत्यधिक केंद्रित आर्गन का उत्पादन होता है।क्लोरोसिलेंस का आसवन भी एक अर्धचालक के रूप में उपयोग के लिए उच्च शुद्धता वाले सिलिकॉन के उत्पादन को सक्षम करता है।

औद्योगिक उपयोगों में, कभी-कभी ट्रे के बदले में स्तंभ में एक संकुलनपदार्थ का उपयोग किया जाता है, खासकर जब स्तंभ में कम दबाव बूँद की आवश्यकता होती है, जैसा कि निर्वात के अंतर्गत काम करते समय होता है।यह संकुलनपदार्थ या तो यादृच्छिक ढंग से डंप की गई संकुलनहो सकती है (1–3 in (25–76 mm) चौड़ी) जैसे कि रैशिग गुटका या स्ट्रक्चर्ड धातु की चादर।विशिष्ट निर्माता कोच, सल्जर और अन्य कंपनियां हैं।तरल पदार्थ संकुलनकी सतह को गीला करते हैं और वाष्प इस गीली सतह पर गुजरते हैं, जहां द्रव्यमान हस्तांतरण होता है।पारंपरिक ट्रे आसवन के विपरीत, जिसमें प्रत्येक ट्रे वाष्प तरल संतुलन के एक अलग बिंदु का प्रतिनिधित्व करती है, एक पैक किए गए स्तंभ में वाष्प-तरल संतुलन वक्र निरंतर होता है।यद्यपि, संकुलित स्तंभो की मॉडलिंग करते समय अधिक पारंपरिक ट्रे से संबंधित संकुलित स्तंभ की पृथक्करण दक्षता को दर्शाने के लिए कई "सैद्धांतिक प्लेटों" की गणना करना उपयोगी होता है।अलग -अलग आकार की संकुलनमें अलग -अलग सतह क्षेत्र और छिद्र होते हैं।ये दोनों कारक संकुलन प्रदर्शन को प्रभावित करते हैं।

औद्योगिक आसवन स्तंभों का डिज़ाइन

एक आसवन टॉवर में ठेठ बबल-कैप ट्रे के रासायनिक इंजीनियरिंग योजनाबद्ध

एक आसवन स्तंभ का डिजाइन और संचालन फ़ीड और वांछित उत्पादों पर निर्भर करता है।एक सरल, बाइनरी घटक फ़ीड को देखते हुए[2][4][5]मैककेबे-थिएल विधि या फ़ेंस्के समीकरण जैसे विश्लेषणात्मक तरीकों का उपयोग किया जा सकता है।[2]एक बहु-घटक फ़ीड के लिए, अनुकरण नमूने का उपयोग डिजाइन और संचालन दोनों के लिए किया जाता है।

इसके अतिरिक्त, आसवन स्तंभों में उपयोग किए जाने वाले वाष्प-तरल संपर्क उपकरणों (प्लेटों या ट्रे के रूप में संदर्भित) की क्षमता सामान्यतः एक सैद्धांतिक 100% कुशल संतुलन चरण की तुलना में कम होती है। इसलिए, एक आसवन स्तंभ को सैद्धांतिक वाष्प-तरल संतुलन चरणों की संख्या से अधिक प्लेटों की आवश्यकता होती है।

पश्चवाही संघनित किए गए अतिरिक्त उत्पाद के हिस्से को संदर्भित करता है जो टॉवर पर वापस आ जाता है। नीचे की ओर बहने वाला पश्चवाही ऊपर की ओर बहने वाले वाष्प को संघनित करने के लिए आवश्यक शीतलन प्रदान करता है। पश्चवाही अनुपात,जो अतिरिक्त उत्पाद के लिए (आंतरिक)पश्चवाही का अनुपात है, इसके विपरीत आसवन उत्पादों के कुशल पृथक्करण के लिए आवश्यक चरणों की सैद्धांतिक संख्या से संबंधित है।आंशिक आसवन टावरों या स्तंभों को कुशलता से आवश्यक पृथक्करण प्राप्त करने के लिए डिज़ाइन किया गया है। अंशांकन स्तंभों का डिज़ाइन सामान्यतः दो चरणों में बनाया जाता है; एक प्रक्रिया डिजाइन,उसके बाद एक यांत्रिक डिजाइन। प्रक्रिया डिजाइन का उद्देश्य पश्चवाही अनुपात, ताप पश्चवाही और अन्य ताप कर्तव्यों सहित आवश्यक सैद्धांतिक चरणों और धारा प्रवाह की संख्या की गणना करना है। दूसरी ओर, यांत्रिक डिजाइन का उद्देश्य टॉवर आंतरिक, स्तंभव्यास और ऊंचाई का चयन करना है। ज्यादातर कारकों में, अंशांकन टावरों का यांत्रिक डिजाइन सीधा नहीं है। टॉवर आंतरिक के कुशल चयन और स्तंभ ऊंचाई और व्यास की सटीक गणना के लिए, कई कारकों को ध्यान में रखा जाना चाहिए। डिजाइन गणना में सम्मिलित कुछ कारकों में फ़ीड लोड आकार और गुण और उपयोग किए गए आसवन स्तंभ के प्रकार सम्मिलितहैं।

