हेटेरोसिस्ट: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
[[File:Microphotographs of heterocystous cyanobacteria.png|thumb|upright=1.7| {{center|'''Microphotographs of heterocystous cyanobacteria'''<br /> A–F: ''[[Nostoc commune]]'' G–H: ''[[Nostoc|Nostoc calcicola]]''<br />I–M: ''Tolypothrix distorta'' N–R: ''[[Scytonema|Scytonema hyalinum]]''<br /><small>Scale bar {{=}} 10 µm , hc, heterocyst, ak, akinete, hm, hormogonium, nd, necridia</small>}}]]हेटेरोसिस्ट्स या हेटेरोसाइट्स विशेष नाइट्रोजन स्थिरीकरण कोशिकाएं हैं जो [[नाइट्रोजन भुखमरी|नाइट्रोजन अप्राप्ति]] के दौरान कुछ [[फिलामेंटस साइनोबैक्टीरिया|तंतुमय साइनोबैक्टीरिया]] जैसे ''[[पंक्टिफॉर्म नोस्टोकस]] '', '' [[सिलिंड्रोस्पर्मम]] स्टैग्नेल '', और '' [[ अल्पज्ञात स्थान ]] स्पैरिका ''<ref>{{Cite web | author= Basic Biology | date= 18 March 2016 | title= जीवाणु| url= https://basicbiology.net/micro/microorganisms/bacteria}}</ref> वे डाइ[[नाइट्रोजन]] से नाइट्रोजन का स्थिरीकरण करते हैं (N<sub>2</sub>) जैवसंश्लेषण के लिए नाइट्रोजन के साथ फिलामेंट में कोशिकाओं को प्रदान करने के लिए, [[एंजाइम]] [[नाइट्रोजनेस]] का उपयोग करके हवा में।<ref>{{cite book|last=Wolk|first=C.P. |author2=Ernst, A. |author3=Elhai, J.|title=हेटेरोसिस्ट चयापचय और विकास|journal=The Molecular Biology of Cyanobacteria|year=1994|pages=769–823|doi=10.1007/978-94-011-0227-8_27 |isbn=978-0-7923-3273-2 }}</ref> नाइट्रोजनेज़ ऑक्सीजन द्वारा निष्क्रिय होता है, इसलिए हेटरोसिस्ट को एक माइक्रोएनेरोबिक वातावरण बनाना चाहिए। हेटेरोसिस्ट्स की अनूठी संरचना और [[शरीर क्रिया विज्ञान]] को जीन अभिव्यक्ति में वैश्विक परिवर्तन की आवश्यकता है। उदाहरण के लिए विषमपुटी:
[[File:Microphotographs of heterocystous cyanobacteria.png|thumb|upright=1.7| {{center|'''Microphotographs of heterocystous cyanobacteria'''<br /> A–F: ''[[Nostoc commune]]'' G–H: ''[[Nostoc|Nostoc calcicola]]''<br />I–M: ''Tolypothrix distorta'' N–R: ''[[Scytonema|Scytonema hyalinum]]''<br /><small>Scale bar {{=}} 10 µm , hc, heterocyst, ak, akinete, hm, hormogonium, nd, necridia</small>}}]]हेटेरोसिस्ट्स या हेटेरोसाइट्स विशेष [[नाइट्रोजन स्थिरीकरण]] कोशिकाएं हैं जो [[नाइट्रोजन भुखमरी|नाइट्रोजन अप्राप्ति]] के दौरान कुछ [[फिलामेंटस साइनोबैक्टीरिया|तंतुमय साइनोबैक्टीरिया]] जैसे [[नोस्टॉक]] ''[[पंक्टिफॉर्म नोस्टोकस|पंक्टिफॉर्म]] '', '' [[सिलिंड्रोस्पर्मम]] स्टैग्नेल'', और '' [[ अल्पज्ञात स्थान | ऐनाबीना स्फेरिका]] द्वारा बनाई जाती हैं।''<ref>{{Cite web | author= Basic Biology | date= 18 March 2016 | title= जीवाणु| url= https://basicbiology.net/micro/microorganisms/bacteria}}</ref> वे जैवसंश्लेषण के लिए तन्तु में कोशिकाओं को नाइट्रोजन प्रदान करने के लिए [[एंजाइम]] [[नाइट्रोजनेस]] का उपयोग करके हवा में डाइनाइट्रोजन (N<sub>2</sub>) से [[नाइट्रोजन]] को स्थिर करते हैं।<ref>{{cite book|last=Wolk|first=C.P. |author2=Ernst, A. |author3=Elhai, J.|title=हेटेरोसिस्ट चयापचय और विकास|journal=The Molecular Biology of Cyanobacteria|year=1994|pages=769–823|doi=10.1007/978-94-011-0227-8_27 |isbn=978-0-7923-3273-2 }}</ref>  


* तीन अतिरिक्त कोशिका भित्ती का निर्माण करता है, जिसमें एक [[ ग्लाइकोलिपिड्स ]] भी शामिल है जो ऑक्सीजन के लिए हाइड्रोफोबिक अवरोध बनाता है
नाइट्रोजनेज़ को ऑक्सीजन द्वारा निष्क्रिय किया जाता है, इसलिए हेटरोसिस्ट को एक माइक्रोएनेरोबिक वातावरण बनाना चाहिए। हेटेरोसिस्ट्स की विशिष्ट संरचना और [[शरीर क्रिया विज्ञान]] को जीन अभिव्यक्ति में वैश्विक परिवर्तन की आवश्यकता है। उदाहरण के लिए हेटेरोसिस्ट,
* नाइट्रोजन स्थिरीकरण में शामिल नाइट्रोजनेज़ और अन्य प्रोटीन का उत्पादन करें
 
