डिराक समीकरण: Difference between revisions
(tetx) |
|||
Line 136: | Line 136: | ||
=== लोरेंत्ज़ अपरिवर्तनीयता === | === लोरेंत्ज़ अपरिवर्तनीयता === | ||
लोरेंत्ज़ परिवर्तनों के तहत डिराक समीकरण अपरिवर्तनीय है, अर्थात लोरेंत्ज़ समूह <math>\text{SO}(1,3)</math> या सख्ती से <math>\text{SO}(1,3)^+</math> की कार्रवाई के तहत, | लोरेंत्ज़ परिवर्तनों के तहत डिराक समीकरण अपरिवर्तनीय है, अर्थात लोरेंत्ज़ समूह <math>\text{SO}(1,3)</math> या सख्ती से <math>\text{SO}(1,3)^+</math> की कार्रवाई के तहत, तत्समकसे जुड़ा घटक है। | ||
<math>\mathbb{C}^4</math> में मान लेने के रूप में ठोस रूप से देखे जाने वाले डिराक स्पिनर के लिए, लोरेंत्ज़ परिवर्तन <math>\Lambda</math> के तहत परिवर्तन <math>4\times 4</math> समिश्र आव्यूह <math>S[\Lambda]</math> द्वारा दिया गया है। संबंधित <math>S[\Lambda]</math>को परिभाषित करने में कुछ सूक्ष्मताएं हैं, साथ ही संकेतन का एक मानक दुरुपयोग भी है। | <math>\mathbb{C}^4</math> में मान लेने के रूप में ठोस रूप से देखे जाने वाले डिराक स्पिनर के लिए, लोरेंत्ज़ परिवर्तन <math>\Lambda</math> के तहत परिवर्तन <math>4\times 4</math> समिश्र आव्यूह <math>S[\Lambda]</math> द्वारा दिया गया है। संबंधित <math>S[\Lambda]</math>को परिभाषित करने में कुछ सूक्ष्मताएं हैं, साथ ही संकेतन का एक मानक दुरुपयोग भी है। | ||
Line 223: | Line 223: | ||
और यह घनत्व संभाव्यता धारा सदिश के अनुसार संवहित होता है | और यह घनत्व संभाव्यता धारा सदिश के अनुसार संवहित होता है | ||
<math display="block">J = -\frac{i\hbar}{2m}(\phi^*\nabla\phi - \phi\nabla\phi^*) </math> | <math display="block">J = -\frac{i\hbar}{2m}(\phi^*\nabla\phi - \phi\nabla\phi^*) </math> | ||
निरंतरता समीकरण से निम्नलिखित संभाव्यता | निरंतरता समीकरण से निम्नलिखित संभाव्यता विद्युत प्रवाह और घनत्व के संरक्षण के साथ: | ||
<math display="block">\nabla\cdot J + \frac{\partial\rho}{\partial t} = 0~.</math> | <math display="block">\nabla\cdot J + \frac{\partial\rho}{\partial t} = 0~.</math> | ||
तथ्य यह है कि घनत्व घनात्मक-निश्चित फलन है और इस निरंतरता समीकरण के अनुसार संवहन का अर्थ है कि कोई निश्चित प्रांत पर घनत्व को एकीकृत कर सकता है और कुल 1 पर समुच्चय कर सकता है, और यह स्थिति [[संरक्षण कानून|संरक्षण नियम]] द्वारा बनाए रखी जाएगी। संभाव्यता घनत्व धारा के साथ उचित सापेक्षतावादी सिद्धांत को भी इस सुविधा को साझा करना चाहिए। संवहित घनत्व की धारणा को बनाए रखने के लिए, किसी को घनत्व और विद्युत प्रवाह की श्रोडिंगर अभिव्यक्ति को सामान्य बनाना चाहिए ताकि समष्टि और समय व्युत्पन्न फिर से अदिश तरंग फलन के संबंध में सममित रूप से प्रवेश कर सकें। श्रोडिंगर अभिव्यक्ति को विद्युत प्रवाह के लिए रखा जा सकता है, लेकिन संभाव्यता घनत्व को सममित रूप से गठित अभिव्यक्ति द्वारा प्रतिस्थापित किया जाना चाहिए | |||
<math display="block">\rho = \frac{i\hbar}{2mc^2} \left(\psi^*\partial_t\psi - \psi\partial_t\psi^* \right) .</math> | <math display="block">\rho = \frac{i\hbar}{2mc^2} \left(\psi^*\partial_t\psi - \psi\partial_t\psi^* \right) .</math> | ||
जो अब स्पेसटाइम सदिश का चौथा घटक बन गया है, और संपूर्ण संभाव्यता धारा | संभाव्यता 4- | जो अब स्पेसटाइम सदिश का चौथा घटक बन गया है, और संपूर्ण संभाव्यता धारा | संभाव्यता 4-विद्युत प्रवाह घनत्व में सापेक्ष रूप से सहसंयोजक अभिव्यक्ति है | ||
<math display="block">J^\mu = \frac{i\hbar}{2m} \left(\psi^*\partial^\mu\psi - \psi\partial^\mu\psi^* \right) .</math> | <math display="block">J^\mu = \frac{i\hbar}{2m} \left(\psi^*\partial^\mu\psi - \psi\partial^\mu\psi^* \right) .</math> | ||
निरंतरता समीकरण पहले जैसा है। अब सब कुछ सापेक्षता के अनुकूल है, लेकिन घनत्व के लिए अभिव्यक्ति अब घनात्मक रूप से निश्चित नहीं है; दोनों के प्रारंभिक मान {{math|''ψ''}} और {{math|∂<sub>''t''</sub>''ψ''}} को स्वतंत्र रूप से चुना जा सकता है, और घनत्व इस प्रकार ऋणात्मक हो सकता है, कुछ ऐसा जो वैध संभाव्यता घनत्व के लिए असंभव है। इस प्रकार, किसी को इस | निरंतरता समीकरण पहले जैसा है। अब सब कुछ सापेक्षता के अनुकूल है, लेकिन घनत्व के लिए अभिव्यक्ति अब घनात्मक रूप से निश्चित नहीं है; दोनों के प्रारंभिक मान {{math|''ψ''}} और {{math|∂<sub>''t''</sub>''ψ''}} को स्वतंत्र रूप से चुना जा सकता है, और घनत्व इस प्रकार ऋणात्मक हो सकता है, कुछ ऐसा जो वैध संभाव्यता घनत्व के लिए असंभव है। इस प्रकार, किसी को इस धारणा के तहत श्रोडिंगर समीकरण का सरल सामान्यीकरण नहीं मिल सकता है कि तरंग फलन एक सापेक्ष अदिश राशि है, और यह जिस समीकरण को संतुष्ट करता है, वह समय में दूसरे क्रम का है। | ||
यद्यपि यह श्रोडिंगर समीकरण का | यद्यपि यह श्रोडिंगर समीकरण का सफल सापेक्षतावादी सामान्यीकरण नहीं है, इस समीकरण को क्वांटम क्षेत्र सिद्धांत के संदर्भ में पुनर्जीवित किया गया है, जहां इसे क्लेन-गॉर्डन समीकरण के रूप में जाना जाता है, और स्पिनलेस कण क्षेत्र (उदाहरण के लिए [[सन मेसन]] या [[हिग्स बॉसन]]) का वर्णन करता है। ऐतिहासिक रूप से, श्रोडिंगर स्वयं अपने नाम वाले समीकरण से पहले इस समीकरण पर पहुंचे थे लेकिन जल्द ही इसे खारिज कर दिया। क्वांटम क्षेत्र सिद्धांत के संदर्भ में, अनिश्चित घनत्व को चार्ज घनत्व के अनुरूप समझा जाता है, जो घनात्मक या ऋणात्मक हो सकता है, न कि संभाव्यता घनत्व समझा जाता है। | ||
=== डिराक का | === डिराक का सहसाघात === | ||
इस प्रकार डिराक ने एक ऐसे समीकरण को आज़माने के बारे में सोचा जो समष्टि और समय दोनों में प्रथम क्रम का हो। उदाहरण के लिए, कोई औपचारिक रूप से (अर्थात् संकेतन के दुरुपयोग से) ऊर्जा-संवेग संबंध ले सकता है | इस प्रकार डिराक ने एक ऐसे समीकरण को आज़माने के बारे में सोचा जो समष्टि और समय दोनों में प्रथम क्रम का हो। उदाहरण के लिए, कोई औपचारिक रूप से (अर्थात् संकेतन के दुरुपयोग से) ऊर्जा-संवेग संबंध ले सकता है | ||
<math display="block">E = c \sqrt{p^2 + m^2c^2} ~,</math> | <math display="block">E = c \sqrt{p^2 + m^2c^2} ~,</math> | ||
{{math|''p''}} को उसके समतुल्य ऑपरेटर से बदलें, व्युत्पन्न ऑपरेटरों की अनंत श्रृंखला में वर्गमूल का विस्तार करें,अभिलक्षणिक मान समस्या स्थापित करें, फिर पुनरावृत्तियों द्वारा समीकरण को औपचारिक रूप से हल करें। अधिकांश भौतिकविदों को ऐसी प्रक्रिया पर बहुत कम विश्वास था, भले ही यह तकनीकी रूप से संभव हो। | |||
कहानी के अनुसार, डिराक कैंब्रिज में चिमनी की ओर देख रहा था और इस समस्या पर विचार कर रहा था, तभी उसके मन में वेव ऑपरेटर का वर्गमूल निकालने का विचार इस प्रकार आया: | कहानी के अनुसार, डिराक कैंब्रिज में चिमनी की ओर देख रहा था और इस समस्या पर विचार कर रहा था, तभी उसके मन में वेव ऑपरेटर का वर्गमूल निकालने का विचार इस प्रकार आया: | ||
Line 244: | Line 244: | ||
साथ | साथ | ||
<math display="block">A^2 = B^2 = \dots = 1~.</math> | <math display="block">A^2 = B^2 = \dots = 1~.</math> | ||
डिराक, जो उस समय हाइजेनबर्ग के [[मैट्रिक्स यांत्रिकी|आव्यूह यांत्रिकी]] की नींव तैयार करने में गहनता से शामिल था, तुरंत समझ गया कि इन शर्तों को पूरा किया जा सकता है यदि {{math|''A''}}, {{math|''B''}}, {{math|''C''}} और {{math|''D''}} आव्यूह हैं, इस निहितार्थ के साथ कि तरंग फलन में कई घटक होते हैं। इसने पॉली के प्रचक्रण (भौतिकी) के घटनात्मक सिद्धांत में दो-घटक तरंग फलन की उपस्थिति को तुरंत समझाया, कुछ ऐसा जो तब तक रहस्यमय माना जाता था, यहां तक कि खुद पॉली के लिए भी। हालाँकि, किसी को कम से कम चाहिए {{nowrap|4 × 4}} आवश्यक गुणों के साथ | डिराक, जो उस समय हाइजेनबर्ग के [[मैट्रिक्स यांत्रिकी|आव्यूह यांत्रिकी]] की नींव तैयार करने में गहनता से शामिल था, तुरंत समझ गया कि इन शर्तों को पूरा किया जा सकता है यदि {{math|''A''}}, {{math|''B''}}, {{math|''C''}} और {{math|''D''}} आव्यूह हैं, इस निहितार्थ के साथ कि तरंग फलन में कई घटक होते हैं। इसने पॉली के प्रचक्रण (भौतिकी) के घटनात्मक सिद्धांत में दो-घटक तरंग फलन की उपस्थिति को तुरंत समझाया, कुछ ऐसा जो तब तक रहस्यमय माना जाता था, यहां तक कि खुद पॉली के लिए भी। हालाँकि, किसी को कम से कम चाहिए {{nowrap|4 × 4}} आवश्यक गुणों के साथ प्रणाली स्थापित करने के लिए आव्यूह - इसलिए तरंग फलन में चार घटक थे, दो नहीं, जैसा कि पाउली सिद्धांत में था, या एक, जैसा कि अरक्षित श्रोडिंगर सिद्धांत में था। चार-घटक तरंग फलन भौतिक सिद्धांतों में गणितीय वस्तु के नए वर्ग का प्रतिनिधित्व करता है जो यहां पहली बार दिखाई देता है। | ||
इन आव्यूहों के संदर्भ में गुणनखंडन को देखते हुए, कोई भी अब तुरंत | इन आव्यूहों के संदर्भ में गुणनखंडन को देखते हुए, कोई भी अब तुरंत समीकरण लिख सकता है | ||
<math display="block">\left(A\partial_x + B\partial_y + C\partial_z + \frac{i}{c}D\partial_t\right)\psi = \kappa\psi </math> | <math display="block">\left(A\partial_x + B\partial_y + C\partial_z + \frac{i}{c}D\partial_t\right)\psi = \kappa\psi </math> | ||
<math>\kappa</math> निर्धारित किए जाने हेतु। दोनों तरफ आव्यूह ऑपरेटर को फिर से लागू करने से परिणाम मिलता है | |||
<math display="block">\left(\nabla^2 - \frac{1}{c^2}\partial_t^2\right)\psi = \kappa^2\psi ~.</math> | <math display="block">\left(\nabla^2 - \frac{1}{c^2}\partial_t^2\right)\psi = \kappa^2\psi ~.</math> | ||
<math>\kappa = \tfrac{mc}{\hbar}</math> लेने से पता चलता है कि तरंग फलन के सभी घटक व्यक्तिगत रूप से सापेक्ष ऊर्जा-संवेग संबंध को संतुष्ट करते हैं। इस प्रकार वांछित समीकरण है जो समष्टि और समय दोनों में प्रथम-क्रम है | |||
<math display="block">\left(A\partial_x + B\partial_y + C\partial_z + \frac{i}{c}D\partial_t - \frac{mc}{\hbar}\right)\psi = 0 ~.</math> | <math display="block">\left(A\partial_x + B\partial_y + C\partial_z + \frac{i}{c}D\partial_t - \frac{mc}{\hbar}\right)\psi = 0 ~.</math> | ||
