आकार पैरामीटर: Difference between revisions

From Vigyanwiki
m (8 revisions imported from alpha:आकार_पैरामीटर)
No edit summary
 
Line 44: Line 44:
==संदर्भ                                                                                                                                                                                                            ==
==संदर्भ                                                                                                                                                                                                            ==
<references/>
<references/>
[[Category: सांख्यिकीय पैरामीटर]]


 
[[Category:All articles with bare URLs for citations]]
 
[[Category:Articles with PDF format bare URLs for citations]]
[[Category: Machine Translated Page]]
[[Category:Articles with bare URLs for citations from March 2022]]
[[Category:Created On 07/07/2023]]
[[Category:Created On 07/07/2023]]
[[Category:Vigyan Ready]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Short description with empty Wikidata description]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:सांख्यिकीय पैरामीटर]]

Latest revision as of 13:11, 4 August 2023

संभाव्यता सिद्धांत और सांख्यिकी में, आकृति मापदंड (जिसे फॉर्म मापदंड के रूप में भी जाना जाता है) [1] इस प्रकार संभाव्यता वितरण के पैरामीट्रिक वर्ग का प्रकार का संख्यात्मक मापदंड है [2] यह न तो समिष्ट मापदंड है और न ही स्केल मापदंड (न ही इनका कोई फलन, जैसे दर मापदंड)। इस प्रकार के मापदंड को किसी वितरण के आकृति (ज्यामिति) को केवल समिष्टांतरित करने (जैसा कि समिष्ट मापदंड करता है) या इस प्रकार इसे संकुचन (जैसा कि स्केल मापदंड करता है) के अतिरिक्त प्रभावित करना चाहिए। उदाहरण के लिए, शिखरता से तात्पर्य है कि मुख्य शिखर कितना गोल है।[3]

अपेक्षित मान 0 और विचरण 1 के साथ चयनित वितरणों के लिए संभाव्यता घनत्व कार्य।

अनुमान

कई अनुमानकर्ता समिष्ट या माप को मापते हैं; चूँकि, आकृति मापदंडों के अनुमानक भी उपस्थित हैं। इस प्रकार सबसे सरल रूप से, उन्हें उच्च क्षण (गणित) के संदर्भ में, क्षणों की विधि (सांख्यिकी) का उपयोग करके अनुमान लगाया जा सकता है, जैसे कि विषमता (तीसरा क्षण) या कुर्टोसिस (चौथा क्षण), यदि उच्च क्षण परिभाषित और सीमित हैं। इस प्रकार आकृति के अनुमानक अधिकांशतः उच्च-क्रम के सांख्यिकी (डेटा के गैर-रेखीय कार्य) को सम्मिलित करते हैं, जैसा कि उच्च क्षणों में होता है, इस प्रकार किन्तु रैखिक अनुमानक भी उपस्थित होते हैं, इस प्रकार जैसे कि एल-क्षण अधिकतम संभावना अनुमान का भी उपयोग किया जा सकता है।

उदाहरण

निम्नलिखित निरंतर संभाव्यता वितरण में आकृति मापदंड होता है:

इसके विपरीत, निम्नलिखित निरंतर वितरणों में कोई आकृति मापदंड नहीं होता है, इसलिए उनका आकृति निश्चित होता है और केवल उनका समिष्ट या उनका माप या दोनों बदल सकते हैं। इस प्रकार इसका तात्पर्य यह है कि (जहां वे उपस्थित हैं) इन वितरणों की विषमता और कर्टोसिस स्थिर हैं, क्योंकि विषमता और कर्टोसिस समिष्ट और माप के मापदंडों से स्वतंत्र हैं।

यह भी देखें

  • विषमता
  • कुर्टोसिस
  • समिष्ट मापदंड

संदर्भ

  1. http://repository.lppm.unila.ac.id/120/1/23%20On%20the%20Moments,%20Cumulants,%20and%20Characteristic%20Function%20of%20the%20Log-Logistic%20Distribution.pdf[bare URL PDF]
  2. Everitt B.S. (2002) Cambridge Dictionary of Statistics. 2nd Edition. CUP. ISBN 0-521-81099-X
  3. Birnbaum, Z. W. (1948). "तुलनीय शिखरता के साथ यादृच्छिक चर पर". The Annals of Mathematical Statistics. Institute of Mathematical Statistics. 19 (1): 76–81. doi:10.1214/aoms/1177730293. ISSN 0003-4851.