* डीग्रेड [[ photosystem ]] II, जो ऑक्सीजन पैदा करता है
* तीन अतिरिक्त [[कोशिका भित्तियाँ]] बनाते हैं, , जिसमें एक [[ ग्लाइकोलिपिड्स |ग्लाइकोलिपिड्स]] भी सम्मिलित है जो ऑक्सीजन के लिए हाइड्रोफोबिक अवरोध उत्पन्न करता है
* [[ग्लाइकोलाइसिस]] एंजाइमों को अप-रेगुलेट करें
* नाइट्रोजन स्थिरीकरण में सम्मिलित नाइट्रोजनेज़ और अन्य प्रोटीन का उत्पादन करते हैं
* प्रोटीन का उत्पादन करता है जो किसी भी शेष ऑक्सीजन को मैला करता है
* [[ photosystem | प्रकाशतंत्र]] II को नष्ट करें, जो ऑक्सीजन उत्पादन करता है
* [[ सायनोफाइसिन ]] से बने ध्रुवीय प्लग होते हैं जो सेल-टू-सेल प्रसार को धीमा कर देते हैं
* [[ग्लाइकोलाइसिस|ग्लाइकोलाइटिक]] एंजाइमों को विनियमित करता है
* प्रोटीन का उत्पादन करें जो किसी भी शेष ऑक्सीजन को नष्ट कर देता है
* इसमें[[ सायनोफाइसिन | सायनोफाइसिन]] से बने ध्रुवीय प्लग होते हैं जो कोशिका-से-कोशिका प्रसार को धीमा कर देते हैं


साइनोबैक्टीरिया आमतौर पर [[प्रकाश संश्लेषण]] द्वारा एक निश्चित कार्बन ([[कार्बोहाइड्रेट]]) प्राप्त करते हैं। [[[[फोटोसिस्टम आई]]I]] में पानी के बंटवारे की कमी हेट्रोसिस्ट को प्रकाश संश्लेषण करने से रोकती है, इसलिए वनस्पति कोशिकाएं उन्हें कार्बोहाइड्रेट प्रदान करती हैं, जिसे [[सुक्रोज]] माना जाता है। फिलामेंट में कोशिकाओं के बीच चैनलों के माध्यम से निश्चित कार्बन और नाइट्रोजन स्रोतों का आदान-प्रदान किया जाता है। Heterocysts फोटोसिस्टम I को बनाए रखते हैं, जिससे उन्हें [[ Photophosphorylation ]] द्वारा [[एडेनोसाइन ट्रायफ़ोस्फेट]] उत्पन्न करने की अनुमति मिलती है।
साइनोबैक्टीरिया आमतौर पर [[प्रकाश संश्लेषण]] द्वारा एक निश्चित कार्बन ([[कार्बोहाइड्रेट]]) प्राप्त करते हैं। [[[[फोटोसिस्टम आई]]I]] में पानी के बंटवारे की कमी हेट्रोसिस्ट को प्रकाश संश्लेषण करने से रोकती है, इसलिए वनस्पति कोशिकाएं उन्हें कार्बोहाइड्रेट प्रदान करती हैं, जिसे [[सुक्रोज]] माना जाता है। फिलामेंट में कोशिकाओं के बीच चैनलों के माध्यम से निश्चित कार्बन और नाइट्रोजन स्रोतों का आदान-प्रदान किया जाता है। Heterocysts फोटोसिस्टम I को बनाए रखते हैं, जिससे उन्हें [[ Photophosphorylation ]] द्वारा [[एडेनोसाइन ट्रायफ़ोस्फेट]] उत्पन्न करने की अनुमति मिलती है।
Line 13: Line 15:


== जीन एक्सप्रेशन ==
== जीन एक्सप्रेशन ==
[[File:Anabæna inæqualis.jpg|thumb|upright=0.7| {{center|Illustration of ''[[Anabaena|Anabaena inaequalis]]'', where heterocysts are labeled with letter ''h''}}]]कम नाइट्रोजन वाले वातावरण में, [[ ट्रांसक्रिप्शनल विनियमन ]] NtcA द्वारा हेटेरोसिस्ट सेल्युलर भेदभाव को ट्रिगर किया जाता है। NtcA हेट्रोसिस्ट भेदभाव की प्रक्रिया में शामिल प्रोटीनों को संकेत देकर हेटरोसिस्ट भेदभाव को प्रभावित करता है। उदाहरण के लिए, NtcA HetR सहित कई जीनों की जीन अभिव्यक्ति को नियंत्रित करता है जो कि हेट्रोसिस्ट भेदभाव के लिए महत्वपूर्ण है।<ref>{{cite journal|last1=Herrero|first1=Antonia|last2=Muro-Pastor|first2=Alicia M.|last3=Flores|first3=Enrique|title=सायनोबैक्टीरिया में नाइट्रोजन नियंत्रण|journal=Journal of Bacteriology|date=15 January 2001|volume=183|issue=2|pages=411–425|doi=10.1128/JB.183.2.411-425.2001|language=en|issn=0021-9193|pmc=94895|pmid=11133933}}</ref> यह महत्वपूर्ण है क्योंकि यह अन्य जीनों जैसे कि hetR, patS, hepA को उनके [[प्रमोटर (आनुवांशिकी)]] से जोड़कर और इस प्रकार [[प्रतिलेखन कारक]] के रूप में कार्य करता है। यह भी ध्यान देने योग्य है कि ntcA, और HetR की जीन अभिव्यक्ति एक दूसरे पर निर्भर हैं और उनकी उपस्थिति नाइट्रोजन की उपस्थिति में भी विषमलैंगिक भेदभाव को बढ़ावा देती है। यह भी हाल ही में पाया गया है कि अन्य जीन जैसे कि PatA, hetP विषमपुटी विभेदन नियंत्रित करते हैं।<ref>{{cite journal|last1=Higa|first1=Kelly C.|last2=Callahan|first2=Sean M.|title=Ectopic expression of hetP can partially bypass the need for hetR in heterocyst differentiation by Anabaena sp. strain PCC 7120|journal=Molecular Microbiology|date=1 August 2010|volume=77|issue=3|pages=562–574|doi=10.1111/j.1365-2958.2010.07257.x|pmid=20545862|language=en|issn=1365-2958|doi-access=free}}</ref> पेटा फिलामेंट्स के साथ हेटरोसिस्ट्स को पैटर्न करता है, और यह [[कोशिका विभाजन]] के लिए भी महत्वपूर्ण है। जब अलग-अलग कोशिकाओं का एक समूह एक प्रो-हेटरोसिस्ट (अपरिपक्व हेटेरोसिस्ट) बनाने के लिए एक साथ आता है, तो पैट्स हेट्रोसिस्ट पैटर्निंग को प्रभावित करता है।<ref>{{cite journal|last1=Orozco|first1=Christine C.|last2=Risser|first2=Douglas D.|last3=Callahan|first3=Sean M.|title=Epistasis Analysis of Four Genes from Anabaena sp. Strain PCC 7120 Suggests a Connection between PatA and PatS in Heterocyst Pattern Formation|journal=Journal of Bacteriology|date=2006|volume=188|issue=5|pages=1808–1816|doi=10.1128/JB.188.5.1808-1816.2006|issn=0021-9193|pmc=1426565|pmid=16484191}}</ref> हेटेरोसिस्ट रखरखाव हेटन नामक एंजाइम पर निर्भर है। [[अमोनियम]] या [[नाइट्रेट]] जैसे नाइट्रोजन स्थिरीकरण स्रोत की उपस्थिति से हेटेरोसिस्ट का गठन बाधित होता है।<ref name=":0">{{cite book|url=http://www.dbbe.fcen.uba.ar/contenido/objetos/फाइकोलॉजीLee.pdf|title=फाइकोलॉजी|last1=lee|first1=Robert Edward|access-date=9 October 2017}}</ref>
[[File:Anabæna inæqualis.jpg|thumb|upright=0.7| {{center|Illustration of ''[[Anabaena|Anabaena inaequalis]]'', where heterocysts are labeled with letter ''h''}}]]कम नाइट्रोजन वाले वातावरण में, [[ ट्रांसक्रिप्शनल विनियमन ]] NtcA द्वारा हेटेरोसिस्ट सेल्युलर भेदभाव को ट्रिगर किया जाता है। NtcA हेट्रोसिस्ट भेदभाव की प्रक्रिया में सम्मिलित प्रोटीनों को संकेत देकर हेटरोसिस्ट भेदभाव को प्रभावित करता है। उदाहरण के लिए, NtcA HetR सहित कई जीनों की जीन अभिव्यक्ति को नियंत्रित करता है जो कि हेट्रोसिस्ट भेदभाव के लिए महत्वपूर्ण है।<ref>{{cite journal|last1=Herrero|first1=Antonia|last2=Muro-Pastor|first2=Alicia M.|last3=Flores|first3=Enrique|title=सायनोबैक्टीरिया में नाइट्रोजन नियंत्रण|journal=Journal of Bacteriology|date=15 January 2001|volume=183|issue=2|pages=411–425|doi=10.1128/JB.183.2.411-425.2001|language=en|issn=0021-9193|pmc=94895|pmid=11133933}}</ref> यह महत्वपूर्ण है क्योंकि यह अन्य जीनों जैसे कि hetR, patS, hepA को उनके [[प्रमोटर (आनुवांशिकी)]] से जोड़कर और इस प्रकार [[प्रतिलेखन कारक]] के रूप में कार्य करता है। यह भी ध्यान देने योग्य है कि ntcA, और HetR की जीन अभिव्यक्ति एक दूसरे पर निर्भर हैं और उनकी उपस्थिति नाइट्रोजन की उपस्थिति में भी विषमलैंगिक भेदभाव को बढ़ावा देती है। यह भी हाल ही में पाया गया है कि अन्य जीन जैसे कि PatA, hetP विषमपुटी विभेदन नियंत्रित करते हैं।<ref>{{cite journal|last1=Higa|first1=Kelly C.|last2=Callahan|first2=Sean M.|title=Ectopic expression of hetP can partially bypass the need for hetR in heterocyst differentiation by Anabaena sp. strain PCC 7120|journal=Molecular Microbiology|date=1 August 2010|volume=77|issue=3|pages=562–574|doi=10.1111/j.1365-2958.2010.07257.x|pmid=20545862|language=en|issn=1365-2958|doi-access=free}}</ref> पेटा फिलामेंट्स के साथ हेटरोसिस्ट्स को पैटर्न करता है, और यह [[कोशिका विभाजन]] के लिए भी महत्वपूर्ण है। जब अलग-अलग कोशिकाओं का एक समूह एक प्रो-हेटरोसिस्ट (अपरिपक्व हेटेरोसिस्ट) बनाने के लिए एक साथ आता है, तो पैट्स हेट्रोसिस्ट पैटर्निंग को प्रभावित करता है।<ref>{{cite journal|last1=Orozco|first1=Christine C.|last2=Risser|first2=Douglas D.|last3=Callahan|first3=Sean M.|title=Epistasis Analysis of Four Genes from Anabaena sp. Strain PCC 7120 Suggests a Connection between PatA and PatS in Heterocyst Pattern Formation|journal=Journal of Bacteriology|date=2006|volume=188|issue=5|pages=1808–1816|doi=10.1128/JB.188.5.1808-1816.2006|issn=0021-9193|pmc=1426565|pmid=16484191}}</ref> हेटेरोसिस्ट रखरखाव हेटन नामक एंजाइम पर निर्भर है। [[अमोनियम]] या [[नाइट्रेट]] जैसे नाइट्रोजन स्थिरीकरण स्रोत की उपस्थिति से हेटेरोसिस्ट का गठन बाधित होता है।<ref name=":0">{{cite book|url=http://www.dbbe.fcen.uba.ar/contenido/objetos/फाइकोलॉजीLee.pdf|title=फाइकोलॉजी|last1=lee|first1=Robert Edward|access-date=9 October 2017}}</ref>