समायोजन | |||
<math display="block">A = i \beta \alpha_1 \, , \, B = i \beta \alpha_2 \, , \, C = i \beta \alpha_3 \, , \, D = \beta ~, </math> | <math display="block">A = i \beta \alpha_1 \, , \, B = i \beta \alpha_2 \, , \, C = i \beta \alpha_3 \, , \, D = \beta ~, </math> | ||
और क्योंकि <math>D^2 = \beta^2 = I_4 </math>जैसा कि ऊपर लिखा गया है, डिराक समीकरण तैयार किया गया है। | और क्योंकि <math>D^2 = \beta^2 = I_4 </math>जैसा कि ऊपर लिखा गया है, डिराक समीकरण तैयार किया गया है। | ||
Line 262: | Line 262: | ||
A &= i \gamma^1,\quad B = i \gamma^2,\quad C = i \gamma^3, | A &= i \gamma^1,\quad B = i \gamma^2,\quad C = i \gamma^3, | ||
\end{align}</math> | \end{align}</math> | ||
और समीकरण रूप लेता है ([[4-ढाल]] के सहसंयोजक घटकों की परिभाषा को याद करते हुए और विशेष रूप से वह {{math|1=∂<sub>''0''</sub> = {{sfrac|''1''|''c''}}∂<sub>''t''</sub>}}) | और समीकरण रूप लेता है ([[4-ढाल|4-प्रवणता]] के सहसंयोजक घटकों की परिभाषा को याद करते हुए और विशेष रूप से वह {{math|1=∂<sub>''0''</sub> = {{sfrac|''1''|''c''}}∂<sub>''t''</sub>}}) | ||
{{Equation box 1 | {{Equation box 1 | ||
|title=''' | |title='''डिराक समीकरण''' | ||
|indent=: | |indent=: | ||
|equation = <math>(i \hbar \gamma^\mu \partial_\mu - m c) \psi = 0</math> | |equation = <math>(i \hbar \gamma^\mu \partial_\mu - m c) \psi = 0</math> | ||
Line 273: | Line 273: | ||
}} | }} | ||
जहां दो बार दोहराए गए सूचकांक के मान पर [[आइंस्टीन संकेतन]] है {{math|''μ'' {{=}} 0, 1, 2, 3}}, और {{math|∂<sub>''μ''</sub>}} 4- | जहां दो बार दोहराए गए सूचकांक के मान पर [[आइंस्टीन संकेतन]] है {{math|''μ'' {{=}} 0, 1, 2, 3}}, और {{math|∂<sub>''μ''</sub>}} 4-प्रवणता है। व्यवहार में कोई अक्सर गामा आव्यूह को पाउली आव्यूह और 2 × 2 तत्समकआव्यूह से लिए गए 2 × 2 उप-आव्यूह के संदर्भ में लिखता है। स्पष्ट रूप से गामा आव्यूह आधार है | ||
<math display="block"> | <math display="block"> | ||
\gamma^0 = \begin{pmatrix} I_2 & 0 \\ 0 & -I_2 \end{pmatrix},\quad | \gamma^0 = \begin{pmatrix} I_2 & 0 \\ 0 & -I_2 \end{pmatrix},\quad | ||
Line 284: | Line 284: | ||
जहां कोष्ठक अभिव्यक्ति | जहां कोष्ठक अभिव्यक्ति | ||
<math display="block">\{a, b\} = ab + ba</math> | <math display="block">\{a, b\} = ab + ba</math> | ||
[[एंटीकम्यूटेटर]] को दर्शाता है। ये [[मीट्रिक हस्ताक्षर]] के साथ छद्म-ऑर्थोगोनल 4-आयामी समष्टि पर क्लिफ़ोर्ड बीजगणित के परिभाषित संबंध हैं {{math|(+ − − −)}}। डिराक समीकरण में नियोजित विशिष्ट क्लिफ़ोर्ड बीजगणित को आज डिराक बीजगणित के रूप में जाना जाता है। हालाँकि समीकरण तैयार किए जाने के समय डिराक द्वारा इसे मान्यता नहीं दी गई थी, लेकिन बाद में इस [[ज्यामितीय बीजगणित]] के आरम्भ क्वांटम सिद्धांत के विकास में | [[एंटीकम्यूटेटर]] को दर्शाता है। ये [[मीट्रिक हस्ताक्षर|मीट्रिक सिग्नेचर]] के साथ छद्म-ऑर्थोगोनल 4-आयामी समष्टि पर क्लिफ़ोर्ड बीजगणित के परिभाषित संबंध हैं {{math|(+ − − −)}}। डिराक समीकरण में नियोजित विशिष्ट क्लिफ़ोर्ड बीजगणित को आज डिराक बीजगणित के रूप में जाना जाता है। हालाँकि समीकरण तैयार किए जाने के समय डिराक द्वारा इसे मान्यता नहीं दी गई थी, लेकिन बाद में इस [[ज्यामितीय बीजगणित|''ज्यामितीय बीजगणित'']] के आरम्भ क्वांटम सिद्धांत के विकास में बड़ी प्रगति का प्रतिनिधित्व करती है। | ||
डिराक समीकरण की व्याख्या अब एक [[eigenvalue]] समीकरण के रूप में की जा सकती है, जहां शेष द्रव्यमान [[4-पल ऑपरेटर]] के | डिराक समीकरण की व्याख्या अब एक [[eigenvalue|अभिलक्षणिक मान]] समीकरण के रूप में की जा सकती है, जहां शेष द्रव्यमान [[4-पल ऑपरेटर]] के अभिलक्षणिक मान के समानुपाती होता है, आनुपातिकता स्थिरांक प्रकाश की गति होती है: | ||
<math display="block">P_\text{op}\psi = mc\psi \,.</math> | <math display="block">P_\text{op}\psi = mc\psi \,.</math> | ||
<math>{\partial\!\!\!/} \mathrel{\stackrel{\mathrm{def}}{=}} \gamma^\mu \partial_\mu</math> (<math>{\partial\!\!\!\big /}</math> इसका उच्चारण डी-स्लैश है) का उपयोग करते हुए,<ref>{{cite book |last=Pendleton |first=Brian |url=http://www2.ph.ed.ac.uk/~bjp/qt/rqt.pdf |archive-url=https://ghostarchive.org/archive/20221009/http://www2.ph.ed.ac.uk/~bjp/qt/rqt.pdf |archive-date=2022-10-09 |url-status=live |title=क्वांटम सिद्धांत|year=2012–2013 |at=section 4.3 "The Dirac Equation"}}</ref> फेनमैन स्लैश अंकन के अनुसार, डिराक समीकरण बन जाता है: | |||
<math display="block">i \hbar {\partial\!\!\!\big /} \psi - m c \psi = 0 \,.</math> | <math display="block">i \hbar {\partial\!\!\!\big /} \psi - m c \psi = 0 \,.</math> | ||
व्यवहार में, भौतिक विज्ञानी अक्सर माप की इकाइयों का उपयोग करते हैं जैसे कि {{math|''ħ'' {{=}} ''c'' {{=}} 1}}, प्राकृतिक इकाइयों के रूप में जाना जाता है। तब समीकरण सरल रूप ले लेता है | व्यवहार में, भौतिक विज्ञानी अक्सर माप की इकाइयों का उपयोग करते हैं जैसे कि {{math|''ħ'' {{=}} ''c'' {{=}} 1}}, प्राकृतिक इकाइयों के रूप में जाना जाता है। तब समीकरण सरल रूप ले लेता है | ||
{{Equation box 1 | {{Equation box 1 | ||
|title=''' | |title='''डिराक समीकरण''' ''(प्राकृतिक इकाइयाँ'' | ||
|indent=: | |indent=: | ||
|equation = <math>(i{\partial\!\!\!\big /} - m) \psi = 0</math> | |equation = <math>(i{\partial\!\!\!\big /} - m) \psi = 0</math> | ||
Line 301: | Line 301: | ||
}} | }} | ||
मौलिक प्रमेय में कहा गया है कि यदि आव्यूह के दो अलग-अलग समुच्चय दिए गए हैं और दोनों क्लिफोर्ड बीजगणित को संतुष्ट करते हैं, तो वे [[मैट्रिक्स समानता|आव्यूह समानता]] द्वारा एक दूसरे से जुड़े हुए हैं: | |||
<math display="block">\gamma^{\mu\prime} = S^{-1} \gamma^\mu S \,.</math> | <math display="block">\gamma^{\mu\prime} = S^{-1} \gamma^\mu S \,.</math> | ||
यदि इसके अतिरिक्त आव्यूह सभी [[एकात्मक परिवर्तन]] हैं, जैसे कि डिराक समुच्चय हैं, तो {{math|''S''}} स्वयं [[एकात्मक मैट्रिक्स|एकात्मक आव्यूह]] है; | यदि इसके अतिरिक्त आव्यूह सभी [[एकात्मक परिवर्तन]] हैं, जैसे कि डिराक समुच्चय हैं, तो {{math|''S''}} स्वयं [[एकात्मक मैट्रिक्स|एकात्मक आव्यूह]] है; | ||
<math display="block">\gamma^{\mu\prime} = U^\dagger \gamma^\mu U \,.</math> | <math display="block">\gamma^{\mu\prime} = U^\dagger \gamma^\mu U \,.</math> | ||
रूपान्तरण {{math|''U''}} निरपेक्ष मान 1 के गुणक कारक तक अद्वितीय है। आइए अब कल्पना करें कि [[लोरेंत्ज़ परिवर्तन]] समष्टि और समय निर्देशांक और व्युत्पन्न ऑपरेटरों पर किया गया है, जो एक सहसंयोजक सदिश बनाते हैं। ऑपरेटर के लिए {{math|''γ''<sup>''μ''</sup>∂<sub>''μ''</sub>}} अपरिवर्तनीय बने रहने के लिए, गामा को अपने स्पेसटाइम इंडेक्स के संबंध में | रूपान्तरण {{math|''U''}} निरपेक्ष मान 1 के गुणक कारक तक अद्वितीय है। आइए अब कल्पना करें कि [[लोरेंत्ज़ परिवर्तन]] समष्टि और समय निर्देशांक और व्युत्पन्न ऑपरेटरों पर किया गया है, जो एक सहसंयोजक सदिश बनाते हैं। ऑपरेटर के लिए {{math|''γ''<sup>''μ''</sup>∂<sub>''μ''</sub>}} अपरिवर्तनीय बने रहने के लिए, गामा को अपने स्पेसटाइम इंडेक्स के संबंध में कॉन्ट्रावेरिएंट सदिश के रूप में बदलना होगा। लोरेंत्ज़ परिवर्तन की रूढ़िवादिता के कारण, ये नए गामा स्वयं क्लिफोर्ड संबंधों को संतुष्ट करेंगे। मौलिक प्रमेय के अनुसार, कोई एकात्मक परिवर्तन के अधीन नए समुच्चय को पुराने समुच्चय से प्रतिस्थापित कर सकता है। नए फ्रेम में, यह याद रखते हुए कि शेष द्रव्यमान सापेक्षिक अदिश राशि है, डिराक समीकरण तब रूप लेगा | ||
<math display="block">\begin{align} | <math display="block">\begin{align} | ||
\left(iU^\dagger \gamma^\mu U\partial_\mu^\prime - m\right)\psi\left(x^\prime, t^\prime\right) &= 0 \\ | \left(iU^\dagger \gamma^\mu U\partial_\mu^\prime - m\right)\psi\left(x^\prime, t^\prime\right) &= 0 \\ | ||
Line 316: | Line 316: | ||
इस प्रकार, गामा के किसी भी एकात्मक प्रतिनिधित्व पर निर्णय लेना अंतिम है, बशर्ते कि स्पिनर को एकात्मक परिवर्तन के अनुसार रूपांतरित किया जाए जो दिए गए लोरेंत्ज़ परिवर्तन से मेल खाता हो। | इस प्रकार, गामा के किसी भी एकात्मक प्रतिनिधित्व पर निर्णय लेना अंतिम है, बशर्ते कि स्पिनर को एकात्मक परिवर्तन के अनुसार रूपांतरित किया जाए जो दिए गए लोरेंत्ज़ परिवर्तन से मेल खाता हो। | ||
नियोजित डिराक | नियोजित डिराक आव्यूह के विभिन्न निरूपण डिराक तरंग फलन में भौतिक सामग्री के विशेष पहलुओं पर ध्यान केंद्रित करेंगे। यहां दिखाए गए प्रतिनिधित्व को मानक प्रतिनिधित्व के रूप में जाना जाता है - इसमें, तरंग फलन के ऊपरी दो घटक प्रकाश की तुलना में कम ऊर्जा और छोटे वेग की सीमा में पाउली के 2 स्पिनर तरंग फलन में चले जाते हैं। | ||
उपरोक्त विचार, ग्रासमैन की मूल प्रेरणा को ध्यान में रखते हुए, ज्यामिति में गामा की उत्पत्ति को प्रकट करते हैं; वे स्पेसटाइम में | उपरोक्त विचार, ग्रासमैन की मूल प्रेरणा को ध्यान में रखते हुए, ज्यामिति में गामा की उत्पत्ति को प्रकट करते हैं; वे स्पेसटाइम में इकाई सदिश के निश्चित आधार का प्रतिनिधित्व करते हैं। इसी प्रकार, गामा के उत्पाद जैसे {{math|''γ''<sub>''μ''</sub>''γ''<sub>''ν''</sub>}} [[उन्मुख सतह|''उन्मुख सतह'']] तत्वों का प्रतिनिधित्व करते हैं, इत्यादि। इसे ध्यान में रखते हुए, कोई गामा के संदर्भ में स्पेसटाइम पर इकाई आयतन तत्व का रूप इस प्रकार पा सकता है। परिभाषा के अनुसार, यह है | ||
