श्वार्ज़ियन व्युत्पन्न: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Nonlinear differential operator used to study conformal mappings}} | {{Short description|Nonlinear differential operator used to study conformal mappings}} | ||
गणित में, '''श्वार्ज़ियन व्युत्पन्न''' व्युत्पन्न के समान एक ऑपरेटर है जो मोबियस परिवर्तनों के | गणित में, '''श्वार्ज़ियन व्युत्पन्न''' व्युत्पन्न के समान एक ऑपरेटर है जो मोबियस परिवर्तनों के अधीन अपरिवर्तनीय है। इस प्रकार, यह [[जटिल प्रक्षेप्य रेखा|समष्टि प्रक्षेप्य रेखा]] के सिद्धांत में और विशेष रूप से, [[मॉड्यूलर रूप|मॉड्यूलर रूपों]] और [[हाइपरज्यामितीय कार्य|पराज्यमितीय फ़लनो]] के सिद्धांत में होता है। यह [[एकसमान कार्य|एकसमान फ़लनो]], [[अनुरूप मानचित्रण]] (फ़लन) और टीचमुलर रिक्त स्थान के सिद्धांत में एक महत्वपूर्ण भूमिका निभाता है। इसका नाम जर्मन गणितज्ञ [[हरमन ब्लैक|हरमन श्वार्ज़]] के नाम पर रखा गया है। | ||
==परिभाषा== | ==परिभाषा== | ||
[[जटिल चर|समष्टि चर]] z के [[होलोमोर्फिक फ़ंक्शन|होलोमार्फिक फलन]] | [[जटिल चर|समष्टि चर]] z के [[होलोमोर्फिक फ़ंक्शन|होलोमार्फिक फलन]] {{mvar|f}} के श्वार्ज़ियन व्युत्पन्न को परिभाषित किया गया है | ||
<math> | <math> | ||
Line 31: | Line 31: | ||
दो समष्टि चरों के फलन का परिचय<ref>{{harvnb|Schiffer|1966}}</ref> | दो समष्टि चरों के फलन का परिचय<ref>{{harvnb|Schiffer|1966}}</ref> | ||
:<math>F(z,w)= \log \left ( \frac{f(z)-f(w)}{z-w} \right ),</math> | :<math>F(z,w)= \log \left ( \frac{f(z)-f(w)}{z-w} \right ),</math> | ||
इसका दूसरा मिश्रित आंशिक | इसका दूसरा मिश्रित आंशिक व्युत्पन्न किसके द्वारा दिया गया है? | ||
:<math> \frac{\partial^2 F(z,w)}{\partial z \, \partial w} = {f^\prime(z)f^\prime(w)\over(f(z)-f(w))^2}-{1\over(z-w)^2},</math> | :<math> \frac{\partial^2 F(z,w)}{\partial z \, \partial w} = {f^\prime(z)f^\prime(w)\over(f(z)-f(w))^2}-{1\over(z-w)^2},</math> | ||
Line 40: | Line 40: | ||
:<math>(Sw)(v) = -\left(\frac{dw}{dv}\right)^2 (Sv)(w)</math> | :<math>(Sw)(v) = -\left(\frac{dw}{dv}\right)^2 (Sv)(w)</math> | ||
या अधिक स्पष्ट रूप से, <math>Sf + (f')^2 ((Sf^{-1})\circ f) = 0</math> | या अधिक स्पष्ट रूप से, <math>Sf + (f')^2 ((Sf^{-1})\circ f) = 0</math> है। यह उपरोक्त श्रृंखला नियम का अनुसरण करता है। | ||
=== ज्यामितीय व्याख्या === | === ज्यामितीय व्याख्या === | ||