Line 38: Line 40:
=== अनाबीना-अज़ोला ===
=== अनाबीना-अज़ोला ===
[[अजोला]] पौधों के साथ अनाबीना [[ साइनोबैक्टीरीया ]] का एक उल्लेखनीय सहजीवन संबंध है। ऐनाबीना अजोला पौधों के तनों और पत्तियों के भीतर रहता है।<ref name=":02">{{Cite journal|last1=van Hove|first1=C.|last2=Lejeune|first2=A.|date=2002|title=The Azolla: Anabaena Symbiosis|journal=Biology and Environment: Proceedings of the Royal Irish Academy|volume=102B|issue=1|pages=23–26|doi=10.1353/bae.2002.0036|jstor=20500136|s2cid=245843704}}</ref> अजोला संयंत्र प्रकाश संश्लेषण से गुजरता है और हेट्रोसिस्ट कोशिकाओं में डिनिट्रोजेनस के लिए ऊर्जा स्रोत के रूप में उपयोग करने के लिए अनाबीना के लिए निश्चित [[कार्बन]] प्रदान करता है।<ref name=":02" />बदले में, हेटरोसिस्ट वानस्पतिक कोशिकाओं और अजोला संयंत्र को [[अमोनिया]] के रूप में निश्चित नाइट्रोजन प्रदान करने में सक्षम होते हैं जो दोनों जीवों के विकास का समर्थन करते हैं।<ref name=":02" /><ref name=":1">{{Cite journal|last1=Vaishampayan|first1=A.|last2=Sinha|first2=R. P.|last3=Häder|first3=D.-P.|last4=Dey|first4=T.|last5=Gupta|first5=A. K.|last6=Bhan|first6=U.|last7=Rao|first7=A. L.|date=2001|title=चावल की कृषि में सायनोबैक्टीरियल जैव उर्वरक|journal=Botanical Review|volume=67|issue=4|pages=453–516|jstor=4354403|doi=10.1007/bf02857893|s2cid=20058464}}</ref>
[[अजोला]] पौधों के साथ अनाबीना [[ साइनोबैक्टीरीया ]] का एक उल्लेखनीय सहजीवन संबंध है। ऐनाबीना अजोला पौधों के तनों और पत्तियों के भीतर रहता है।<ref name=":02">{{Cite journal|last1=van Hove|first1=C.|last2=Lejeune|first2=A.|date=2002|title=The Azolla: Anabaena Symbiosis|journal=Biology and Environment: Proceedings of the Royal Irish Academy|volume=102B|issue=1|pages=23–26|doi=10.1353/bae.2002.0036|jstor=20500136|s2cid=245843704}}</ref> अजोला संयंत्र प्रकाश संश्लेषण से गुजरता है और हेट्रोसिस्ट कोशिकाओं में डिनिट्रोजेनस के लिए ऊर्जा स्रोत के रूप में उपयोग करने के लिए अनाबीना के लिए निश्चित [[कार्बन]] प्रदान करता है।<ref name=":02" />बदले में, हेटरोसिस्ट वानस्पतिक कोशिकाओं और अजोला संयंत्र को [[अमोनिया]] के रूप में निश्चित नाइट्रोजन प्रदान करने में सक्षम होते हैं जो दोनों जीवों के विकास का समर्थन करते हैं।<ref name=":02" /><ref name=":1">{{Cite journal|last1=Vaishampayan|first1=A.|last2=Sinha|first2=R. P.|last3=Häder|first3=D.-P.|last4=Dey|first4=T.|last5=Gupta|first5=A. K.|last6=Bhan|first6=U.|last7=Rao|first7=A. L.|date=2001|title=चावल की कृषि में सायनोबैक्टीरियल जैव उर्वरक|journal=Botanical Review|volume=67|issue=4|pages=453–516|jstor=4354403|doi=10.1007/bf02857893|s2cid=20058464}}</ref>
इस सहजीवी संबंध का मानव द्वारा कृषि में शोषण किया जाता है। एशिया में ऐनाबीना प्रजाति वाले अजोला के पौधों का उपयोग [[जैव उर्वरक]] के रूप में किया जाता है जहां नाइट्रोजन सीमित होती है<ref name=":02" />साथ ही पशु चारा में।<ref name=":1" />अजोला-अनाबीना के विभिन्न उपभेद विभिन्न वातावरणों के लिए अनुकूल हैं और फसल उत्पादन में अंतर पैदा कर सकते हैं।<ref>{{Cite journal|last1=Bocchi|first1=Stefano|last2=Malgioglio|first2=Antonino|date=2010|title=उत्तरी इटली में एक समशीतोष्ण चावल क्षेत्र, पो घाटी में चावल के धान के खेतों के लिए अजोला-अनाबीना जैव उर्वरक के रूप में|journal=International Journal of Agronomy|language=en|volume=2010|pages=1–5|doi=10.1155/2010/152158|issn=1687-8159|url=https://air.unimi.it/bitstream/2434/149583/2/152158.pdf|doi-access=free}}</ref> बायोफर्टिलाइज़र के रूप में अजोला-अनाबीना के साथ उगाई जाने वाली [[चावल]] की फसलों में सायनोबैक्टीरिया के बिना फसलों की तुलना में बहुत अधिक मात्रा और गुणवत्ता में उत्पादन दिखाया गया है।<ref name=":1" /><ref>{{Cite journal|last1=Singh|first1=S.|last2=Prasad|first2=R.|last3=Singh|first3=B. V.|last4=Goyal|first4=S. K.|last5=Sharma|first5=S. N.|date=1990-06-01|title=हरी खाद, नीले-हरे शैवाल और नीम-केक-लेपित यूरिया का आर्द्रभूमि चावल पर प्रभाव (ओरिज़ा सैटिवा एल।)|journal=Biology and Fertility of Soils|language=en|volume=9|issue=3|pages=235–238|doi=10.1007/bf00336232|s2cid=38989291|issn=0178-2762}}</ref> अजोला-ऐनाबीना के पौधे चावल की फसल लगाने से पहले और बाद में उगाए जाते हैं।<ref name=":1" />जैसे-जैसे एजोला-अनाबीना पौधे बढ़ते हैं, वे अजोला पौधों और अनाबीना वनस्पति कोशिकाओं द्वारा प्रकाश संश्लेषण से नाइट्रोजनेज एंजाइम और कार्बनिक कार्बन की क्रियाओं के कारण निश्चित नाइट्रोजन जमा करते हैं।<ref name=":1" />जब अजोला-अनाबीना पौधे मर जाते हैं और सड़ जाते हैं, तो वे उच्च मात्रा में निश्चित नाइट्रोजन, [[फास्फोरस]], कार्बनिक कार्बन, और कई अन्य पोषक तत्वों को मिट्टी में छोड़ते हैं, जिससे चावल की फसलों के विकास के लिए एक समृद्ध वातावरण मिलता है।<ref name=":1" />
इस सहजीवी संबंध का मानव द्वारा कृषि में शोषण किया जाता है। एशिया में ऐनाबीना प्रजाति वाले अजोला के पौधों का उपयोग [[जैव उर्वरक]] के रूप में किया जाता है जहां नाइट्रोजन सीमित होती है<ref name=":02" />साथ ही पशु चारा में।<ref name=":1" />अजोला-अनाबीना के विभिन्न उपभेद विभिन्न वातावरणों के लिए अनुकूल हैं और फसल उत्पादन में अंतर उत्पादन कर सकते हैं।<ref>{{Cite journal|last1=Bocchi|first1=Stefano|last2=Malgioglio|first2=Antonino|date=2010|title=उत्तरी इटली में एक समशीतोष्ण चावल क्षेत्र, पो घाटी में चावल के धान के खेतों के लिए अजोला-अनाबीना जैव उर्वरक के रूप में|journal=International Journal of Agronomy|language=en|volume=2010|pages=1–5|doi=10.1155/2010/152158|issn=1687-8159|url=https://air.unimi.it/bitstream/2434/149583/2/152158.pdf|doi-access=free}}</ref> बायोफर्टिलाइज़र के रूप में अजोला-अनाबीना के साथ उगाई जाने वाली [[चावल]] की फसलों में सायनोबैक्टीरिया के बिना फसलों की तुलना में बहुत अधिक मात्रा और गुणवत्ता में उत्पादन दिखाया गया है।<ref name=":1" /><ref>{{Cite journal|last1=Singh|first1=S.|last2=Prasad|first2=R.|last3=Singh|first3=B. V.|last4=Goyal|first4=S. K.|last5=Sharma|first5=S. N.|date=1990-06-01|title=हरी खाद, नीले-हरे शैवाल और नीम-केक-लेपित यूरिया का आर्द्रभूमि चावल पर प्रभाव (ओरिज़ा सैटिवा एल।)|journal=Biology and Fertility of Soils|language=en|volume=9|issue=3|pages=235–238|doi=10.1007/bf00336232|s2cid=38989291|issn=0178-2762}}</ref> अजोला-ऐनाबीना के पौधे चावल की फसल लगाने से पहले और बाद में उगाए जाते हैं।<ref name=":1" />जैसे-जैसे एजोला-अनाबीना पौधे बढ़ते हैं, वे अजोला पौधों और अनाबीना वनस्पति कोशिकाओं द्वारा प्रकाश संश्लेषण से नाइट्रोजनेज एंजाइम और कार्बनिक कार्बन की क्रियाओं के कारण निश्चित नाइट्रोजन जमा करते हैं।<ref name=":1" />जब अजोला-अनाबीना पौधे मर जाते हैं और सड़ जाते हैं, तो वे उच्च मात्रा में निश्चित नाइट्रोजन, [[फास्फोरस]], कार्बनिक कार्बन, और कई अन्य पोषक तत्वों को मिट्टी में छोड़ते हैं, जिससे चावल की फसलों के विकास के लिए एक समृद्ध वातावरण मिलता है।<ref name=":1" />