<math display="block">V = \frac{1}{4!}\epsilon_{\mu\nu\alpha\beta}\gamma^\mu\gamma^\nu\gamma^\alpha\gamma^\beta .</math> | <math display="block">V = \frac{1}{4!}\epsilon_{\mu\nu\alpha\beta}\gamma^\mu\gamma^\nu\gamma^\alpha\gamma^\beta .</math> | ||
इसके अपरिवर्तनीय होने के लिए, [[लेवी-सिविटा प्रतीक]] को | इसके अपरिवर्तनीय होने के लिए, [[लेवी-सिविटा प्रतीक]] को [[ टेन्सर |टेन्सर]] होना चाहिए, और इसलिए इसमें एक कारक होना चाहिए {{math|{{sqrt|''g''}}}}, जहाँ {{math|''g''}} [[मीट्रिक टेंसर]] का निर्धारक है। चूँकि यह ऋणात्मक है, वह बात काल्पनिक है। इस प्रकार | ||
<math display="block">V = i \gamma^0\gamma^1\gamma^2\gamma^3 .</math> | <math display="block">V = i \gamma^0\gamma^1\gamma^2\gamma^3 .</math> | ||
इस आव्यूह को विशेष चिन्ह दिया गया है {{math|''γ''<sup>5</sup>}}, इसके महत्व के कारण जब कोई समष्टि-समय के अनुचित परिवर्तनों पर विचार कर रहा है, यानी, जो आधार सदिश के अभिविन्यास को बदलते हैं। मानक प्रतिनिधित्व में, यह है | इस आव्यूह को विशेष चिन्ह दिया गया है {{math|''γ''<sup>5</sup>}}, इसके महत्व के कारण जब कोई समष्टि-समय के अनुचित परिवर्तनों पर विचार कर रहा है, यानी, जो आधार सदिश के अभिविन्यास को बदलते हैं। मानक प्रतिनिधित्व में, यह है | ||
<math display="block">\gamma_5 = \begin{pmatrix} 0 & I_{2} \\ I_{2} & 0 \end{pmatrix}.</math> | <math display="block">\gamma_5 = \begin{pmatrix} 0 & I_{2} \\ I_{2} & 0 \end{pmatrix}.</math> | ||
यह आव्यूह अन्य चार डिराक | यह आव्यूह अन्य चार डिराक आव्यूह के साथ एंटीकम्यूट के लिए भी पाया जाएगा: | ||
<math display="block">\gamma^5 \gamma^\mu + \gamma^\mu \gamma^5 = 0</math> | <math display="block">\gamma^5 \gamma^\mu + \gamma^\mu \gamma^5 = 0</math> | ||
जब समता (भौतिकी) के प्रश्न उठते हैं तो यह अग्रणी भूमिका निभाता है क्योंकि निर्देशित परिमाण के रूप में आयतन तत्व समष्टि-समय प्रतिबिंब के तहत संकेत बदलता है। इस प्रकार ऊपर घनात्मक वर्गमूल लेने का मतलब स्पेसटाइम पर | जब ''समता'' (भौतिकी) के प्रश्न उठते हैं तो यह अग्रणी भूमिका निभाता है क्योंकि निर्देशित परिमाण के रूप में आयतन तत्व समष्टि-समय प्रतिबिंब के तहत संकेत बदलता है। इस प्रकार ऊपर घनात्मक वर्गमूल लेने का मतलब स्पेसटाइम पर हैंडनेस परंपरा को चुनना है। | ||
== संबंधित सिद्धांतों के साथ तुलना == | == संबंधित सिद्धांतों के साथ तुलना == | ||
=== पाउली सिद्धांत === | === पाउली सिद्धांत === | ||
{{See also| | {{See also|पाउली समीकरण}} | ||
आधे-पूर्णांक प्रचक्रण (भौतिकी) को प्रारंभ करने की आवश्यकता प्रयोगात्मक रूप से स्टर्न-गेरलाच प्रयोग के परिणामों पर आधारित है। परमाणुओं की एक किरण को | |||
आधे-पूर्णांक प्रचक्रण (भौतिकी) को प्रारंभ करने की आवश्यकता प्रयोगात्मक रूप से स्टर्न-गेरलाच प्रयोग के परिणामों पर आधारित है। परमाणुओं की एक किरण को मजबूत अमानवीय [[चुंबकीय क्षेत्र]] के माध्यम से चलाया जाता है, जो परमाणुओं के आंतरिक कोणीय गति के आधार पर {{math|''N''}} भागों में विभाजित हो जाता है। यह पाया गया '''कि चांदी के परमाणुओं के लिए, किरण दो भागों में विभाजित थी; इसलिए जमीनी स्थिति [[पूर्णांक]] नहीं हो सकती, क्योंकि भले ही परमाणुओं की आंतरिक कोणीय गति यथासंभव छोटी हो, 1, किरण को परमाणुओं के अनुरूप तीन भागों में विभाजित किया जाएगा {{math|''L<sub>z</sub>'' {{=}} −1, 0, +1}}। निष्कर्ष यह है कि चांदी के परमाणुओं में शुद्ध आंतरिक कोणीय गति होती है {{frac|1|2}}। वोल्फगैंग पाउली ने एक सिद्धांत स्थापित किया,''' जिसने हैमिल्टन के सिद्धांत में दो-घटक तरंग फलन और संबंधित सुधार शब्द को पेश करके इस विभाजन को समझाया, जो इस तरंग फलन के अर्ध-चिरसम्मत युग्मन को एक लागू चुंबकीय क्षेत्र में दर्शाता है, जैसा कि एसआई इकाइयों में होता है: (ध्यान दें कि बोल्ड चेहरे वाले अक्षर 3 आयामों में [[यूक्लिडियन सदिश]] दर्शाते हैं, जबकि मिन्कोव्स्की समष्टि [[चार-वेक्टर|चार-सदिश]] {{math|''A''<sub>''μ''</sub>}} को इस प्रकार परिभाषित किया जा सकता है <math>A_\mu = (\phi/c,-\mathbf A)</math>।) | |||
<math display="block">H = \frac{1}{2m}\left( \boldsymbol{\sigma}\cdot\left(\mathbf{p} - e \mathbf{A}\right)\right)^2 + e\phi ~.</math> | <math display="block">H = \frac{1}{2m}\left( \boldsymbol{\sigma}\cdot\left(\mathbf{p} - e \mathbf{A}\right)\right)^2 + e\phi ~.</math> | ||
यहाँ {{math|'''A'''}} और <math>\phi</math> उनके मानक एसआई इकाइयों में [[विद्युत चुम्बकीय चार-क्षमता]] के घटकों का प्रतिनिधित्व करते हैं, और तीन सिग्मा पाउली आव्यूह हैं। पहले पद का वर्ग करने पर, चुंबकीय क्षेत्र के साथ एक अवशिष्ट अंतःक्रिया पाई जाती है, साथ ही सामान्य संवेग#क्षेत्र में कण एसआई इकाइयों में एक लागू क्षेत्र के साथ अंतःक्रिया करता है: | यहाँ {{math|'''A'''}} और <math>\phi</math> उनके मानक एसआई इकाइयों में [[विद्युत चुम्बकीय चार-क्षमता]] के घटकों का प्रतिनिधित्व करते हैं, और तीन सिग्मा पाउली आव्यूह हैं। पहले पद का वर्ग करने पर, चुंबकीय क्षेत्र के साथ एक अवशिष्ट अंतःक्रिया पाई जाती है, साथ ही सामान्य संवेग#क्षेत्र में कण एसआई इकाइयों में एक लागू क्षेत्र के साथ अंतःक्रिया करता है: | ||
Line 338: | Line 339: | ||
यह हैमिल्टनियन अब एक है {{nowrap|2 × 2}} आव्यूह, इसलिए इस पर आधारित श्रोडिंगर समीकरण को दो-घटक तरंग फलन का उपयोग करना चाहिए। बाहरी विद्युत चुम्बकीय 4-सदिश क्षमता को डायराक समीकरण में एक समान तरीके से पेश करने पर, जिसे [[न्यूनतम युग्मन]] के रूप में जाना जाता है, यह रूप लेता है: | यह हैमिल्टनियन अब एक है {{nowrap|2 × 2}} आव्यूह, इसलिए इस पर आधारित श्रोडिंगर समीकरण को दो-घटक तरंग फलन का उपयोग करना चाहिए। बाहरी विद्युत चुम्बकीय 4-सदिश क्षमता को डायराक समीकरण में एक समान तरीके से पेश करने पर, जिसे [[न्यूनतम युग्मन]] के रूप में जाना जाता है, यह रूप लेता है: | ||
<math display="block">\left(\gamma^\mu(i\hbar\partial_\mu - eA_\mu) - mc\right) \psi = 0 ~.</math> | <math display="block">\left(\gamma^\mu(i\hbar\partial_\mu - eA_\mu) - mc\right) \psi = 0 ~.</math> | ||
डिराक ऑपरेटर का दूसरा अनुप्रयोग अब पाउली शब्द को बिल्कुल पहले की तरह पुन: पेश करेगा, क्योंकि स्थानिक डिराक आव्यूह को गुणा किया जाता है {{math|''i''}}, पाउली | डिराक ऑपरेटर का दूसरा अनुप्रयोग अब पाउली शब्द को बिल्कुल पहले की तरह पुन: पेश करेगा, क्योंकि स्थानिक डिराक आव्यूह को गुणा किया जाता है {{math|''i''}}, पाउली आव्यूह के समान ही वर्ग और कम्यूटेशन गुण हैं। इससे भी अधिक, पाउली के नए शब्द के सामने खड़े इलेक्ट्रॉन के [[जाइरोमैग्नेटिक अनुपात]] के मान को पहले सिद्धांतों से समझाया गया है। यह डिराक समीकरण की एक बड़ी उपलब्धि थी और इससे भौतिकविदों को इसकी समग्र शुद्धता पर बहुत विश्वास हुआ। हालाँकि और भी बहुत कुछ है। पाउली सिद्धांत को निम्नलिखित तरीके से डिराक सिद्धांत की निम्न ऊर्जा सीमा के रूप में देखा जा सकता है। पहले समीकरण को एसआई इकाइयों के साथ 2-स्पिनर्स के लिए युग्मित समीकरणों के रूप में लिखा गया है: | ||
<math display="block"> | <math display="block"> | ||
\begin{pmatrix} | \begin{pmatrix} | ||
Line 361: | Line 362: | ||
जो सुव्यवस्थित है {{math|{{sfrac|''v''|''c''}}}} - इस प्रकार विशिष्ट ऊर्जाओं और वेगों पर, मानक प्रतिनिधित्व में डिराक स्पिनर के निचले घटक शीर्ष घटकों की तुलना में बहुत अधिक दबे हुए हैं। इस अभिव्यक्ति को पहले समीकरण में प्रतिस्थापित करने पर कुछ पुनर्व्यवस्था के बाद प्राप्त होता है | जो सुव्यवस्थित है {{math|{{sfrac|''v''|''c''}}}} - इस प्रकार विशिष्ट ऊर्जाओं और वेगों पर, मानक प्रतिनिधित्व में डिराक स्पिनर के निचले घटक शीर्ष घटकों की तुलना में बहुत अधिक दबे हुए हैं। इस अभिव्यक्ति को पहले समीकरण में प्रतिस्थापित करने पर कुछ पुनर्व्यवस्था के बाद प्राप्त होता है | ||
<math display="block"> \left(E - mc^2\right) \psi_{+} = \frac{1}{2m} \left[\boldsymbol{\sigma}\cdot \left(\mathbf{p} - e \mathbf{A}\right)\right]^2 \psi_{+} + e\phi \psi_{+} </math> | <math display="block"> \left(E - mc^2\right) \psi_{+} = \frac{1}{2m} \left[\boldsymbol{\sigma}\cdot \left(\mathbf{p} - e \mathbf{A}\right)\right]^2 \psi_{+} + e\phi \psi_{+} </math> | ||
बाईं ओर का ऑपरेटर अपनी शेष ऊर्जा द्वारा कम की गई कण ऊर्जा का प्रतिनिधित्व करता है, जो कि सिर्फ चिरसम्मत ऊर्जा है, इसलिए कोई भी गैर-सापेक्षवादी सन्निकटन में डायराक स्पिनर के शीर्ष घटकों के साथ अपने 2-स्पिनर की | बाईं ओर का ऑपरेटर अपनी शेष ऊर्जा द्वारा कम की गई कण ऊर्जा का प्रतिनिधित्व करता है, जो कि सिर्फ चिरसम्मत ऊर्जा है, इसलिए कोई भी गैर-सापेक्षवादी सन्निकटन में डायराक स्पिनर के शीर्ष घटकों के साथ अपने 2-स्पिनर की तत्समककरके पाउली के सिद्धांत को पुनर्प्राप्त कर सकता है। एक और सन्निकटन पाउली सिद्धांत की सीमा के रूप में श्रोडिंगर समीकरण देता है। इस प्रकार, श्रोडिंगर समीकरण को डिराक समीकरण के सुदूर गैर-सापेक्षवादी सन्निकटन के रूप में देखा जा सकता है जब कोई प्रचक्रण की उपेक्षा कर सकता है और केवल कम ऊर्जा और वेग पर काम कर सकता है। यह नए समीकरण के लिए भी एक बड़ी जीत थी, क्योंकि इसने रहस्यमय का पता लगा लिया {{math|''i''}} जो इसमें दिखाई देता है, और एक समिश्र तरंग फलन की आवश्यकता, डिराक बीजगणित के माध्यम से स्पेसटाइम की ज्यामिति पर वापस आती है। यह इस बात पर भी प्रकाश डालता है कि श्रोडिंगर समीकरण, हालांकि सतही तौर पर [[प्रसार समीकरण]] के रूप में है, वास्तव में तरंगों के प्रसार का प्रतिनिधित्व करता है। | ||
