बार्थ सतह: Difference between revisions
m (added Category:Vigyan Ready using HotCat) |
m (3 revisions imported from alpha:बार्थ_सतह) |
(No difference)
|
Revision as of 13:42, 6 August 2023
File:3D model of Barth-sextic.stl
बीजगणितीय ज्यामिति में, बार्थ सतह तीन आयामों में जटिल नोडल सतहों में से एक है जिसमें वुल्फ बार्थ (1996) द्वारा बड़ी संख्या में दोहरे बिंदु पाए गए हैं। दो उदाहरण ज्ञात हैं जैसे 65 दोहरे अंकों के साथ डिग्री 6 का बार्थ सेक्सटिक और 345 दोहरे अंकों के साथ डिग्री 10 का बार्थ डेसिक।
P3में डिग्री 6 सतहों के लिए, डेविड जाफ़ और डैनियल रूबरमैन (1997) ने दिखाया कि 65 दोहरे अंकों की अधिकतम संभव संख्या है। बार्थ सेक्सटिक 1946 में फ्रांसेस्को सेवेरी के एक गलत दावे का प्रति उदाहरण है कि 52 दोहरे अंकों की अधिकतम संभव संख्या है।
बार्थ सेक्सटिक के 65 साधारण दोहरे बिंदुओं का अनौपचारिक लेखा-जोखा
बार्थ सेक्सटिक को 50 परिमित और 15 अनंत साधारण दोहरे बिंदुओं (नोड्) के रूप में तीन आयामों में देखा जा सकता है।
चित्र के संदर्भ में, 50 परिमित साधारण दोहरे बिंदुओं को 20 मोटे तौर पर टेट्राहेड्रल आकृतियों के शीर्षों के रूप में व्यवस्थित किया गया है, जैसे कि इन चार-तरफा "बाहर की ओर संकेत करने वाली" आकृतियों के आधार एक नियमित इकोसिडोडेकेहेड्रॉन के त्रिकोणीय चेहरे उत्पन्न करते हैं।इन 30 इकोसिडोडेकेड्रल शीर्षों में 20 चतुष्फलकीय आकृतियों के शिखर शीर्ष जोड़े जाते हैं। ये 20 बिंदु स्वयं आंतरिक इकोसिडोडेकेड्रोन के चारों ओर परिचालित एक संकेंद्रित नियमित डोडेकाहेड्रोन के शीर्ष हैं। अतः कुल मिलाकर, ये आकृति के 50 परिमित साधारण दोहरे बिंदु हैं।
अनंत पर शेष 15 साधारण दोहरे बिंदु उन 15 रेखाओं के अनुरूप हैं जो अंकित इकोसिडोडेकेहेड्रोन के विपरीत शीर्षों से होकर गुजरते हैं, जिनमें से सभी 15 आकृति के केंद्र में प्रतिच्छेद करते हैं
यह भी देखें
- एंड्रास सतह
- सरती सतह
- तोग्लिआट्टी सतह
- बीजगणितीय सतहों की सूची
संदर्भ
- Baez, John (April 15, 2016), "Barth Sextic", Visual Insight, American Mathematical Society, retrieved 2016-12-27.
- Barth, W. (1996), "Two projective surfaces with many nodes, admitting the symmetries of the icosahedron", Journal of Algebraic Geometry, 5 (1): 173–186, MR 1358040.
- Jaffe, David B.; Ruberman, Daniel (1997), "A sextic surface cannot have 66 nodes", Journal of Algebraic Geometry, 6 (1): 151–168, MR 1486992.
बाहरी संबंध
- "Barth sextic". Archived from the original on 2012-02-19.
- "Barth decic". Archived from the original on 2012-02-19.
- Eric W. Weisstein, Barth Sextic (Barth Decic) at MathWorld.
- "Animations of Barth surfaces". Archived from the original on 2008-01-25.