[[विलियम थर्स्टन]] ने श्वार्ज़ियन व्युत्पन्न की व्याख्या इस माप के रूप में की है कि एक अनुरूप मानचित्र मोबियस परिवर्तन से कितना विचलित होता है।<ref name=":0" /> मान लीजिए <math>f</math> के निकट में एक अनुरूप मानचित्रण हो <math>z_0\in \mathbb C</math>. फिर एक अद्वितीय मोबियस परिवर्तन उपस्थित है <math>M</math> ऐसा है कि <math>M, f</math> पर समान 0, 1, 2-वें क्रम के व्युत्पन्न हैं <math>z_0</math>. | [[विलियम थर्स्टन]] ने श्वार्ज़ियन व्युत्पन्न की व्याख्या इस माप के रूप में की है कि एक अनुरूप मानचित्र मोबियस परिवर्तन से कितना विचलित होता है।<ref name=":0" /> मान लीजिए <math>f</math> के निकट में एक अनुरूप मानचित्रण हो <math>z_0\in \mathbb C</math>. फिर एक अद्वितीय मोबियस परिवर्तन उपस्थित है <math>M</math> ऐसा है कि <math>M, f</math> पर समान 0, 1, 2-वें क्रम के व्युत्पन्न हैं <math>z_0</math>. | ||
अब <math>(M^{-1} \circ f)(z-z_0) = z_0 + (z-z_0) + \frac 16 a(z-z_0)^3 + \cdots</math>. स्पष्ट रूप से हल करने के लिए <math>a</math>, यह स्थिति को | अब <math>(M^{-1} \circ f)(z-z_0) = z_0 + (z-z_0) + \frac 16 a(z-z_0)^3 + \cdots</math>. स्पष्ट रूप से हल करने के लिए <math>a</math>, यह स्थिति को समाधान के लिए पर्याप्त है <math>z_0 = 0</math>. मान लीजिए <math>M^{-1}(z) = \frac{Az+B}{Cz + 1}</math>, और के लिए हल करें <math>A, B, C</math> इससे पहले तीन गुणांक बनेंगे <math>M^{-1}\circ f</math> 0, 1, 0 के बराबर। इसे चौथे गुणांक में जोड़ने पर, प्राप्त होता है <math>a = (Sf)(z_0)</math>. | ||
समष्टि तल के अनुवाद, घूर्णन और स्केलिंग के बाद, हमारे पास है <math>(M^{-1} \circ f )(z) = z + z^3 + O(z^4)</math> शून्य के निकट में। फिर, तीसरे क्रम तक, यह फलन त्रिज्या के वृत्त को मैप करता है <math>r</math> द्वारा परिभाषित वक्र के लिए <math>(r\cos\theta + r^3 \cos 3\theta, r\sin\theta + r^3 \sin 3\theta)</math>, जहां <math>\theta \in [0, 2\pi]</math>। यह वक्र, चौथे क्रम तक, अर्धअक्षों वाला एक दीर्घवृत्त है <math>r+r^3, r-r^3</math>:<math display="block">\frac{(r\cos\theta + r^3 \cos 3\theta)^2}{(r+r^3)^2} + \frac{(r\sin\theta + r^3 \sin 3\theta)^2}{(r - r^3)^2} = 1 + 8r^4 \sin^2(2\theta) + O(r^6)</math>चूंकि मोबियस परिवर्तन सदैव वृत्तों को वृत्तों या रेखाओं में मैप करता है, दीर्घवृत्तीय-पन की मात्रा विचलन को <math>f</math> मोबियस परिवर्तन से मापती है। | समष्टि तल के अनुवाद, घूर्णन और स्केलिंग के बाद, हमारे पास है <math>(M^{-1} \circ f )(z) = z + z^3 + O(z^4)</math> शून्य के निकट में। फिर, तीसरे क्रम तक, यह फलन त्रिज्या के वृत्त को मैप करता है <math>r</math> द्वारा परिभाषित वक्र के लिए <math>(r\cos\theta + r^3 \cos 3\theta, r\sin\theta + r^3 \sin 3\theta)</math>, जहां <math>\theta \in [0, 2\pi]</math>। यह वक्र, चौथे क्रम तक, अर्धअक्षों वाला एक दीर्घवृत्त है <math>r+r^3, r-r^3</math>:<math display="block">\frac{(r\cos\theta + r^3 \cos 3\theta)^2}{(r+r^3)^2} + \frac{(r\sin\theta + r^3 \sin 3\theta)^2}{(r - r^3)^2} = 1 + 8r^4 \sin^2(2\theta) + O(r^6)</math>चूंकि मोबियस परिवर्तन सदैव वृत्तों को वृत्तों या रेखाओं में मैप करता है, दीर्घवृत्तीय-पन की मात्रा विचलन को <math>f</math> मोबियस परिवर्तन से मापती है। |