इस बात पर दृढ़ता से जोर दिया जाना चाहिए कि डिराक स्पिनर का बड़े और छोटे घटकों में पृथक्करण स्पष्ट रूप से कम-ऊर्जा सन्निकटन पर निर्भर करता है। संपूर्ण डिराक स्पिनर एक अघुलनशील संपूर्ण का प्रतिनिधित्व करता है, और पाउली सिद्धांत तक पहुंचने के लिए जिन घटकों को यहां उपेक्षित किया गया है, वे सापेक्षतावादी शासन में नई घटनाएं लाएंगे - एंटीमैटर और [[पदार्थ निर्माण]] और कणों के [[विनाश]] का विचार। | इस बात पर दृढ़ता से जोर दिया जाना चाहिए कि डिराक स्पिनर का बड़े और छोटे घटकों में पृथक्करण स्पष्ट रूप से कम-ऊर्जा सन्निकटन पर निर्भर करता है। संपूर्ण डिराक स्पिनर एक अघुलनशील संपूर्ण का प्रतिनिधित्व करता है, और पाउली सिद्धांत तक पहुंचने के लिए जिन घटकों को यहां उपेक्षित किया गया है, वे सापेक्षतावादी शासन में नई घटनाएं लाएंगे - एंटीमैटर और [[पदार्थ निर्माण]] और कणों के [[विनाश]] का विचार। | ||
Line 376: | Line 377: | ||
जहां, हमेशा की तरह, दो बार दोहराए गए सूचकांक पर आइंस्टीन अंकन है {{math|''k'' {{=}} 1, 2, 3}}। यह आशाजनक लगता है, क्योंकि कोई भी कण की बाकी ऊर्जा का निरीक्षण करके देख सकता है और, इस मामले में {{math|'''A''' {{=}} 0}}, विद्युत विभव में रखे गए आवेश की ऊर्जा {{math|''cqA''<sup>0</sup>}}। सदिश क्षमता से जुड़े शब्द के बारे में क्या? चिरसम्मत विद्युत्गतिकी में, किसी लागू क्षमता में गतिमान आवेश की ऊर्जा होती है | जहां, हमेशा की तरह, दो बार दोहराए गए सूचकांक पर आइंस्टीन अंकन है {{math|''k'' {{=}} 1, 2, 3}}। यह आशाजनक लगता है, क्योंकि कोई भी कण की बाकी ऊर्जा का निरीक्षण करके देख सकता है और, इस मामले में {{math|'''A''' {{=}} 0}}, विद्युत विभव में रखे गए आवेश की ऊर्जा {{math|''cqA''<sup>0</sup>}}। सदिश क्षमता से जुड़े शब्द के बारे में क्या? चिरसम्मत विद्युत्गतिकी में, किसी लागू क्षमता में गतिमान आवेश की ऊर्जा होती है | ||
<math display="block">H = c\sqrt{\left(\mathbf{p} - q\mathbf{A}\right)^2 + m^2c^2} + qA^0.</math> | <math display="block">H = c\sqrt{\left(\mathbf{p} - q\mathbf{A}\right)^2 + m^2c^2} + qA^0.</math> | ||
इस प्रकार, डिराक हैमिल्टनियन मूल रूप से अपने चिरसम्मत समकक्ष से अलग है, और इस सिद्धांत में जो देखने योग्य है उसे सही ढंग से पहचानने के लिए बहुत सावधानी बरतनी चाहिए। डायराक समीकरण द्वारा निहित अधिकांश स्पष्ट रूप से विरोधाभासी व्यवहार इन अवलोकनों की गलत | इस प्रकार, डिराक हैमिल्टनियन मूल रूप से अपने चिरसम्मत समकक्ष से अलग है, और इस सिद्धांत में जो देखने योग्य है उसे सही ढंग से पहचानने के लिए बहुत सावधानी बरतनी चाहिए। डायराक समीकरण द्वारा निहित अधिकांश स्पष्ट रूप से विरोधाभासी व्यवहार इन अवलोकनों की गलत तत्समकके बराबर है।{{Citation needed|date=January 2020}} | ||
=== छिद्र सिद्धांत === | === छिद्र सिद्धांत === | ||
Line 383: | Line 384: | ||
इस समस्या से निपटने के लिए, [[डिराक सागर|डिराक]] परिकल्पना पेश की, जिसे '''छिद्र सिद्धांत''' के रूप में जाना जाता है, कि निर्वात कई-शरीर क्वांटम अवस्था है जिसमें सभी ऋणात्मक-ऊर्जा इलेक्ट्रॉन ईजेनस्टेट्स का कब्जा है। इलेक्ट्रॉनों के "समुद्र" के रूप में निर्वात के इस वर्णन को डिराक समुद्र कहा जाता है। चूँकि [[पाउली अपवर्जन सिद्धांत]] इलेक्ट्रॉनों को एक ही अवस्था में रहने से रोकता है, किसी भी अतिरिक्त इलेक्ट्रॉन को घनात्मक-ऊर्जा आइजेनस्टेट पर कब्जा करने के लिए मजबूर किया जाएगा, और घनात्मक-ऊर्जा इलेक्ट्रॉनों को ऋणात्मक-ऊर्जा आइजेनस्टेट्स में क्षय होने से रोका जाएगा। | इस समस्या से निपटने के लिए, [[डिराक सागर|डिराक]] परिकल्पना पेश की, जिसे '''छिद्र सिद्धांत''' के रूप में जाना जाता है, कि निर्वात कई-शरीर क्वांटम अवस्था है जिसमें सभी ऋणात्मक-ऊर्जा इलेक्ट्रॉन ईजेनस्टेट्स का कब्जा है। इलेक्ट्रॉनों के "समुद्र" के रूप में निर्वात के इस वर्णन को डिराक समुद्र कहा जाता है। चूँकि [[पाउली अपवर्जन सिद्धांत]] इलेक्ट्रॉनों को एक ही अवस्था में रहने से रोकता है, किसी भी अतिरिक्त इलेक्ट्रॉन को घनात्मक-ऊर्जा आइजेनस्टेट पर कब्जा करने के लिए मजबूर किया जाएगा, और घनात्मक-ऊर्जा इलेक्ट्रॉनों को ऋणात्मक-ऊर्जा आइजेनस्टेट्स में क्षय होने से रोका जाएगा। | ||
डिराक ने आगे तर्क दिया कि यदि ऋणात्मक-ऊर्जा ईजेनस्टेट्स अपूर्ण रूप से भरे हुए हैं, तो प्रत्येक खाली ईजेनस्टेट - जिसे '''छिद्र''' कहा जाता है - घनात्मक रूप से चार्ज किए गए कण की तरह व्यवहार करेगा। छिद्र में ''घनात्मक'' ऊर्जा होती है क्योंकि निर्वात से कण-छिद्र जोड़ी बनाने के लिए ऊर्जा की आवश्यकता होती है। जैसा कि ऊपर उल्लेख किया गया है, डिराक ने प्रारंभ में सोचा था कि छिद्र प्रोटॉन हो सकता है, लेकिन [[हरमन वेइल]] ने बताया कि छिद्र को ऐसा व्यवहार करना चाहिए जैसे कि उसका द्रव्यमान इलेक्ट्रॉन के समान हो, जबकि प्रोटॉन 1800 गुना से अधिक भारी है। अंततः छिद्र की | डिराक ने आगे तर्क दिया कि यदि ऋणात्मक-ऊर्जा ईजेनस्टेट्स अपूर्ण रूप से भरे हुए हैं, तो प्रत्येक खाली ईजेनस्टेट - जिसे '''छिद्र''' कहा जाता है - घनात्मक रूप से चार्ज किए गए कण की तरह व्यवहार करेगा। छिद्र में ''घनात्मक'' ऊर्जा होती है क्योंकि निर्वात से कण-छिद्र जोड़ी बनाने के लिए ऊर्जा की आवश्यकता होती है। जैसा कि ऊपर उल्लेख किया गया है, डिराक ने प्रारंभ में सोचा था कि छिद्र प्रोटॉन हो सकता है, लेकिन [[हरमन वेइल]] ने बताया कि छिद्र को ऐसा व्यवहार करना चाहिए जैसे कि उसका द्रव्यमान इलेक्ट्रॉन के समान हो, जबकि प्रोटॉन 1800 गुना से अधिक भारी है। अंततः छिद्र की तत्समकपॉज़िट्रॉन के रूप में की गई, जिसे 1932 में [[कार्ल डेविड एंडरसन]] द्वारा प्रयोगात्मक रूप से खोजा गया था।<ref>{{cite book |last1=Penrose |first1=Roger |title=वास्तविकता की राह|date=2004 |publisher=Jonathan Cape |isbn=0-224-04447-8 |page=625}}</ref> | ||
ऋणात्मक-ऊर्जा इलेक्ट्रॉनों के अनंत समुद्र का उपयोग करके "निर्वात" का वर्णन करना पूरी तरह से संतोषजनक नहीं है। ऋणात्मक-ऊर्जा इलेक्ट्रॉनों के समुद्र से असीम रूप से ऋणात्मक योगदान को अनंत घनात्मक "अरक्षित" ऊर्जा द्वारा रद्द किया जाना चाहिए और ऋणात्मक-ऊर्जा इलेक्ट्रॉनों के समुद्र से आने वाले चार्ज घनत्व और | ऋणात्मक-ऊर्जा इलेक्ट्रॉनों के अनंत समुद्र का उपयोग करके "निर्वात" का वर्णन करना पूरी तरह से संतोषजनक नहीं है। ऋणात्मक-ऊर्जा इलेक्ट्रॉनों के समुद्र से असीम रूप से ऋणात्मक योगदान को अनंत घनात्मक "अरक्षित" ऊर्जा द्वारा रद्द किया जाना चाहिए और ऋणात्मक-ऊर्जा इलेक्ट्रॉनों के समुद्र से आने वाले चार्ज घनत्व और विद्युत प्रवाह में योगदान को अनंत घनात्मक [[जेलियम|"जेलियम"]] पृष्ठभूमि द्वारा बिल्कुल रद्द कर दिया जाना चाहिए ताकि निर्वात का शुद्ध विद्युत चार्ज घनत्व शून्य हो। क्वांटम क्षेत्र सिद्धांत में, सृजन और विनाश ऑपरेटरों पर [[बोगोलीउबोव परिवर्तन]] (व्याप्त ऋणात्मक-ऊर्जा इलेक्ट्रॉन अवस्था को खाली घनात्मक ऊर्जा पॉज़िट्रॉन अवस्था में और खाली ऋणात्मक-ऊर्जा इलेक्ट्रॉन अवस्था को कब्जे वाली घनात्मक ऊर्जा पॉज़िट्रॉन अवस्था में बदलना) हमें डायराक समुद्री औपचारिकता को उपमार्ग करने की अनुमति देता है, भले ही, औपचारिक रूप से, यह इसके बराबर है। | ||
हालाँकि, [[संघनित पदार्थ भौतिकी]] के कुछ अनुप्रयोगों में, "छिद्र सिद्धांत" की अंतर्निहित अवधारणाएँ मान्य हैं। विद्युत चालक में प्रवाहकत्त्व इलेक्ट्रॉनों का समुद्र, जिसे फर्मी समुद्र कहा जाता है, में प्रणाली की [[रासायनिक क्षमता]] तक की ऊर्जा वाले इलेक्ट्रॉन होते हैं। फर्मी सागर में खाली अवस्था घनात्मक रूप से चार्ज किए गए इलेक्ट्रॉन की तरह व्यवहार करती है, और यद्यपि इसे भी [[चालन इलेक्ट्रॉन]] छिद्र के रूप में जाना जाता है, यह पॉज़िट्रॉन से अलग है। फर्मी समुद्र का ऋणात्मक आवेश पदार्थ के धनात्मक आवेशित आयनिक जाली द्वारा संतुलित होता है। | हालाँकि, [[संघनित पदार्थ भौतिकी]] के कुछ अनुप्रयोगों में, "छिद्र सिद्धांत" की अंतर्निहित अवधारणाएँ मान्य हैं। विद्युत चालक में प्रवाहकत्त्व इलेक्ट्रॉनों का समुद्र, जिसे फर्मी समुद्र कहा जाता है, में प्रणाली की [[रासायनिक क्षमता]] तक की ऊर्जा वाले इलेक्ट्रॉन होते हैं। फर्मी सागर में खाली अवस्था घनात्मक रूप से चार्ज किए गए इलेक्ट्रॉन की तरह व्यवहार करती है, और यद्यपि इसे भी [[चालन इलेक्ट्रॉन]] छिद्र के रूप में जाना जाता है, यह पॉज़िट्रॉन से अलग है। फर्मी समुद्र का ऋणात्मक आवेश पदार्थ के धनात्मक आवेशित आयनिक जाली द्वारा संतुलित होता है। | ||
Line 400: | Line 401: | ||
कोई कल्पना कर सकता है <math>a</math> जैसे कि इसके ऊपर विभिन्न समन्वय कार्यानुकूल का [[फाइबर (गणित)]] होता है। ज्यामितीय शब्दों में, कोई कहता है कि स्पेसटाइम को [[फाइबर बंडल]] और विशेष रूप से [[ फ़्रेम बंडल |फ़्रेम बंडल]] के रूप में वर्णित किया जा सकता है। दो बिंदुओं के बीच का अंतर <math>x</math> और <math>x'</math> एक ही फाइबर में घूर्णन और [[लोरेंत्ज़ बूस्ट]] का संयोजन होता है। समन्वय फ्रेम का विकल्प उस बंडल के माध्यम से (स्थानीय) [[अनुभाग (फाइबर बंडल)]] है। | कोई कल्पना कर सकता है <math>a</math> जैसे कि इसके ऊपर विभिन्न समन्वय कार्यानुकूल का [[फाइबर (गणित)]] होता है। ज्यामितीय शब्दों में, कोई कहता है कि स्पेसटाइम को [[फाइबर बंडल]] और विशेष रूप से [[ फ़्रेम बंडल |फ़्रेम बंडल]] के रूप में वर्णित किया जा सकता है। दो बिंदुओं के बीच का अंतर <math>x</math> और <math>x'</math> एक ही फाइबर में घूर्णन और [[लोरेंत्ज़ बूस्ट]] का संयोजन होता है। समन्वय फ्रेम का विकल्प उस बंडल के माध्यम से (स्थानीय) [[अनुभाग (फाइबर बंडल)]] है। | ||
फ़्रेम बंडल के साथ युग्मित दूसरा बंडल, [[स्पिनर बंडल]] है। स्पिनर बंडल के माध्यम से खंड सिर्फ कण क्षेत्र है ( | फ़्रेम बंडल के साथ युग्मित दूसरा बंडल, [[स्पिनर बंडल]] है। स्पिनर बंडल के माध्यम से खंड सिर्फ कण क्षेत्र है (विद्युत प्रवाह मामले में डायराक स्पिनर)। स्पिनर फाइबर में विभिन्न बिंदु एक ही भौतिक वस्तु (फर्मियन) से मेल खाते हैं लेकिन विभिन्न लोरेंत्ज़ फ्रेम में व्यक्त किए जाते हैं। स्पष्ट रूप से, लगातार परिणाम प्राप्त करने के लिए फ़्रेम बंडल और स्पिनर बंडल को सुसंगत तरीके से एक साथ बांधा जाना चाहिए; औपचारिक रूप से, कोई कहता है कि स्पिनर बंडल [[संबद्ध बंडल]] है; यह [[प्रमुख बंडल]] से जुड़ा है, जो विद्युत प्रवाह मामले में फ्रेम बंडल है। फाइबर पर बिंदुओं के बीच अंतर प्रणाली की समरूपता के अनुरूप है। स्पिनर बंडल में समरूपता के दो अलग-अलग [[जनरेटर (गणित)]] हैं: [[कुल कोणीय गति]] और [[आंतरिक कोणीय गति]]। दोनों लोरेंत्ज़ परिवर्तनों के लेकिन अलग-अलग तरीकों से अनुरूप हैं। | ||