पर्यावरण से [[प्रदूषक]]ों को हटाने की एक संभावित विधि के रूप में अनाबीना-अज़ोला संबंध का भी पता लगाया गया है, एक प्रक्रिया जिसे [[फाइटोरेमेडिएशन]] के रूप में जाना जाता है।<ref name=":2">{{Cite journal|last1=Bennicelli|first1=R.|last2=Stępniewska|first2=Z.|last3=Banach|first3=A.|last4=Szajnocha|first4=K.|last5=Ostrowski|first5=J.|date=2004-04-01|title=नगर निगम के अपशिष्ट जल से भारी धातुओं (Hg(II), Cr(III), Cr(VI)) को हटाने के लिए एजोला कैरोलिनियाना की क्षमता|journal=Chemosphere|volume=55|issue=1|pages=141–146|doi=10.1016/j.chemosphere.2003.11.015|pmid=14720557|bibcode=2004Chmsp..55..141B}}</ref> अनाबिना सपा। अजोला कैरोलिनियाना के साथ मिलकर [[यूरेनियम]] को हटाने में सफल दिखाया गया है, खनन के कारण एक जहरीले प्रदूषक, साथ ही भारी धातु [[पारा (तत्व)]] | पारा (II), [[क्रोमियम]] | क्रोमियम (III), और [[क्रोमियम (VI)]] से दूषित अपशिष्ट जल।<ref name=":2" /><ref>{{Cite journal|last1=Pan|first1=Changchun|last2=Hu|first2=Nan|last3=Ding|first3=Dexin|last4=Hu|first4=Jinsong|last5=Li|first5=Guangyue|last6=Wang|first6=Yongdong|date=2016-01-01|title=An experimental study on the synergistic effects between Azolla and Anabaena in removal of uranium from solutions by Azolla–anabaena symbiotic system|journal=Journal of Radioanalytical and Nuclear Chemistry|language=en|volume=307|issue=1|pages=385–394|doi=10.1007/s10967-015-4161-y|s2cid=82545272|issn=0236-5731|url=https://www.semanticscholar.org/paper/c377c2827b6e7e6c9d6dcdeb71018605ecc8fe67}}</ref>
पर्यावरण से [[प्रदूषक]]ों को हटाने की एक संभावित विधि के रूप में अनाबीना-अज़ोला संबंध का भी पता लगाया गया है, एक प्रक्रिया जिसे [[फाइटोरेमेडिएशन]] के रूप में जाना जाता है।<ref name=":2">{{Cite journal|last1=Bennicelli|first1=R.|last2=Stępniewska|first2=Z.|last3=Banach|first3=A.|last4=Szajnocha|first4=K.|last5=Ostrowski|first5=J.|date=2004-04-01|title=नगर निगम के अपशिष्ट जल से भारी धातुओं (Hg(II), Cr(III), Cr(VI)) को हटाने के लिए एजोला कैरोलिनियाना की क्षमता|journal=Chemosphere|volume=55|issue=1|pages=141–146|doi=10.1016/j.chemosphere.2003.11.015|pmid=14720557|bibcode=2004Chmsp..55..141B}}</ref> अनाबिना सपा। अजोला कैरोलिनियाना के साथ मिलकर [[यूरेनियम]] को हटाने में सफल दिखाया गया है, खनन के कारण एक जहरीले प्रदूषक, साथ ही भारी धातु [[पारा (तत्व)]] | पारा (II), [[क्रोमियम]] | क्रोमियम (III), और [[क्रोमियम (VI)]] से दूषित अपशिष्ट जल।<ref name=":2" /><ref>{{Cite journal|last1=Pan|first1=Changchun|last2=Hu|first2=Nan|last3=Ding|first3=Dexin|last4=Hu|first4=Jinsong|last5=Li|first5=Guangyue|last6=Wang|first6=Yongdong|date=2016-01-01|title=An experimental study on the synergistic effects between Azolla and Anabaena in removal of uranium from solutions by Azolla–anabaena symbiotic system|journal=Journal of Radioanalytical and Nuclear Chemistry|language=en|volume=307|issue=1|pages=385–394|doi=10.1007/s10967-015-4161-y|s2cid=82545272|issn=0236-5731|url=https://www.semanticscholar.org/paper/c377c2827b6e7e6c9d6dcdeb71018605ecc8fe67}}</ref>