उपयोग किए गए दो प्रमुख प्रकार के आसवन स्तंभ ट्रे और संकुलन स्तंभ हैं। संकुलन स्तंभसामान्यतः छोटे टावरों और भारों के लिए उपयोग किए जाते हैं जो संक्षारक या तापमान-संवेदनशील होते हैं या निर्वात सेवा के लिए जहां दबाव पात महत्वपूर्ण है। दूसरी ओर, ट्रे कॉलम, उच्च तरल भार वाले बड़े स्तंभ के लिए उपयोग किए जाते हैं। वे पहली बार 1820 के दशक में दृश्य पर दिखाई दिए। अधिकांश तेल रिफाइनरी संचालन में, ट्रे स्तंभ मुख्य रूप से तेल शोधन के विभिन्न चरणों में पेट्रोलियम अंशों को अलग करने के लिए उपयोग किए जाते हैं।

तेल शोधन उद्योग में, अंशांकन टावरों का डिजाइन और संचालन अभी भी काफी सीमा तक एक अनुभवजन्य आधार पर पूरा किया जाता है। पेट्रोलियम अंशांकन स्तंभों के डिजाइन में सम्मिलित गणना में सामान्य अभ्यास में संख्यात्मक चार्ट, टेबल और जटिल अनुभवजन्य समीकरणों के उपयोग की आवश्यकता होती है। हाल के वर्षों में, यद्यपि, आंशिक आसवन के लिए कुशल और विश्वसनीय कंप्यूटर सहायता प्राप्त डिज़ाइन प्रक्रियाओं को विकसित करने के लिए काफी मात्रा में काम किया गया है।[6]

इतिहास

कार्बनिक पदार्थों के आंशिक आसवन ने 9 वीं शताब्दी के कार्यों में एक महत्वपूर्ण भूमिका निभाई, जो इस्लामिक कीमियागर जाबिर इब्न हेयन के लिए उत्तरदायी है, उदाहरण के लिए, उदाहरण के लिएKitāb al-Sabʿīn('द बुक ऑफ सेवेंटी'), शीर्षक के अंतर्गतगे रार्ड ऑफ क्रेमोना (सी 1114–1187) द्वारा लैटिन में अनुवादित किया गया Liber de septuaginta.[7] जानवरों और सब्जी पदार्थों के आंशिक आसवन के साथ जाबिरियन प्रयोग, और कुछ हद तक खनिज पदार्थों के भी, मुख्य विषय का गठन किया De anima in arte alkimiae, एक मूल रूप से अरबी काम ने एविसेना के लिए झूठे रूप से जिम्मेदार ठहराया, जिसे लैटिन में अनुवादित किया गया था और रोजर बेकन के लिए सबसे महत्वपूर्ण रसायनिक स्रोत बनाने के लिए आगे बढ़ेगा (c. 1220–1292)।[8]

यह भी देखें

  • स्थिरक्वाथीआसवन
  • बैच आसवन
  • निकालने वाला आसवन
  • फ्रीज डिस्टिलेशन
  • भाप आसवन

संदर्भ

  1. Kister, Henry Z. (1992). Distillation Design (1st ed.). McGraw-Hill. ISBN 0-07-034909-6.
  2. 2.0 2.1 2.2 Perry, Robert H.; Green, Don W. (1984). Perry's Chemical Engineers' Handbook (6th ed.). McGraw-Hill. ISBN 0-07-049479-7.
  3. "Reflux drum". Alutal (in English). Retrieved 2020-09-18.
  4. Beychok, Milton (May 1951). "Algebraic Solution of McCabe-Thiele Diagram". Chemical Engineering Progress.
  5. Seader, J. D.; Henley, Ernest J. (1998). Separation Process Principles. New York: Wiley. ISBN 0-471-58626-9.
  6. Ibrahim, Hassan Al-Haj (2014). "Chapter 5". In Bennett, Kelly (ed.). Matlab: Applications for the Practical Engineer. Sciyo. pp. 139–171. ISBN 978-953-51-1719-3.
  7. Kraus, Paul (1942–1943). Jâbir ibn Hayyân: Contribution à l'histoire des idées scientifiques dans l'Islam. I. Le corpus des écrits jâbiriens. II. Jâbir et la science grecque. Cairo: Institut Français d'Archéologie Orientale. ISBN 9783487091150. OCLC 468740510. Vol. II, p. 5. On the attribution of the Latin translation to Gerard of Cremona, see Burnett, Charles (2001). "The Coherence of the Arabic-Latin Translation Program in Toledo in the Twelfth Century". Science in Context. 14 (1–2): 249–288. doi:10.1017/S0269889701000096. S2CID 143006568. p. 280; Moureau, Sébastien (2020). "Min al-kīmiyāʾ ad alchimiam. The Transmission of Alchemy from the Arab-Muslim World to the Latin West in the Middle Ages". Micrologus. 28: 87–141. hdl:2078.1/211340. pp. 106, 111.
  8. Newman, William R. (2000). "Alchemy, Assaying, and Experiment". In Holmes, Frederic L.; Levere, Trevor H. (eds.). Instruments and Experimentation in the History of Chemistry. Cambridge: MIT Press. pp. 35–54. ISBN 9780262082822. p. 44.

]