यहां प्रस्तुति इत्ज़ीक्सन और ज़ुबेर की प्रस्तुति का अनुसरण करती है।<ref name="iz">Claude Itzykson and Jean-Bernard Zuber, (1980) "Quantum Field Theory", McGraw-Hill ''(See Chapter 2)''</ref> यह लगभग ब्योर्केन और ड्रेल के समान है।<ref>James D. Bjorken, Sidney D. Drell (1964) "Relativistic Quantum Mechanics", McGraw-Hill. ''(See Chapter 2)''</ref> [[सामान्य सापेक्षतावादी]] | यहां प्रस्तुति इत्ज़ीक्सन और ज़ुबेर की प्रस्तुति का अनुसरण करती है।<ref name="iz">Claude Itzykson and Jean-Bernard Zuber, (1980) "Quantum Field Theory", McGraw-Hill ''(See Chapter 2)''</ref> यह लगभग ब्योर्केन और ड्रेल के समान है।<ref>James D. Bjorken, Sidney D. Drell (1964) "Relativistic Quantum Mechanics", McGraw-Hill. ''(See Chapter 2)''</ref> [[सामान्य सापेक्षतावादी]] समायोजन में एक समान व्युत्पत्ति वेनबर्ग में पाई जा सकती है।<ref name="weinberg">Steven Weinberg, (1972) "Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity", Wiley & Sons ''(See chapter 12.5, "Tetrad formalism" pages 367ff.)''.</ref> यहां हम अपने स्पेसटाइम को समतल तय करते हैं, यानी हमारा स्पेसटाइम मिन्कोव्स्की समष्टि है। | ||
लोरेंत्ज़ परिवर्तन के तहत <math>x \mapsto x',</math> डिराक स्पिनर के रूप में बदलने के लिए | लोरेंत्ज़ परिवर्तन के तहत <math>x \mapsto x',</math> डिराक स्पिनर के रूप में बदलने के लिए | ||
Line 422: | Line 423: | ||
यदि डिराक समीकरण को सहसंयोजक होना है, तो सभी लोरेंत्ज़ कार्यानुकूल में इसका बिल्कुल समान रूप होना चाहिए: | यदि डिराक समीकरण को सहसंयोजक होना है, तो सभी लोरेंत्ज़ कार्यानुकूल में इसका बिल्कुल समान रूप होना चाहिए: | ||
<math display="block">i\gamma^\mu \frac{\partial}{\partial x^{\prime\mu}} \psi^\prime(x^\prime) -m\psi^\prime(x^\prime)=0</math> | <math display="block">i\gamma^\mu \frac{\partial}{\partial x^{\prime\mu}} \psi^\prime(x^\prime) -m\psi^\prime(x^\prime)=0</math> | ||
दो स्पिनर <math>\psi</math> और <math>\psi^\prime</math> दोनों को एक ही भौतिक क्षेत्र का वर्णन करना चाहिए, और इसलिए एक परिवर्तन से संबंधित होना चाहिए जो किसी भी भौतिक अवलोकन (चार्ज, | दो स्पिनर <math>\psi</math> और <math>\psi^\prime</math> दोनों को एक ही भौतिक क्षेत्र का वर्णन करना चाहिए, और इसलिए एक परिवर्तन से संबंधित होना चाहिए जो किसी भी भौतिक अवलोकन (चार्ज, विद्युत प्रवाह, द्रव्यमान इत्यादि) को नहीं बदलता है। परिवर्तन को केवल समन्वय फ्रेम के परिवर्तन को एन्कोड करना चाहिए। यह दिखाया जा सकता है कि ऐसा परिवर्तन 4×4 एकात्मक आव्यूह है। इस प्रकार, कोई यह मान सकता है कि दोनों कार्यानुकूल के बीच संबंध को इस प्रकार लिखा जा सकता है | ||
<math display="block">\psi^\prime(x^\prime) = S(\Lambda) \psi(x)</math> | <math display="block">\psi^\prime(x^\prime) = S(\Lambda) \psi(x)</math> | ||
इसे परिवर्तित समीकरण में डालने पर परिणाम प्राप्त होता है | इसे परिवर्तित समीकरण में डालने पर परिणाम प्राप्त होता है | ||
Line 430: | Line 431: | ||
फिर मूल डिराक समीकरण पुनः प्राप्त हो जाता है | फिर मूल डिराक समीकरण पुनः प्राप्त हो जाता है | ||
<math display="block">S(\Lambda) \gamma^\mu S^{-1}(\Lambda) = {\left(\Lambda^{-1}\right)^\mu}_\nu \gamma^\nu</math> | <math display="block">S(\Lambda) \gamma^\mu S^{-1}(\Lambda) = {\left(\Lambda^{-1}\right)^\mu}_\nu \gamma^\nu</math> | ||
के लिए स्पष्ट अभिव्यक्ति <math>S(\Lambda)</math> (ऊपर दी गई अभिव्यक्ति के बराबर) | के लिए स्पष्ट अभिव्यक्ति <math>S(\Lambda)</math> (ऊपर दी गई अभिव्यक्ति के बराबर) तत्समकपरिवर्तन के निकट अनंतिम घूर्णन के लोरेंत्ज़ परिवर्तन पर विचार करके प्राप्त किया जा सकता है: | ||
<math display="block">{\Lambda^\mu}_\nu = {g^\mu}_\nu + {\omega^\mu}_\nu\ ,\ {(\Lambda^{-1})^\mu}_\nu = {g^\mu}_\nu - {\omega^\mu}_\nu</math> जहाँ <math>{g^\mu}_{\nu}</math> मीट्रिक टेंसर है: <math>{g^\mu}_{\nu}=g^{\mu\nu'}g_{\nu'\nu}={\delta^\mu}_{\nu}</math> और जबकि सममित है <math>\omega_{\mu\nu}={\omega^{\alpha}}_{\nu} g_{\alpha\mu}</math> प्रतिसममित है। प्लगिंग और चगिंग के बाद, प्राप्त होता है | <math display="block">{\Lambda^\mu}_\nu = {g^\mu}_\nu + {\omega^\mu}_\nu\ ,\ {(\Lambda^{-1})^\mu}_\nu = {g^\mu}_\nu - {\omega^\mu}_\nu</math> जहाँ <math>{g^\mu}_{\nu}</math> मीट्रिक टेंसर है: <math>{g^\mu}_{\nu}=g^{\mu\nu'}g_{\nu'\nu}={\delta^\mu}_{\nu}</math> और जबकि सममित है <math>\omega_{\mu\nu}={\omega^{\alpha}}_{\nu} g_{\alpha\mu}</math> प्रतिसममित है। प्लगिंग और चगिंग के बाद, प्राप्त होता है | ||
<math display="block">S(\Lambda) = I + \frac{-i}{4} \omega^{\mu\nu} \sigma_{\mu\nu} + \mathcal{O}\left(\Lambda^2\right)</math> | <math display="block">S(\Lambda) = I + \frac{-i}{4} \omega^{\mu\nu} \sigma_{\mu\nu} + \mathcal{O}\left(\Lambda^2\right)</math> | ||
Line 454: | Line 455: | ||
=== युग्मित वेइल स्पिनर्स === | === युग्मित वेइल स्पिनर्स === | ||
जैसा कि ऊपर उल्लेख किया गया है, ''द्रव्यमान रहित'' डिराक समीकरण तुरंत सजातीय वेइल समीकरण में कम हो जाता है। गामा आव्यूह के चिरल प्रतिनिधित्व का उपयोग करके, गैर-द्रव्यमान समीकरण को मूल चार-घटक स्पिनर के सूचकांकों के पहले और आखिरी जोड़े पर काम करने वाले युग्मित अमानवीय वेइल समीकरणों की एक जोड़ी में विघटित किया जा सकता है, यानी <math>\psi = \begin{pmatrix} \psi_L \\ \psi_R \end{pmatrix}</math>, जहाँ <math>\psi_L</math> और <math>\psi_R</math> प्रत्येक दो-घटक [[वेइल स्पिनर]] हैं। ऐसा इसलिए है क्योंकि चिरल गामा आव्यूह के तिरछे ब्लॉक रूप का मतलब है कि वे <math>\psi_L</math> और <math>\psi_R</math> को समागम करते हैं और प्रत्येक पर दो-दो-दो पाउली | जैसा कि ऊपर उल्लेख किया गया है, ''द्रव्यमान रहित'' डिराक समीकरण तुरंत सजातीय वेइल समीकरण में कम हो जाता है। गामा आव्यूह के चिरल प्रतिनिधित्व का उपयोग करके, गैर-द्रव्यमान समीकरण को मूल चार-घटक स्पिनर के सूचकांकों के पहले और आखिरी जोड़े पर काम करने वाले युग्मित अमानवीय वेइल समीकरणों की एक जोड़ी में विघटित किया जा सकता है, यानी <math>\psi = \begin{pmatrix} \psi_L \\ \psi_R \end{pmatrix}</math>, जहाँ <math>\psi_L</math> और <math>\psi_R</math> प्रत्येक दो-घटक [[वेइल स्पिनर]] हैं। ऐसा इसलिए है क्योंकि चिरल गामा आव्यूह के तिरछे ब्लॉक रूप का मतलब है कि वे <math>\psi_L</math> और <math>\psi_R</math> को समागम करते हैं और प्रत्येक पर दो-दो-दो पाउली आव्यूह लागू करते हैं: | ||
<math>\gamma^\mu \begin{pmatrix}\psi_L \\ \psi_R \end{pmatrix} = \begin{pmatrix}\sigma^\mu \psi_R \\ \overline{\sigma}^\mu \psi_L \end{pmatrix}</math>। | <math>\gamma^\mu \begin{pmatrix}\psi_L \\ \psi_R \end{pmatrix} = \begin{pmatrix}\sigma^\mu \psi_R \\ \overline{\sigma}^\mu \psi_L \end{pmatrix}</math>। |
Revision as of 17:31, 3 August 2023
कण भौतिकी में, डिराक समीकरण 1928 में ब्रिटिश भौतिक विज्ञानी पॉल डिराक द्वारा प्राप्त सापेक्षतावादी तरंग समीकरण है। अपने स्वतंत्र रूप या विद्युत चुम्बकीय अंतःक्रियाओं सहित, यह सभी प्रचक्रण-½ बड़े कणों का वर्णन करता है, जिन्हें "डायराक कण" कहा जाता है, जैसे इलेक्ट्रॉन और क्वार्क जिनके लिए समता (भौतिकी) समरूपता (भौतिकी) है। यह क्वांटम यांत्रिकी के सिद्धांतों और विशेष सापेक्षता के सिद्धांत दोनों के अनुरूप है,[1] और क्वांटम यांत्रिकी के संदर्भ में विशेष सापेक्षता को पूरी तरह से ध्यान में रखने वाला पहला सिद्धांत था। इसे पूरी तरह से दृढ़ तरीके से हाइड्रोजन वर्णक्रमीय श्रृंखला की बारीक संरचना का लेखा-जोखा करके मान्य किया गया था।
समीकरण ने पदार्थ के एक नए रूप, प्रतिद्रव्य के अस्तित्व को भी दर्शाया, जो पहले से संदेहास्पद और अवलोकित था और जिसकी कई वर्षों बाद प्रयोगात्मक रूप से पुष्टि की गई थी। इसने वोल्फगैंग पाउली के संवृतिशास्त्र (कण भौतिकी) प्रचक्रण (भौतिकी) सिद्धांत में कई घटक तरंग फलन के आरम्भ के लिए सैद्धांतिक औचित्य भी प्रदान किया। डिराक सिद्धांत में तरंग फलन चार समिश्र संख्याओं (बिस्पिनोर के रूप में जाना जाता है) के सदिश हैं, जिनमें से दो गैर-सापेक्षतावादी सीमा में पाउली समीकरण से मिलते जुलते हैं, श्रोडिंगर समीकरण के विपरीत जो केवल समिश्र मान के तरंग फलन का वर्णन करता है। इसके अलावा, शून्य द्रव्यमान की सीमा में, डिराक समीकरण वेइल समीकरण में कम हो जाता है।
हालाँकि डिराक ने पहले तो अपने परिणामों के महत्व को पूरी तरह से नहीं समझा, क्वांटम यांत्रिकी और सापेक्षता के मिलन के परिणामस्वरूप प्रचक्रण की विस्तृत व्याख्या - और पोजीट्रान की अंतिम खोज - सैद्धांतिक भौतिकी की महान अभिभूत में से एक का प्रतिनिधित्व करती है। इस उपलब्धि को उनसे पहले आइजैक न्यूटन, जेम्स क्लर्क मैक्सवेल और अल्बर्ट आइंस्टीन के फलन के बराबर बताया गया है।[2] क्वांटम क्षेत्र सिद्धांत के संदर्भ में, प्रचक्रण-1⁄2 कण के अनुरूप क्वांटम क्षेत्रों का वर्णन करने के लिए डिराक समीकरण की पुनर्व्याख्या की गई है।
डिराक समीकरण वेस्टमिन्स्टर ऐबी के पृष्ठ पर पट्टिका पर अंकित है। 13 नवंबर 1995 को अनावरण किया गया, यह पट्टिका पॉल डिराक के जीवन का स्मरण कराती है।[3]
गणितीय सूत्रीकरण
क्षेत्र सिद्धांत के लिए अपने आधुनिक सूत्रीकरण में, डिराक समीकरण को डिराक स्पिनर क्षेत्र के संदर्भ में लिखा गया है समिश्र सदिश समष्टि में मान ले रहा है जिसे ठोस रूप से वर्णित किया गया है, समतल स्पेसटाइम (मिन्कोवस्की समष्टि) पर परिभाषित किया गया है। इसकी अभिव्यक्ति में गामा आव्यूह और पैरामीटर भी शामिल है जिसे द्रव्यमान के साथ-साथ अन्य भौतिक स्थिरांक के रूप में व्याख्या किया गया है।
क्षेत्र के संदर्भ में, डिराक समीकरण तब है
और प्राकृतिक इकाइयों में, फेनमैन स्लैश अंकन के साथ,