Revision as of 21:08, 30 July 2023

Microphotographs of heterocystous cyanobacteria
A–F: Nostoc commune G–H: Nostoc calcicola
I–M: Tolypothrix distorta N–R: Scytonema hyalinum
Scale bar = 10 µm , hc, heterocyst, ak, akinete, hm, hormogonium, nd, necridia

हेटेरोसिस्ट्स या हेटेरोसाइट्स विशेष नाइट्रोजन स्थिरीकरण कोशिकाएं हैं जो नाइट्रोजन अप्राप्ति के दौरान कुछ तंतुमय साइनोबैक्टीरिया जैसे नोस्टॉक पंक्टिफॉर्म , सिलिंड्रोस्पर्मम स्टैग्नेल, और ऐनाबीना स्फेरिका द्वारा बनाई जाती हैं।[1] वे जैवसंश्लेषण के लिए तन्तु में कोशिकाओं को नाइट्रोजन प्रदान करने के लिए एंजाइम नाइट्रोजनेस का उपयोग करके हवा में डाइनाइट्रोजन (N2) से नाइट्रोजन को स्थिर करते हैं।[2]

नाइट्रोजनेज़ को ऑक्सीजन द्वारा निष्क्रिय किया जाता है, इसलिए हेटरोसिस्ट को एक माइक्रोएनेरोबिक वातावरण बनाना चाहिए। हेटेरोसिस्ट्स की विशिष्ट संरचना और शरीर क्रिया विज्ञान को जीन अभिव्यक्ति में वैश्विक परिवर्तन की आवश्यकता है। उदाहरण के लिए हेटेरोसिस्ट,

  • तीन अतिरिक्त कोशिका भित्तियाँ बनाते हैं, , जिसमें एक ग्लाइकोलिपिड्स भी सम्मिलित है जो ऑक्सीजन के लिए हाइड्रोफोबिक अवरोध उत्पन्न करता है
  • नाइट्रोजन स्थिरीकरण में सम्मिलित नाइट्रोजनेज़ और अन्य प्रोटीन का उत्पादन करते हैं
  • प्रकाशतंत्र II को नष्ट करें, जो ऑक्सीजन उत्पादन करता है
  • ग्लाइकोलाइटिक एंजाइमों को विनियमित करता है
  • प्रोटीन का उत्पादन करें जो किसी भी शेष ऑक्सीजन को नष्ट कर देता है
  • इसमें सायनोफाइसिन से बने ध्रुवीय प्लग होते हैं जो कोशिका-से-कोशिका प्रसार को धीमा कर देते हैं

साइनोबैक्टीरिया आमतौर पर प्रकाश संश्लेषण द्वारा एक निश्चित कार्बन (कार्बोहाइड्रेट) प्राप्त करते हैं। [[फोटोसिस्टम आईI]] में पानी के बंटवारे की कमी हेट्रोसिस्ट को प्रकाश संश्लेषण करने से रोकती है, इसलिए वनस्पति कोशिकाएं उन्हें कार्बोहाइड्रेट प्रदान करती हैं, जिसे सुक्रोज माना जाता है। फिलामेंट में कोशिकाओं के बीच चैनलों के माध्यम से निश्चित कार्बन और नाइट्रोजन स्रोतों का आदान-प्रदान किया जाता है। Heterocysts फोटोसिस्टम I को बनाए रखते हैं, जिससे उन्हें Photophosphorylation द्वारा एडेनोसाइन ट्रायफ़ोस्फेट उत्पन्न करने की अनुमति मिलती है।

फिलामेंट के साथ एक आयामी पैटर्न का निर्माण करते हुए, प्रत्येक 9-15 कोशिकाओं के बारे में एकल हेटेरोसिस्ट विकसित होते हैं। भले ही फिलामेंट में कोशिकाएं विभाजित हो रही हों, हेटरोसिस्ट के बीच का अंतराल लगभग स्थिर रहता है। बैक्टीरियल फिलामेंट को एक बहुकोशिकीय जीव के रूप में देखा जा सकता है जिसमें दो अलग-अलग अन्योन्याश्रित कोशिका प्रकार होते हैं। प्रोकैरियोट्स में ऐसा व्यवहार अत्यधिक असामान्य है और विकास में बहुकोशिकीय पैटर्निंग का पहला उदाहरण हो सकता है। एक बार विषमपुटी बनने के बाद यह वानस्पतिक कोशिका में वापस नहीं आ सकता है। कुछ हेट्रोसिस्ट-बनाने वाले बैक्टीरिया बीजाणु जैसी कोशिकाओं में अंतर कर सकते हैं जिन्हें अकिनेट्स या मोटिव सेल कहा जाता है जिन्हें हार्मोनिया कहा जाता है, जिससे वे सभी प्रोकैरियोट्स के सबसे फेनोटाइप बहुमुखी बन जाते हैं।

जीन एक्सप्रेशन

Illustration of Anabaena inaequalis, where heterocysts are labeled with letter h

कम नाइट्रोजन वाले वातावरण में, ट्रांसक्रिप्शनल विनियमन NtcA द्वारा हेटेरोसिस्ट सेल्युलर भेदभाव को ट्रिगर किया जाता है। NtcA हेट्रोसिस्ट भेदभाव की प्रक्रिया में सम्मिलित प्रोटीनों को संकेत देकर हेटरोसिस्ट भेदभाव को प्रभावित करता है। उदाहरण के लिए, NtcA HetR सहित कई जीनों की जीन अभिव्यक्ति को नियंत्रित करता है जो कि हेट्रोसिस्ट भेदभाव के लिए महत्वपूर्ण है।[3] यह महत्वपूर्ण है क्योंकि यह अन्य जीनों जैसे कि hetR, patS, hepA को उनके प्रमोटर (आनुवांशिकी) से जोड़कर और इस प्रकार प्रतिलेखन कारक के रूप में कार्य करता है। यह भी ध्यान देने योग्य है कि ntcA, और HetR की जीन अभिव्यक्ति एक दूसरे पर निर्भर हैं और उनकी उपस्थिति नाइट्रोजन की उपस्थिति में भी विषमलैंगिक भेदभाव को बढ़ावा देती है। यह भी हाल ही में पाया गया है कि अन्य जीन जैसे कि PatA, hetP विषमपुटी विभेदन नियंत्रित करते हैं।[4] पेटा फिलामेंट्स के साथ हेटरोसिस्ट्स को पैटर्न करता है, और यह कोशिका विभाजन के लिए भी महत्वपूर्ण है। जब अलग-अलग कोशिकाओं का एक समूह एक प्रो-हेटरोसिस्ट (अपरिपक्व हेटेरोसिस्ट) बनाने के लिए एक साथ आता है, तो पैट्स हेट्रोसिस्ट पैटर्निंग को प्रभावित करता है।[5] हेटेरोसिस्ट रखरखाव हेटन नामक एंजाइम पर निर्भर है। अमोनियम या नाइट्रेट जैसे नाइट्रोजन स्थिरीकरण स्रोत की उपस्थिति से हेटेरोसिस्ट का गठन बाधित होता है।[6]