Revision as of 09:06, 28 July 2023
गणित में, श्वार्ज़ियन व्युत्पन्न व्युत्पन्न के समान एक ऑपरेटर है जो मोबियस परिवर्तनों के अधीन अपरिवर्तनीय है। इस प्रकार, यह समष्टि प्रक्षेप्य रेखा के सिद्धांत में और विशेष रूप से, मॉड्यूलर रूपों और पराज्यमितीय फ़लनो के सिद्धांत में होता है। यह एकसमान फ़लनो, अनुरूप मानचित्रण (फ़लन) और टीचमुलर रिक्त स्थान के सिद्धांत में एक महत्वपूर्ण भूमिका निभाता है। इसका नाम जर्मन गणितज्ञ हरमन श्वार्ज़ के नाम पर रखा गया है।
परिभाषा
समष्टि चर z के होलोमार्फिक फलन f के श्वार्ज़ियन व्युत्पन्न को परिभाषित किया गया है
वही सूत्र एक वास्तविक चर के C3 फलन के श्वार्ज़ियन व्युत्पन्न को भी परिभाषित करता है। वैकल्पिक संकेतन
अधिकांशतःप्रयोग किया जाता है।
गुण
किसी भी मोबियस परिवर्तन का श्वार्ज़ियन व्युत्पन्न
शून्य है। इसके विपरीत, मोबियस परिवर्तन इस गुण का एकमात्र फलन हैं। इस प्रकार, श्वार्ज़ियन व्युत्पन्न सटीक रूप से उस डिग्री को मापता है जिस तक कोई फलन मोबियस परिवर्तन होने में विफल रहता है।[1]
यदि g एक मोबियस परिवर्तन है, तो रचना g o f में f के समान श्वार्ज़ियन व्युत्पन्न है; और दूसरी ओर, f o g का श्वार्ज़ियन व्युत्पन्न श्रृंखला नियम द्वारा दिया गया है
अधिक सामान्यतः, किसी भी पर्याप्त रूप से भिन्न फलन f और g के लिए
जब f और g सुचारू वास्तविक-मूल्य वाले फलन होते हैं, तो इसका तात्पर्य है कि नकारात्मक (या सकारात्मक) श्वार्ज़ियन वाले फलन के सभी पुनरावृत्ति नकारात्मक (सम्मान सकारात्मक) रहेंगे, जो एक-आयामी गतिशील प्रणाली के अध्ययन में उपयोग का एक तथ्य है।[2]
दो समष्टि चरों के फलन का परिचय[3]
इसका दूसरा मिश्रित आंशिक व्युत्पन्न किसके द्वारा दिया गया है?
और श्वार्ज़ियन व्युत्पन्न सूत्र द्वारा दिया गया है:
श्वार्ज़ियन व्युत्पन्न में एक सरल व्युत्क्रम सूत्र है, जो आश्रित और स्वतंत्र चर का आदान-प्रदान करता है। किसी के पास
या अधिक स्पष्ट रूप से, है। यह उपरोक्त श्रृंखला नियम का अनुसरण करता है।
ज्यामितीय व्याख्या
विलियम थर्स्टन ने श्वार्ज़ियन व्युत्पन्न की व्याख्या इस माप के रूप में की है कि एक अनुरूप मानचित्र मोबियस परिवर्तन से कितना विचलित होता है।[1] मान लीजिए के निकट में एक अनुरूप मानचित्रण हो . फिर एक अद्वितीय मोबियस परिवर्तन उपस्थित है ऐसा है कि पर समान 0, 1, 2-वें क्रम के व्युत्पन्न हैं .
अब . स्पष्ट रूप से हल करने के लिए , यह स्थिति को समाधान के लिए पर्याप्त है . मान लीजिए , और के लिए हल करें इससे पहले तीन गुणांक बनेंगे 0, 1, 0 के बराबर। इसे चौथे गुणांक में जोड़ने पर, प्राप्त होता है .