गामा आव्यूह चार समिश्र आव्यूह (तत्व) का समुच्चय है ( के तत्व) जो परिभाषित विरोधी-कम्यूटेशन संबंधों को संतुष्ट करते हैं:
जहाँ मिन्कोव्स्की मीट्रिक तत्व और सूचकांक 0,1,2 और 3 पर ज़ारी है। इन आव्यूह को प्रतिनिधित्व के विकल्प के तहत स्पष्ट रूप से महसूस किया जा सकता है। दो सामान्य विकल्प डिराक प्रतिनिधित्व हैं
स्लैश अंकन कॉम्पैक्ट अंकन है
डिराक संलग्न और संलग्न समीकरण
स्पिनर क्षेत्र का डायराक संलग्न को इस प्रकार परिभाषित किया गया है
संरक्षित धारा
सिद्धांत की संरक्षित धारा है
डिराक और निकटवर्ती डिराक समीकरण जोड़ने पर प्राप्त होता है
इस अभिव्यक्ति को प्राप्त करने का अन्य तरीका विभिन्न तरीकों से है, संरक्षित धारा प्राप्त करने के लिए वैश्विक समरूपता के लिए नोएदर के प्रमेय को लागू करना
लैग्रेंजियन को याद करें
अब भिन्नता पैरामीटर पर विचार कर रहे हैं अतिसूक्ष्म होने के लिए, हम पहले क्रम पर काम करते हैं और अनदेखा करें शर्तें। पिछली चर्चा से हम तुरंत लैग्रेंजियन के कारण स्पष्ट भिन्नता देखते हैं लुप्त हो रहा है, वह भिन्नता के अंतर्गत है,
नोएथर के प्रमेय के भाग के रूप में, हम क्षेत्रों की भिन्नता के कारण लैग्रेंजियन में अंतर्निहित भिन्नता पाते हैं। यदि गति का समीकरण तो फिर संतुष्ट हैं
|
(*) |
यह तुरंत सरल हो जाता है क्योंकि इसका कोई आंशिक व्युत्पन्न नहीं है लैग्रेंजियन में. अतिसूक्ष्म भिन्नता है
समाधान
चूंकि डिराक ऑपरेटर वर्ग-अभिन्न फलन के 4-टुपल्स पर फलन करता है, इसलिए इसके समाधान समान हिल्बर्ट समष्टि के घटक होने चाहिए। यह तथ्य कि समाधानों की ऊर्जा की कोई निचली सीमा नहीं है, अप्रत्याशित है।
समतल-तरंग समाधान
समतल-तरंग समाधान वे होते हैं जो एन्सैट्ज़ से उत्पन्न होते हैं
इस एन्सैट्ज़ के लिए, डिराक समीकरण के लिए समीकरण बन जाता है :
उदाहरण के लिए, चिरल प्रतिनिधित्व में , समाधान समष्टि को सदिश द्वारा परिचालित किया गया है
ये समतल-तरंग समाधान विहित परिमाणीकरण के लिए प्रारंभिक बिंदु प्रदान करते हैं।
लैग्रेंजियन सूत्रीकरण
डिराक समीकरण और संलग्न डिराक समीकरण दोनों को विशिष्ट लैग्रेन्जियन घनत्व के साथ क्रिया से (बदलते हुए) प्राप्त किया जा सकता है जो निम्न द्वारा दिया गया है:
प्राकृतिक इकाइयों में और स्लैश अंकन के साथ, क्रिया तब होती है
इस क्रिया के लिए, उपरोक्त संरक्षित धारा क्षेत्र सिद्धांत के लिए नोएदर के प्रमेय के माध्यम से वैश्विक समरूपता के अनुरूप संरक्षित धारा के रूप में उत्पन्न होती है। समरूपता को स्थानीय, स्पेसटाइम बिंदु पर निर्भर में बदलकर इस क्षेत्र सिद्धांत का आकलन करने से गेज समरूपता (वास्तव में, गेज अतिरेक) मिलती है। परिणामी सिद्धांत क्वांटम विद्युत्गतिकी या क्यूईडी है। अधिक विस्तृत चर्चा के लिए नीचे देखें।
लोरेंत्ज़ अपरिवर्तनीयता
लोरेंत्ज़ परिवर्तनों के तहत डिराक समीकरण अपरिवर्तनीय है, अर्थात लोरेंत्ज़ समूह या सख्ती से की कार्रवाई के तहत, तत्समकसे जुड़ा घटक है।
में मान लेने के रूप में ठोस रूप से देखे जाने वाले डिराक स्पिनर के लिए, लोरेंत्ज़ परिवर्तन के तहत परिवर्तन समिश्र आव्यूह द्वारा दिया गया है। संबंधित को परिभाषित करने में कुछ सूक्ष्मताएं हैं, साथ ही संकेतन का एक मानक दुरुपयोग भी है।
अधिकांश उपचार लाई बीजगणित स्तर पर होते हैं। अधिक विस्तृत उपचार के लिए लोरेंत्ज़ समूह लाई बीजगणित देखें। लोरेंत्ज़ समूह वास्तविक आव्यूह अभिनय कर रहे हैं छह आव्यूह के समुच्चय द्वारा उत्पन्न होता है घटकों के साथ
ये लोरेंत्ज़ बीजगणित रूपान्तरण संबंधों को संतुष्ट करते हैं
लोरेंत्ज़ परिवर्तन के रूप में लिखा जा सकता है
प्रचक्रण समष्टि पर संबंधित परिवर्तन है
लोरेंत्ज़ परिवर्तन के तहत, डिराक समीकरण
बायीं ओर से दोनों पक्षों को गुणा करने पर और डमी वेरिएबल को वापस कर रहा देता है
लोरेंत्ज़ अपरिवर्तनीयता से संबद्ध संरक्षित नोएथर धारा है, या बल्कि संरक्षित नोएथर धाराओं का एक टेंसर है। इसी तरह, चूंकि रूपांतरण के तहत समीकरण अपरिवर्तनीय है, इसलिए संरक्षित नोएथर धाराओं का टेंसर है, जिसे तनाव-ऊर्जा टेंसर के रूप में पहचाना जा सकता है। लोरेंत्ज़ धारा आंतरिक कोणीय गति का प्रतिनिधित्व करने वाले टेंसर के अलावा तनाव-ऊर्जा टेंसर के संदर्भ में भी लिखा जा सकता है।
ऐतिहासिक विकास और आगे गणितीय विवरण
डिराक समीकरण का उपयोग (ऐतिहासिक रूप से) क्वांटम-यांत्रिकीय सिद्धांत को परिभाषित करने के लिए भी किया गया था जहां को तरंग-फलन के रूप में व्याख्या किया गया है।
पॉल डिराक द्वारा मूल रूप से प्रस्तावित रूप में डिराक समीकरण है:[4]
इस समीकरण को बनाने में डिराक का उद्देश्य सापेक्ष रूप से गतिमान इलेक्ट्रॉन के व्यवहार को समझाना था, और इस प्रकार परमाणु को सापेक्षता के अनुरूप तरीके से व्यवहार करने की अनुमति देना था। उनकी मामूली आशा यह थी कि इस तरह से पेश किए गए सुधारों का परमाणु स्पेक्ट्रा की समस्या पर असर पड़ सकता है।
उस समय तक, परमाणु के पुराने क्वांटम सिद्धांत को सापेक्षता के सिद्धांत के अनुकूल बनाने के प्रयास, जो परमाणु नाभिक के इलेक्ट्रॉन की संभवतः गैर-वृत्ताकार कक्षा में संग्रहीत कोणीय गति को अलग करने पर आधारित थे, विफल हो गए थे - और नया वर्नर हाइजेनबर्ग, वोल्फगैंग पाउली, पास्कल जॉर्डन, इरविन श्रोडिंगर और स्वयं डिराक के क्वांटम यांत्रिकी इस समस्या का विवेचन करने के लिए पर्याप्त रूप से विकसित नहीं हुए थे। हालाँकि डिराक के मूल इरादे संतुष्ट थे, उनके समीकरण का पदार्थ की संरचना पर कहीं अधिक गहरा प्रभाव पड़ा और उन्होंने वस्तुओं की नई गणितीय कक्षाएं पेश कीं जो अब मौलिक भौतिकी के आवश्यक तत्व हैं।
इस समीकरण में नए तत्व चार 4 × 4 आव्यूह (गणित) α1, α2, α3 और β, और चार-घटक तरंग फलन ψ हैं। इसमें चार घटक हैं ψ क्योंकि समाकृति समष्टि में किसी भी बिंदु पर इसका मूल्यांकन बिस्पिनर है। इसकी व्याख्या स्पिन-अप इलेक्ट्रॉन, स्पिन-डाउन इलेक्ट्रॉन, स्पिन-अप पॉज़िट्रॉन और स्पिन-डाउन पॉज़िट्रॉन के अधिस्थापन के रूप में की जाती है।
वह 4 × 4 आव्यूह αk और β सभी हर्मिटियन आव्यूह हैं और अनैच्छिक आव्यूह हैं:
इस प्रकार एकल प्रतीकात्मक समीकरण तरंग फलन बनाने वाली चार मात्राओं के लिए चार युग्मित रैखिक प्रथम-क्रम आंशिक अंतर समीकरणों में सुलझता है। समीकरण को प्लैंक इकाइयों में अधिक स्पष्ट रूप से इस प्रकार लिखा जा सकता है:[5]
श्रोडिंगर समीकरण को सापेक्ष बनाना
डिराक समीकरण सतही तौर पर विशाल मुक्त कण के लिए श्रोडिंगर समीकरण के समान है:
यद्यपि यह श्रोडिंगर समीकरण का सफल सापेक्षतावादी सामान्यीकरण नहीं है, इस समीकरण को क्वांटम क्षेत्र सिद्धांत के संदर्भ में पुनर्जीवित किया गया है, जहां इसे क्लेन-गॉर्डन समीकरण के रूप में जाना जाता है, और स्पिनलेस कण क्षेत्र (उदाहरण के लिए सन मेसन या हिग्स बॉसन) का वर्णन करता है। ऐतिहासिक रूप से, श्रोडिंगर स्वयं अपने नाम वाले समीकरण से पहले इस समीकरण पर पहुंचे थे लेकिन जल्द ही इसे खारिज कर दिया। क्वांटम क्षेत्र सिद्धांत के संदर्भ में, अनिश्चित घनत्व को चार्ज घनत्व के अनुरूप समझा जाता है, जो घनात्मक या ऋणात्मक हो सकता है, न कि संभाव्यता घनत्व समझा जाता है।
डिराक का सहसाघात
इस प्रकार डिराक ने एक ऐसे समीकरण को आज़माने के बारे में सोचा जो समष्टि और समय दोनों में प्रथम क्रम का हो। उदाहरण के लिए, कोई औपचारिक रूप से (अर्थात् संकेतन के दुरुपयोग से) ऊर्जा-संवेग संबंध ले सकता है
कहानी के अनुसार, डिराक कैंब्रिज में चिमनी की ओर देख रहा था और इस समस्या पर विचार कर रहा था, तभी उसके मन में वेव ऑपरेटर का वर्गमूल निकालने का विचार इस प्रकार आया:
इन आव्यूहों के संदर्भ में गुणनखंडन को देखते हुए, कोई भी अब तुरंत समीकरण लिख सकता है
सहसंयोजक रूप और आपेक्षिक अपरिवर्तन
समीकरण के लोरेंत्ज़ सहप्रसरण को प्रदर्शित करने के लिए, इसे ऐसे रूप में ढालना फायदेमंद है जिसमें समष्टि और समय व्युत्पन्न समान स्तर पर दिखाई देते हैं। नए आव्यूह इस प्रकार पेश किए गए हैं:
जहां दो बार दोहराए गए सूचकांक के मान पर आइंस्टीन संकेतन है μ = 0, 1, 2, 3, और ∂μ 4-प्रवणता है। व्यवहार में कोई अक्सर गामा आव्यूह को पाउली आव्यूह और 2 × 2 तत्समकआव्यूह से लिए गए 2 × 2 उप-आव्यूह के संदर्भ में लिखता है। स्पष्ट रूप से गामा आव्यूह आधार है
डिराक समीकरण की व्याख्या अब एक अभिलक्षणिक मान समीकरण के रूप में की जा सकती है, जहां शेष द्रव्यमान 4-पल ऑपरेटर के अभिलक्षणिक मान के समानुपाती होता है, आनुपातिकता स्थिरांक प्रकाश की गति होती है:
मौलिक प्रमेय में कहा गया है कि यदि आव्यूह के दो अलग-अलग समुच्चय दिए गए हैं और दोनों क्लिफोर्ड बीजगणित को संतुष्ट करते हैं, तो वे आव्यूह समानता द्वारा एक दूसरे से जुड़े हुए हैं:
नियोजित डिराक आव्यूह के विभिन्न निरूपण डिराक तरंग फलन में भौतिक सामग्री के विशेष पहलुओं पर ध्यान केंद्रित करेंगे। यहां दिखाए गए प्रतिनिधित्व को मानक प्रतिनिधित्व के रूप में जाना जाता है - इसमें, तरंग फलन के ऊपरी दो घटक प्रकाश की तुलना में कम ऊर्जा और छोटे वेग की सीमा में पाउली के 2 स्पिनर तरंग फलन में चले जाते हैं।
उपरोक्त विचार, ग्रासमैन की मूल प्रेरणा को ध्यान में रखते हुए, ज्यामिति में गामा की उत्पत्ति को प्रकट करते हैं; वे स्पेसटाइम में इकाई सदिश के निश्चित आधार का प्रतिनिधित्व करते हैं। इसी प्रकार, गामा के उत्पाद जैसे γμγν उन्मुख सतह तत्वों का प्रतिनिधित्व करते हैं, इत्यादि। इसे ध्यान में रखते हुए, कोई गामा के संदर्भ में स्पेसटाइम पर इकाई आयतन तत्व का रूप इस प्रकार पा सकता है। परिभाषा के अनुसार, यह है
संबंधित सिद्धांतों के साथ तुलना
पाउली सिद्धांत
आधे-पूर्णांक प्रचक्रण (भौतिकी) को प्रारंभ करने की आवश्यकता प्रयोगात्मक रूप से स्टर्न-गेरलाच प्रयोग के परिणामों पर आधारित है। परमाणुओं की एक किरण को मजबूत अमानवीय चुंबकीय क्षेत्र के माध्यम से चलाया जाता है, जो परमाणुओं के आंतरिक कोणीय गति के आधार पर N भागों में विभाजित हो जाता है। यह पाया गया कि चांदी के परमाणुओं के लिए, किरण दो भागों में विभाजित थी; इसलिए जमीनी स्थिति पूर्णांक नहीं हो सकती, क्योंकि भले ही परमाणुओं की आंतरिक कोणीय गति यथासंभव छोटी हो, 1, किरण को परमाणुओं के अनुरूप तीन भागों में विभाजित किया जाएगा Lz = −1, 0, +1। निष्कर्ष यह है कि चांदी के परमाणुओं में शुद्ध आंतरिक कोणीय गति होती है 1⁄2। वोल्फगैंग पाउली ने एक सिद्धांत स्थापित किया, जिसने हैमिल्टन के सिद्धांत में दो-घटक तरंग फलन और संबंधित सुधार शब्द को पेश करके इस विभाजन को समझाया, जो इस तरंग फलन के अर्ध-चिरसम्मत युग्मन को एक लागू चुंबकीय क्षेत्र में दर्शाता है, जैसा कि एसआई इकाइयों में होता है: (ध्यान दें कि बोल्ड चेहरे वाले अक्षर 3 आयामों में यूक्लिडियन सदिश दर्शाते हैं, जबकि मिन्कोव्स्की समष्टि चार-सदिश Aμ को इस प्रकार परिभाषित किया जा सकता है ।)