हेटेरोसिस्ट गठन

वनस्पति कोशिका से हेट्रोसिस्ट के निर्माण में निम्नलिखित क्रम होते हैं:

  • कोशिका का विस्तार होता है।
  • दानेदार समावेशन में कमी।
  • प्रकाश संश्लेषक लैमेल पुनर्विन्यास।
  • आखिरकार दीवार ट्रिपल-लेयर हो जाती है। ये तीन परतें कोशिका की बाहरी परत के बाहर विकसित होती हैं।
    • मध्य परत सजातीय है।
    • आंतरिक परत लैमिनेटेड है।
  • जीर्ण होनेवाला विषमपुटी रिक्तीकरण से गुजरता है और अंत में विखंडन के कारण फिलामेंट से अलग हो जाता है। इन अंशों को हार्मोनोगोनिया (एकवचन हार्मोनोगोनियम) कहा जाता है और अलैंगिक प्रजनन से गुजरता है।

सायनोबैक्टीरिया जो हेट्रोसिस्ट बनाते हैं, नोस्टोकेल्स और Stigonematales के क्रम में विभाजित होते हैं, जो क्रमशः सरल और शाखाओं वाले तंतुओं का निर्माण करते हैं। साथ में वे बहुत कम जीन पूल के साथ एक संघीय समूह बनाते हैं।

सहजीवी संबंध

फ़ाइल: चित्र2a.pdf|अंगूठा|अपराइट=1.9|

Division of labor in cyanobacteria

क्लोनल फिलामेंट्स के भीतर कुछ कोशिकाएं हेटरोसिस्ट (बड़ी, गोल कोशिका, दाएं) में अंतर करती हैं। ऑक्सीजन के प्रति संवेदनशील एंजाइम नाइट्रोजिनेज़ के साथ नाइट्रोजन को ठीक करने के लिए हेटरोसिस्ट ऑक्सीजन-उत्पादक प्रकाश संश्लेषण को छोड़ देते हैं। वनस्पति और विषम कोशिकाएं शर्करा और नाइट्रोजन का आदान-प्रदान करके श्रम को विभाजित करती हैं।

जीवाणु कुछ पौधों के साथ सहजीवन में भी प्रवेश कर सकते हैं। इस तरह के संबंध में, बैक्टीरिया नाइट्रोजन की उपलब्धता पर प्रतिक्रिया नहीं करते हैं, लेकिन हेट्रोसिस्ट भेदभाव के लिए पौधे द्वारा उत्पादित संकेतों पर प्रतिक्रिया करते हैं। 60% तक कोशिकाएं हेट्रोसिस्ट बन सकती हैं, जो निश्चित कार्बन के बदले पौधे को निश्चित नाइट्रोजन प्रदान करती हैं।[6]संयंत्र द्वारा उत्पादित संकेत, और हेटरोसिस्ट भेदभाव का चरण जो इसे प्रभावित करता है अज्ञात है। संभवतः, संयंत्र द्वारा उत्पन्न सहजीवी संकेत NtcA सक्रियण से पहले कार्य करता है क्योंकि सहजीवी विषमलैंगिक विभेदन के लिए hetR आवश्यक है। पौधे के साथ सहजीवी संबंध के लिए, एनटीसीए की आवश्यकता होती है क्योंकि उत्परिवर्तित एनटीसीए वाले बैक्टीरिया पौधों को संक्रमित नहीं कर सकते हैं।[7]


अनाबीना-अज़ोला

अजोला पौधों के साथ अनाबीना साइनोबैक्टीरीया का एक उल्लेखनीय सहजीवन संबंध है। ऐनाबीना अजोला पौधों के तनों और पत्तियों के भीतर रहता है।[8] अजोला संयंत्र प्रकाश संश्लेषण से गुजरता है और हेट्रोसिस्ट कोशिकाओं में डिनिट्रोजेनस के लिए ऊर्जा स्रोत के रूप में उपयोग करने के लिए अनाबीना के लिए निश्चित कार्बन प्रदान करता है।[8]बदले में, हेटरोसिस्ट वानस्पतिक कोशिकाओं और अजोला संयंत्र को अमोनिया के रूप में निश्चित नाइट्रोजन प्रदान करने में सक्षम होते हैं जो दोनों जीवों के विकास का समर्थन करते हैं।[8][9] इस सहजीवी संबंध का मानव द्वारा कृषि में शोषण किया जाता है। एशिया में ऐनाबीना प्रजाति वाले अजोला के पौधों का उपयोग जैव उर्वरक के रूप में किया जाता है जहां नाइट्रोजन सीमित होती है[8]साथ ही पशु चारा में।[9]अजोला-अनाबीना के विभिन्न उपभेद विभिन्न वातावरणों के लिए अनुकूल हैं और फसल उत्पादन में अंतर उत्पादन कर सकते हैं।[10] बायोफर्टिलाइज़र के रूप में अजोला-अनाबीना के साथ उगाई जाने वाली चावल की फसलों में सायनोबैक्टीरिया के बिना फसलों की तुलना में बहुत अधिक मात्रा और गुणवत्ता में उत्पादन दिखाया गया है।[9][11] अजोला-ऐनाबीना के पौधे चावल की फसल लगाने से पहले और बाद में उगाए जाते हैं।[9]जैसे-जैसे एजोला-अनाबीना पौधे बढ़ते हैं, वे अजोला पौधों और अनाबीना वनस्पति कोशिकाओं द्वारा प्रकाश संश्लेषण से नाइट्रोजनेज एंजाइम और कार्बनिक कार्बन की क्रियाओं के कारण निश्चित नाइट्रोजन जमा करते हैं।[9]जब अजोला-अनाबीना पौधे मर जाते हैं और सड़ जाते हैं, तो वे उच्च मात्रा में निश्चित नाइट्रोजन, फास्फोरस, कार्बनिक कार्बन, और कई अन्य पोषक तत्वों को मिट्टी में छोड़ते हैं, जिससे चावल की फसलों के विकास के लिए एक समृद्ध वातावरण मिलता है।[9]