इस बात पर दृढ़ता से जोर दिया जाना चाहिए कि डिराक स्पिनर का बड़े और छोटे घटकों में पृथक्करण स्पष्ट रूप से कम-ऊर्जा सन्निकटन पर निर्भर करता है। संपूर्ण डिराक स्पिनर एक अघुलनशील संपूर्ण का प्रतिनिधित्व करता है, और पाउली सिद्धांत तक पहुंचने के लिए जिन घटकों को यहां उपेक्षित किया गया है, वे सापेक्षतावादी शासन में नई घटनाएं लाएंगे - एंटीमैटर और पदार्थ निर्माण और कणों के विनाश का विचार।
वेइल सिद्धांत
जनहीन मामले में , डिराक समीकरण वेइल समीकरण में बदल जाता है, जो सापेक्ष द्रव्यमान रहित प्रचक्रण का वर्णन करता है-1⁄2 कण।[7] सिद्धांत एक सेकंड प्राप्त करता है समरूपता: नीचे देखें।
भौतिक व्याख्या
अवलोकनीय वस्तुओं की पहचान
क्वांटम सिद्धांत में महत्वपूर्ण भौतिक प्रश्न यह है: सिद्धांत द्वारा परिभाषित भौतिक रूप से देखने योग्य मात्राएँ क्या हैं? क्वांटम यांत्रिकी के अभिधारणाओं के अनुसार, ऐसी मात्राएँ हर्मिटियन ऑपरेटरों द्वारा परिभाषित की जाती हैं जो किसी प्रणाली की संभावित अवस्थाओं के हिल्बर्ट समष्टि पर फलन करती हैं। इन ऑपरेटरों के eigenvalues तब संबंधित भौतिक मात्रा की माप समस्या के संभावित परिणाम होते हैं। श्रोडिंगर सिद्धांत में, ऐसी सबसे सरल वस्तु समग्र हैमिल्टनियन है, जो प्रणाली की कुल ऊर्जा का प्रतिनिधित्व करती है। डिराक सिद्धांत को पारित करने पर इस व्याख्या को बनाए रखने के लिए, हैमिल्टनियन को लिया जाना चाहिए
छिद्र सिद्धांत
ऋणात्मक E समीकरण के समाधान समस्याग्रस्त हैं, क्योंकि यह माना गया था कि कण में घनात्मक ऊर्जा है। हालाँकि, गणितीय रूप से कहें तो, हमारे लिए ऋणात्मक-ऊर्जा समाधानों को अस्वीकार करने का कोई कारण नहीं दिखता है। चूंकि वे मौजूद हैं, इसलिए उन्हें आसानी से नजरअंदाज नहीं किया जा सकता है, क्योंकि एक बार जब इलेक्ट्रॉन और विद्युत चुम्बकीय क्षेत्र के बीच अन्योन्यक्रिया शामिल हो जाती है, तो घनात्मक-ऊर्जा ईजेनस्टेट में रखा गया कोई भी इलेक्ट्रॉन क्रमिक रूप से कम ऊर्जा वाले ऋणात्मक-ऊर्जा ईजेनस्टेट में क्षय हो जाएगा। वास्तविक इलेक्ट्रॉन स्पष्ट रूप से इस तरह से व्यवहार नहीं करते हैं, अन्यथा वे फोटॉन के रूप में ऊर्जा उत्सर्जित करके गायब हो जाएंगे।
इस समस्या से निपटने के लिए, डिराक परिकल्पना पेश की, जिसे छिद्र सिद्धांत के रूप में जाना जाता है, कि निर्वात कई-शरीर क्वांटम अवस्था है जिसमें सभी ऋणात्मक-ऊर्जा इलेक्ट्रॉन ईजेनस्टेट्स का कब्जा है। इलेक्ट्रॉनों के "समुद्र" के रूप में निर्वात के इस वर्णन को डिराक समुद्र कहा जाता है। चूँकि पाउली अपवर्जन सिद्धांत इलेक्ट्रॉनों को एक ही अवस्था में रहने से रोकता है, किसी भी अतिरिक्त इलेक्ट्रॉन को घनात्मक-ऊर्जा आइजेनस्टेट पर कब्जा करने के लिए मजबूर किया जाएगा, और घनात्मक-ऊर्जा इलेक्ट्रॉनों को ऋणात्मक-ऊर्जा आइजेनस्टेट्स में क्षय होने से रोका जाएगा।
डिराक ने आगे तर्क दिया कि यदि ऋणात्मक-ऊर्जा ईजेनस्टेट्स अपूर्ण रूप से भरे हुए हैं, तो प्रत्येक खाली ईजेनस्टेट - जिसे छिद्र कहा जाता है - घनात्मक रूप से चार्ज किए गए कण की तरह व्यवहार करेगा। छिद्र में घनात्मक ऊर्जा होती है क्योंकि निर्वात से कण-छिद्र जोड़ी बनाने के लिए ऊर्जा की आवश्यकता होती है। जैसा कि ऊपर उल्लेख किया गया है, डिराक ने प्रारंभ में सोचा था कि छिद्र प्रोटॉन हो सकता है, लेकिन हरमन वेइल ने बताया कि छिद्र को ऐसा व्यवहार करना चाहिए जैसे कि उसका द्रव्यमान इलेक्ट्रॉन के समान हो, जबकि प्रोटॉन 1800 गुना से अधिक भारी है। अंततः छिद्र की तत्समकपॉज़िट्रॉन के रूप में की गई, जिसे 1932 में कार्ल डेविड एंडरसन द्वारा प्रयोगात्मक रूप से खोजा गया था।[8]
ऋणात्मक-ऊर्जा इलेक्ट्रॉनों के अनंत समुद्र का उपयोग करके "निर्वात" का वर्णन करना पूरी तरह से संतोषजनक नहीं है। ऋणात्मक-ऊर्जा इलेक्ट्रॉनों के समुद्र से असीम रूप से ऋणात्मक योगदान को अनंत घनात्मक "अरक्षित" ऊर्जा द्वारा रद्द किया जाना चाहिए और ऋणात्मक-ऊर्जा इलेक्ट्रॉनों के समुद्र से आने वाले चार्ज घनत्व और विद्युत प्रवाह में योगदान को अनंत घनात्मक "जेलियम" पृष्ठभूमि द्वारा बिल्कुल रद्द कर दिया जाना चाहिए ताकि निर्वात का शुद्ध विद्युत चार्ज घनत्व शून्य हो। क्वांटम क्षेत्र सिद्धांत में, सृजन और विनाश ऑपरेटरों पर बोगोलीउबोव परिवर्तन (व्याप्त ऋणात्मक-ऊर्जा इलेक्ट्रॉन अवस्था को खाली घनात्मक ऊर्जा पॉज़िट्रॉन अवस्था में और खाली ऋणात्मक-ऊर्जा इलेक्ट्रॉन अवस्था को कब्जे वाली घनात्मक ऊर्जा पॉज़िट्रॉन अवस्था में बदलना) हमें डायराक समुद्री औपचारिकता को उपमार्ग करने की अनुमति देता है, भले ही, औपचारिक रूप से, यह इसके बराबर है।
हालाँकि, संघनित पदार्थ भौतिकी के कुछ अनुप्रयोगों में, "छिद्र सिद्धांत" की अंतर्निहित अवधारणाएँ मान्य हैं। विद्युत चालक में प्रवाहकत्त्व इलेक्ट्रॉनों का समुद्र, जिसे फर्मी समुद्र कहा जाता है, में प्रणाली की रासायनिक क्षमता तक की ऊर्जा वाले इलेक्ट्रॉन होते हैं। फर्मी सागर में खाली अवस्था घनात्मक रूप से चार्ज किए गए इलेक्ट्रॉन की तरह व्यवहार करती है, और यद्यपि इसे भी चालन इलेक्ट्रॉन छिद्र के रूप में जाना जाता है, यह पॉज़िट्रॉन से अलग है। फर्मी समुद्र का ऋणात्मक आवेश पदार्थ के धनात्मक आवेशित आयनिक जाली द्वारा संतुलित होता है।
क्वांटम क्षेत्र सिद्धांत में
क्वांटम क्षेत्र सिद्धांत जैसे क्वांटम विद्युत्गतिकी में, डिराक क्षेत्र दूसरे परिमाणीकरण की प्रक्रिया के अधीन है, जो समीकरण की कुछ विरोधाभासी विशेषताओं को हल करता है।
डिराक समीकरण के लोरेंत्ज़ सहप्रसरण की आगे की चर्चा
डिराक समीकरण लोरेंत्ज़ सहसंयोजक है। इसे व्यक्त करने से न केवल डिराक समीकरण को उजागर करने में मदद मिलती है, बल्कि मेजराना स्पिनर और एल्को स्पिनर को भी उजागर करने में मदद मिलती है, जो हालांकि निकट से संबंधित हैं, लेकिन इनमें सूक्ष्म और महत्वपूर्ण अंतर हैं।
प्रक्रिया के ज्यामितीय वर्णन को ध्यान में रखते हुए लोरेंत्ज़ सहप्रसरण को समझना सरल बनाया गया है।[9] मान लीजिये कि स्पेसटाइम मैनिफ़ोल्ड में एकल, निश्चित बिंदु है। इसका समष्टि कई समन्वय प्रणालियों में व्यक्त किया जा सकता है। भौतिकी साहित्य में और के रूप में लिखा जाता है, इस समझ के साथ कि और दोनों एक ही बिंदु , का वर्णन करते हैं, लेकिन संदर्भ के विभिन्न स्थानीय फ्रेम (स्पेसटाइम के एक छोटे विस्तारित पैच पर संदर्भ का एक फ्रेम) में वर्णन करते हैं।
कोई कल्पना कर सकता है जैसे कि इसके ऊपर विभिन्न समन्वय कार्यानुकूल का फाइबर (गणित) होता है। ज्यामितीय शब्दों में, कोई कहता है कि स्पेसटाइम को फाइबर बंडल और विशेष रूप से फ़्रेम बंडल के रूप में वर्णित किया जा सकता है। दो बिंदुओं के बीच का अंतर और एक ही फाइबर में घूर्णन और लोरेंत्ज़ बूस्ट का संयोजन होता है। समन्वय फ्रेम का विकल्प उस बंडल के माध्यम से (स्थानीय) अनुभाग (फाइबर बंडल) है।
फ़्रेम बंडल के साथ युग्मित दूसरा बंडल, स्पिनर बंडल है। स्पिनर बंडल के माध्यम से खंड सिर्फ कण क्षेत्र है (विद्युत प्रवाह मामले में डायराक स्पिनर)। स्पिनर फाइबर में विभिन्न बिंदु एक ही भौतिक वस्तु (फर्मियन) से मेल खाते हैं लेकिन विभिन्न लोरेंत्ज़ फ्रेम में व्यक्त किए जाते हैं। स्पष्ट रूप से, लगातार परिणाम प्राप्त करने के लिए फ़्रेम बंडल और स्पिनर बंडल को सुसंगत तरीके से एक साथ बांधा जाना चाहिए; औपचारिक रूप से, कोई कहता है कि स्पिनर बंडल संबद्ध बंडल है; यह प्रमुख बंडल से जुड़ा है, जो विद्युत प्रवाह मामले में फ्रेम बंडल है। फाइबर पर बिंदुओं के बीच अंतर प्रणाली की समरूपता के अनुरूप है। स्पिनर बंडल में समरूपता के दो अलग-अलग जनरेटर (गणित) हैं: कुल कोणीय गति और आंतरिक कोणीय गति। दोनों लोरेंत्ज़ परिवर्तनों के लेकिन अलग-अलग तरीकों से अनुरूप हैं।
यहां प्रस्तुति इत्ज़ीक्सन और ज़ुबेर की प्रस्तुति का अनुसरण करती है।[10] यह लगभग ब्योर्केन और ड्रेल के समान है।[11] सामान्य सापेक्षतावादी समायोजन में एक समान व्युत्पत्ति वेनबर्ग में पाई जा सकती है।[12] यहां हम अपने स्पेसटाइम को समतल तय करते हैं, यानी हमारा स्पेसटाइम मिन्कोव्स्की समष्टि है।
लोरेंत्ज़ परिवर्तन के तहत डिराक स्पिनर के रूप में बदलने के लिए
उपरोक्त की ज्यामितीय व्याख्या यह है कि फ़्रेम क्षेत्र एफ़िन समष्टि है, जिसका कोई पसंदीदा मूल नहीं है। जेनरेटर इस समष्टि की समरूपता उत्पन्न करता है: यह निश्चित बिंदु की पुनः लेबलिंग प्रदान करता है जनरेटर फाइबर में एक बिंदु से दूसरे तक गति उत्पन्न करता है: और दोनों के साथ से गति अभी भी एक ही स्पेसटाइम बिंदु के अनुरूप है इन संभवतः अस्पष्ट टिप्पणियों को स्पष्ट बीजगणित के साथ स्पष्ट किया जा सकता है।
मान लीजिये लोरेंत्ज़ परिवर्तन बनें। डिराक समीकरण है
फिर मूल डिराक समीकरण पुनः प्राप्त हो जाता है
अन्य सूत्रीकरण
डिराक समीकरण कई अन्य तरीकों से तैयार किया जा सकता है।
वक्र स्पेसटाइम
इस लेख ने विशेष सापेक्षता के अनुसार फ्लैट स्पेसटाइम में डिराक समीकरण विकसित किया है। वक्र स्पेसटाइम में डिराक समीकरण तैयार करना संभव है।
भौतिक समष्टि का बीजगणित
इस लेख ने चार-सदिश और श्रोडिंगर ऑपरेटरों का उपयोग करके डिराक समीकरण विकसित किया। भौतिक समष्टि के बीजगणित में डिराक समीकरण वास्तविक संख्याओं के समष्टि पर क्लिफ़ोर्ड बीजगणित का उपयोग करता है, जो एक प्रकार का ज्यामितीय बीजगणित है।
युग्मित वेइल स्पिनर्स
जैसा कि ऊपर उल्लेख किया गया है, द्रव्यमान रहित डिराक समीकरण तुरंत सजातीय वेइल समीकरण में कम हो जाता है। गामा आव्यूह के चिरल प्रतिनिधित्व का उपयोग करके, गैर-द्रव्यमान समीकरण को मूल चार-घटक स्पिनर के सूचकांकों के पहले और आखिरी जोड़े पर काम करने वाले युग्मित अमानवीय वेइल समीकरणों की एक जोड़ी में विघटित किया जा सकता है, यानी , जहाँ और प्रत्येक दो-घटक वेइल स्पिनर हैं। ऐसा इसलिए है क्योंकि चिरल गामा आव्यूह के तिरछे ब्लॉक रूप का मतलब है कि वे और को समागम करते हैं और प्रत्येक पर दो-दो-दो पाउली आव्यूह लागू करते हैं:
।
तो डिराक समीकरण
बन जाता है
जो बदले में द्रव्यमान रहित बाएँ और दाएँ-हेलिसिटी (कण भौतिकी) स्पिनरों के लिए अमानवीय वेइल समीकरणों की जोड़ी के बराबर है, जहाँ युग्मन शक्ति द्रव्यमान के समानुपाती होती है:
।
इसे ज़िटरबेवेगंग की सहज व्याख्या के रूप में प्रस्तावित किया गया है, क्योंकि ये द्रव्यमान रहित घटक प्रकाश की गति से फैलेंगे और विपरीत दिशाओं में आगे बढ़ेंगे, क्योंकि हेलीसिटी गति की दिशा पर प्रचक्रण का प्रक्षेपण है।[14] यहां "जन" की भूमिका का उद्देश्य वेग को प्रकाश की गति से कम नहीं करना है, बल्कि उस औसत दर को नियंत्रित करना है जिस पर ये उलटाव होते हैं; विशेष रूप से, उत्क्रमण को पॉइसन प्रक्रिया के रूप में तैयार किया जा सकता है।[15]
U(1) समरूपता
इस अनुभाग में प्राकृतिक इकाइयों का उपयोग किया जाता है। युग्मन स्थिरांक को परंपरा के अनुसार लेबल किया जाता है : इस पैरामीटर को इलेक्ट्रॉन चार्ज के मॉडलिंग के रूप में भी देखा जा सकता है।
सदिश समरूपता
डिराक समीकरण और क्रिया समरूपता को स्वीकार करती है जहां के रूप में बदल जाते हैं
यदि हम वैश्विक समरूपता को 'बढ़ावा' देते हैं, जो स्थिरांक द्वारा परिचालित है, स्थानीय समरूपता के लिए, फलन द्वारा परिचालित किया गया, या समकक्ष डिराक समीकरण अब अपरिवर्तनीय नहीं है: इसका अवशिष्ट व्युत्पन्न है।
अदिश विद्युत्गतिकी के अनुसार निश्चित आगे बढ़ता है: आंशिक व्युत्पन्न को सहसंयोजक व्युत्पन्न में बढ़ावा दिया जाता है
गेज परिवर्तन के तहत परिवर्तन नियम के लिए तो यह सामान्य है
सहसंयोजक व्युत्पन्न का विस्तार करने से क्रिया को दूसरे उपयोगी रूप में लिखा जा सकता है:
इसे चार-घटक डिराक फ़र्मियन लिखकर सबसे आसानी से देखा जा सकता है दो-घटक सदिश क्षेत्र की जोड़ी के रूप में,
फिर डिराक क्रिया रूप धारण कर लेती है
पहले वाली सदिश समरूपता अभी भी मौजूद है, जहां और समान रूप से घूमते हैं। क्रिया का यह रूप दूसरी असमान समरूपता को प्रकट करता है:
जहाँ आव्यूहों के लिए घातीय मानचित्र है।
यह एकमात्र नहीं है समरूपता संभव है, लेकिन यह पारंपरिक है। सदिश और अक्षीय समरूपता का कोई भी 'रैखिक संयोजन' भी समरूपता है
चिरसम्मत रूप से, अक्षीय समरूपता अच्छी तरह से तैयार किए गए गेज सिद्धांत को स्वीकार करती है। लेकिन क्वांटम स्तर पर, विसंगति (भौतिकी) है, यानी, गेजिंग में बाधा है।
रंग समरूपता का विस्तार
हम इस चर्चा को एबेलियन से आगे बढ़ा सकते हैं गेज समूह के तहत सामान्य गैर-एबेलियन समरूपता तक बढ़ा सकते हैं, जो एक सिद्धांत के लिए रंग समरूपता का समूह है।
ठोसता के लिए, हम पर कार्य करने वाले आव्यूहों का विशेष एकात्मक समूह , को ठीक करते हैं।
इस अनुभाग से पहले, इसे मिन्कोव्स्की समष्टि पर स्पिनर क्षेत्र के रूप में देखा जा सकता है, दूसरे शब्दों में फलन , और इसके घटक प्रचक्रण सूचकांकों द्वारा लेबल किए जाते हैं, पारंपरिक रूप से ग्रीक सूचकांक वर्णमाला की प्रारंभ से लिए गए हैं।
सिद्धांत को गेज सिद्धांत में प्रचारित करते हुए, अनौपचारिक रूप सेना , की तरह रूपांतरित होने वाला एक भाग प्राप्त करता है, और इन्हें रंग सूचकांकों द्वारा लेबल किया जाता है, पारंपरिक रूप से लैटिन सूचकांक । कुल मिलाकर, में घटक होते हैं, जो द्वारा सूचकांकों में दिए जाते हैं। केवल 'स्पिनर' लेबल स्पेसटाइम परिवर्तनों के तहत क्षेत्र कैसे बदलता है।
औपचारिक रूप से, टेंसर उत्पाद में मूल्यवान है, अर्थात यह फलन है
कुछ मतभेदों के साथ गेजिंग एबेलियन मामला के समान ही आगे बढ़ती है। गेज परिवर्तन के तहत स्पिनर क्षेत्र के रूप में रूपांतरित होते हैं
के रूप में रूपांतरित करें
गेज-अपरिवर्तनीय क्रिया को लिखना ठीक उसी तरह आगे बढ़ता है जैसे कि मामला, मैक्सवेल लैग्रैन्जियन को यांग-मिल्स लैग्रैन्जियन से प्रतिस्थापित करता है
कार्रवाई तब है
भौतिक अनुप्रयोग
भौतिक अनुप्रयोगों के लिए, मामला मानक मॉडल के क्वार्क सेक्टर का वर्णन करता है जो प्रबल अन्योन्य क्रिया का मॉडल तैयार करता है। क्वार्क को डिराक स्पिनर्स के रूप में तैयार किया गया है; गेज क्षेत्र ग्लूऑन क्षेत्र है। मामला मानक मॉडल के विद्युत-चुम्बकीय-दुर्बल अन्योन्य क्रिया क्षेत्र के भाग का वर्णन करता है। इलेक्ट्रॉन और न्यूट्रिनो जैसे लेप्टान डायराक स्पिनर हैं; गेज क्षेत्र गेज बोसोन है
सामान्यीकरण
इस अभिव्यक्ति को अक्रमतः से लाइ समूह संबन्ध के साथ और समूह प्रतिनिधित्व के लिए सामान्यीकृत किया जा सकता है, जहां का रंग भाग है में मूल्यवान है औपचारिक रूप से, डिराक क्षेत्र फलन है
तब गेज परिवर्तन के तहत परिवर्तन होता है जैसा
इस सिद्धांत को वक्र स्पेसटाइम के लिए सामान्यीकृत किया जा सकता है, लेकिन ऐसी सूक्ष्मताएं हैं जो सामान्य स्पेसटाइम (या अधिक आम तौर पर अभी भी, कई गुना) पर गेज सिद्धांत में उत्पन्न होती हैं, जिन्हें फ्लैट स्पेसटाइम पर नजरअंदाज किया जा सकता है। यह अंततः फ्लैट स्पेसटाइम के संकुचन के कारण है जो हमें वैश्विक स्तर पर परिभाषित गेज क्षेत्र और गेज परिवर्तनों को देखने की अनुमति देता है।
यह भी देखें
डिराक समीकरण पर लेख
|
अन्य समीकरण
|
अन्य विषय
|
संदर्भ
उद्धरण
- ↑ P.W. Atkins (1974). Quanta: A handbook of concepts. Oxford University Press. p. 52. ISBN 978-0-19-855493-6.
- ↑ T.Hey, P.Walters (2009). द न्यू क्वांटम यूनिवर्स. Cambridge University Press. p. 228. ISBN 978-0-521-56457-1.
- ↑ Gisela Dirac-Wahrenburg. "पॉल डिराक". Dirac.ch. Retrieved 2013-07-12.
- ↑ Dirac, Paul A.M. (1982) [1958]. क्वांटम यांत्रिकी के सिद्धांत. International Series of Monographs on Physics (4th ed.). Oxford University Press. p. 255. ISBN 978-0-19-852011-5.
- ↑ Collas, Peter; Klein, David (2019). The Dirac Equation in Curved Spacetime: A Guide for Calculations. Springer. p. 7. ISBN 978-3-030-14825-6. Extract of page 7
- ↑ Pendleton, Brian (2012–2013). क्वांटम सिद्धांत (PDF). section 4.3 "The Dirac Equation". Archived (PDF) from the original on 2022-10-09.
- ↑ Ohlsson, Tommy (22 September 2011). Relativistic Quantum Physics: From advanced quantum mechanics to introductory quantum field theory. Cambridge University Press. p. 86. ISBN 978-1-139-50432-4.
- ↑ Penrose, Roger (2004). वास्तविकता की राह. Jonathan Cape. p. 625. ISBN 0-224-04447-8.
- ↑ Jurgen Jost, (2002) "Riemannian Geometry and Geometric Analysis (3rd Edition)" Springer Universitext. (See chapter 1 for spin structures and chapter 3 for connections on spin structures)
- ↑ Claude Itzykson and Jean-Bernard Zuber, (1980) "Quantum Field Theory", McGraw-Hill (See Chapter 2)
- ↑ James D. Bjorken, Sidney D. Drell (1964) "Relativistic Quantum Mechanics", McGraw-Hill. (See Chapter 2)
- ↑ Steven Weinberg, (1972) "Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity", Wiley & Sons (See chapter 12.5, "Tetrad formalism" pages 367ff.).
- ↑ Weinberg, "Gravitation", op cit. (See chapter 2.9 "Spin", pages 46-47.)
- ↑ Penrose, Roger (2004). वास्तविकता की राह (Sixth Printing ed.). Alfred A. Knopf. pp. 628–632. ISBN 0-224-04447-8.
- ↑ Gaveau, B.; Jacobson, T.; Kac, M.; Schulman, L. S. (30 July 1984). "क्वांटम यांत्रिकी और ब्राउनियन मोशन के बीच सादृश्य का सापेक्ष विस्तार". Physical Review Letters. 53 (5): 419–422.
चयनित कागजात
- Anderson, Carl (1933). "सकारात्मक इलेक्ट्रॉन". Physical Review. 43 (6): 491. Bibcode:1933PhRv...43..491A. doi:10.1103/PhysRev.43.491.
- Arminjon, M.; F. Reifler (2013). "घुमावदार स्पेसटाइम और सामान्यीकृत डी ब्रोगली संबंधों में डिराक समीकरणों के समतुल्य रूप". Brazilian Journal of Physics. 43 (1–2): 64–77. arXiv:1103.3201. Bibcode:2013BrJPh..43...64A. doi:10.1007/s13538-012-0111-0. S2CID 38235437.
- Dirac, P. A. M. (1928). "इलेक्ट्रॉन का क्वांटम सिद्धांत" (PDF). Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 117 (778): 610–624. Bibcode:1928RSPSA.117..610D. doi:10.1098/rspa.1928.0023. JSTOR 94981. Archived (PDF) from the original on 2015-01-02.
- Dirac, P. A. M. (1930). "इलेक्ट्रॉनों और प्रोटॉन का एक सिद्धांत". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 126 (801): 360–365. Bibcode:1930RSPSA.126..360D. doi:10.1098/rspa.1930.0013. JSTOR 95359.
- Frisch, R.; Stern, O. (1933). "हाइड्रोजन अणुओं के चुंबकीय विक्षेपण और प्रोटॉन के चुंबकीय क्षण के बारे में। मैं". Zeitschrift für Physik. 85 (1–2): 4. Bibcode:1933ZPhy...85....4F. doi:10.1007/BF01330773. S2CID 120793548.
पाठ्यपुस्तकें
- Bjorken, J D; Drell, S (1964). Relativistic Quantum mechanics. New York, McGraw-Hill.
- Halzen, Francis; Martin, Alan (1984). Quarks & Leptons: An Introductory Course in Modern Particle Physics. John Wiley & Sons. ISBN 9780471887416.
- Griffiths, D.J. (2008). Introduction to Elementary Particles (2nd ed.). Wiley-VCH. ISBN 978-3-527-40601-2.
- Rae, Alastair I. M.; Jim Napolitano (2015). Quantum Mechanics (6th ed.). Routledge. ISBN 978-1482299182.
- Schiff, L.I. (1968). Quantum Mechanics (3rd ed.). McGraw-Hill.
- Shankar, R. (1994). Principles of Quantum Mechanics (2nd ed.). Plenum.
- Thaller, B. (1992). The Dirac Equation. Texts and Monographs in Physics. Springer.
बाहरी संबंध
- The history of the positron Lecture given by Dirac in 1975
- The Dirac Equation at MathPages
- The Nature of the Dirac Equation, its solutions, and Spin
- Dirac equation for a spin 1⁄2 particle
- Pedagogic Aids to Quantum Field Theory click on Chap। 4 for a step-by-small-step introduction to the Dirac equation, spinors, and relativistic spin/helicity operators।