पर्यावरण से प्रदूषकों को हटाने की एक संभावित विधि के रूप में अनाबीना-अज़ोला संबंध का भी पता लगाया गया है, एक प्रक्रिया जिसे फाइटोरेमेडिएशन के रूप में जाना जाता है।[12] अनाबिना सपा। अजोला कैरोलिनियाना के साथ मिलकर यूरेनियम को हटाने में सफल दिखाया गया है, खनन के कारण एक जहरीले प्रदूषक, साथ ही भारी धातु पारा (तत्व) | पारा (II), क्रोमियम | क्रोमियम (III), और क्रोमियम (VI) से दूषित अपशिष्ट जल।[12][13] <गैलरी मोड = पैक्ड स्टाइल = फ्लोट: लेफ्ट हाइट्स = 170 पीएक्स> File:Azolla caroliniana0.jpg| अजोला कैरोलिनियाना का पौधा File:Anabaena circinalis.jpg| अनाबिना सर्किनालिस फिलामेंट File:Simplefilaments022 Cylindrospermum.jpg| सिलिंड्रोस्पर्मम फिलामेंट </गैलरी>

संदर्भ

  1. Basic Biology (18 March 2016). "जीवाणु".
  2. Wolk, C.P.; Ernst, A.; Elhai, J. (1994). हेटेरोसिस्ट चयापचय और विकास. pp. 769–823. doi:10.1007/978-94-011-0227-8_27. ISBN 978-0-7923-3273-2. {{cite book}}: |journal= ignored (help)
  3. Herrero, Antonia; Muro-Pastor, Alicia M.; Flores, Enrique (15 January 2001). "सायनोबैक्टीरिया में नाइट्रोजन नियंत्रण". Journal of Bacteriology (in English). 183 (2): 411–425. doi:10.1128/JB.183.2.411-425.2001. ISSN 0021-9193. PMC 94895. PMID 11133933.
  4. Higa, Kelly C.; Callahan, Sean M. (1 August 2010). "Ectopic expression of hetP can partially bypass the need for hetR in heterocyst differentiation by Anabaena sp. strain PCC 7120". Molecular Microbiology (in English). 77 (3): 562–574. doi:10.1111/j.1365-2958.2010.07257.x. ISSN 1365-2958. PMID 20545862.
  5. Orozco, Christine C.; Risser, Douglas D.; Callahan, Sean M. (2006). "Epistasis Analysis of Four Genes from Anabaena sp. Strain PCC 7120 Suggests a Connection between PatA and PatS in Heterocyst Pattern Formation". Journal of Bacteriology. 188 (5): 1808–1816. doi:10.1128/JB.188.5.1808-1816.2006. ISSN 0021-9193. PMC 1426565. PMID 16484191.
  6. 6.0 6.1 lee, Robert Edward. फाइकोलॉजी (PDF). Retrieved 9 October 2017.
  7. Meeks, JC; Elhai, J (2002). "फ्री-लिविंग और प्लांट-एसोसिएटेड सिम्बायोटिक ग्रोथ स्टेट्स में फिलामेंटस साइनोबैक्टीरिया में सेलुलर भेदभाव का विनियमन". Microbiology and Molecular Biology Reviews (in English). 66 (1): 94–121, table of contents. doi:10.1128/MMBR.66.1.94-121.2002. PMC 120779. PMID 11875129.
  8. 8.0 8.1 8.2 8.3 van Hove, C.; Lejeune, A. (2002). "The Azolla: Anabaena Symbiosis". Biology and Environment: Proceedings of the Royal Irish Academy. 102B (1): 23–26. doi:10.1353/bae.2002.0036. JSTOR 20500136. S2CID 245843704.
  9. 9.0 9.1 9.2 9.3 9.4 9.5 Vaishampayan, A.; Sinha, R. P.; Häder, D.-P.; Dey, T.; Gupta, A. K.; Bhan, U.; Rao, A. L. (2001). "चावल की कृषि में सायनोबैक्टीरियल जैव उर्वरक". Botanical Review. 67 (4): 453–516. doi:10.1007/bf02857893. JSTOR 4354403. S2CID 20058464.
  10. Bocchi, Stefano; Malgioglio, Antonino (2010). "उत्तरी इटली में एक समशीतोष्ण चावल क्षेत्र, पो घाटी में चावल के धान के खेतों के लिए अजोला-अनाबीना जैव उर्वरक के रूप में" (PDF). International Journal of Agronomy (in English). 2010: 1–5. doi:10.1155/2010/152158. ISSN 1687-8159.
  11. Singh, S.; Prasad, R.; Singh, B. V.; Goyal, S. K.; Sharma, S. N. (1990-06-01). "हरी खाद, नीले-हरे शैवाल और नीम-केक-लेपित यूरिया का आर्द्रभूमि चावल पर प्रभाव (ओरिज़ा सैटिवा एल।)". Biology and Fertility of Soils (in English). 9 (3): 235–238. doi:10.1007/bf00336232. ISSN 0178-2762. S2CID 38989291.
  12. 12.0 12.1 Bennicelli, R.; Stępniewska, Z.; Banach, A.; Szajnocha, K.; Ostrowski, J. (2004-04-01). "नगर निगम के अपशिष्ट जल से भारी धातुओं (Hg(II), Cr(III), Cr(VI)) को हटाने के लिए एजोला कैरोलिनियाना की क्षमता". Chemosphere. 55 (1): 141–146. Bibcode:2004Chmsp..55..141B. doi:10.1016/j.chemosphere.2003.11.015. PMID 14720557.
  13. Pan, Changchun; Hu, Nan; Ding, Dexin; Hu, Jinsong; Li, Guangyue; Wang, Yongdong (2016-01-01). "An experimental study on the synergistic effects between Azolla and Anabaena in removal of uranium from solutions by Azolla–anabaena symbiotic system". Journal of Radioanalytical and Nuclear Chemistry (in English). 307 (1): 385–394. doi:10.1007/s10967-015-4161-y. ISSN 0236-5731. S2CID 82545272.