समष्टि तल के अनुवाद, घूर्णन और स्केलिंग के बाद, हमारे पास है शून्य के निकट में। फिर, तीसरे क्रम तक, यह फलन त्रिज्या के वृत्त को मैप करता है द्वारा परिभाषित वक्र के लिए , जहां । यह वक्र, चौथे क्रम तक, अर्धअक्षों वाला एक दीर्घवृत्त है :
विभेदक समीकरण
श्वार्ज़ियन व्युत्पन्न का समष्टि तल में दूसरे क्रम के रैखिक साधारण अंतर समीकरण के साथ एक मौलिक संबंध है।[4] मान लीजिए और के दो रैखिक रूप से स्वतंत्र होलोमोर्फिक समाधान हों
फिर अनुपात संतुष्ट करता है
जिस डोमेन पर और परिभाषित हैं, और इसका विपरीत भी सत्य है: यदि ऐसा है g उपस्थित है, और यह एक सरल रूप से जुड़े डोमेन पर होलोमोर्फिक है, तो दो समाधान हैं और मिल सकते है, और इसके अलावा, ये एक सामान्य पैमाने के कारक तक अद्वितीय हैं।
जब एक रैखिक दूसरे क्रम के साधारण अंतर समीकरण को उपरोक्त रूप में लाया जा सकता है, तो परिणामी Q को कभी-कभी समीकरण का Q-मान कहा जाता है।
ध्यान दें कि गॉसियन हाइपरज्यामितीय विभेदक समीकरण को उपरोक्त रूप में लाया जा सकता है, और इस प्रकार हाइपरज्यामितीय समीकरण के समाधान के जोड़े इस तरह से संबंधित हैं।
असमानता के लिए शर्तें
यदि यूनिट डिस्क, D पर f एक होलोमोर्फिक फलन है, तो डब्ल्यू. क्रॉस (1932) और ज़ीव नेहारी (1949) ने सिद्ध किया कि f के लिए एक आवश्यक शर्त है कि वह एकसंयोजक हो। [5]
इसके विपरीत यदि f(z), D पर एक होलोमोर्फिक फलन है तो यह संतोषजनक है
तब नेहारी ने सिद्ध किया कि f एकसंयोजक है।[6]
विशेष रूप से एकरूपता के लिए पर्याप्त शर्त है[7]
वृत्ताकार चाप बहुभुजों का अनुरूप मानचित्रण
श्वार्ज़ियन व्युत्पन्न और संबंधित दूसरे क्रम के साधारण अंतर समीकरण का उपयोग ऊपरी आधे-तल या इकाई चक्र और समष्टि तल में किसी भी घिरे बहुभुज के बीच रीमैन मैपिंग को निर्धारित करने के लिए किया जा सकता है, जिसके किनारे गोलाकार चाप या सीधी रेखाएं हैं। सीधे किनारों वाले बहुभुजों के लिए, यह श्वार्ज़-क्रिस्टोफेल मानचित्रण को कम कर देता है, जिसे श्वार्ज़ियन व्युत्पन्न का उपयोग किए बिना सीधे प्राप्त किया जा सकता है। एकीकरण के स्थिरांक के रूप में उत्पन्न होने वाले सहायक पैरामीटर दूसरे क्रम के अंतर समीकरण के अभिलाक्षणिक मान से संबंधित हैं। पहले से ही 1890 में फ़ेलिक्स क्लेन ने लैमे फलन और लैमे अंतर समीकरण के संदर्भ में चतुर्भुजों की स्थितियों का अध्ययन किया था।[8][9][10]
मान लीजिए Δ एक गोलाकार चाप बहुभुज है जिसके कोण πα1, ..., παn दक्षिणावर्त क्रम में हैं। मान लीजिए f : H → Δ एक होलोमोर्फिक मानचित्र है जो सीमाओं के बीच के मानचित्र तक लगातार फैला हुआ है। मान लीजिए कि शीर्ष वास्तविक अक्ष पर बिंदु a1, ..., an के अनुरूप हैं। तब p(x) = S(f)(x), x वास्तविक के लिए वास्तविक-मूल्यवान है, न कि किसी एक बिंदु के लिए। श्वार्ज प्रतिबिंब सिद्धांत द्वारा p(x), ai पर दोहरे ध्रुव के साथ समष्टि तल पर एक तर्कसंगत फलन तक विस्तारित होता है:
वास्तविक संख्या βi को सहायक पैरामीटर कहा जाता है। वे तीन रैखिक बाधाओं के अधीन हैं:
जो के गुणांकों के लुप्त होने के अनुरूप है और के विस्तार में p(z) आस-पास z = ∞. मानचित्रण f(z) को फिर इस प्रकार लिखा जा सकता है
जहां और रैखिक दूसरे क्रम के साधारण अंतर समीकरण के रैखिक रूप से स्वतंत्र होलोमोर्फिक समाधान हैं
वहाँ हैं n−3 रैखिक रूप से स्वतंत्र सहायक पैरामीटर, जिन्हें व्यवहार में निर्धारित करना कठिन हो सकता है।
एक त्रिभुज के लिए, कब n = 3, कोई सहायक पैरामीटर नहीं हैं। साधारण अंतर समीकरण हाइपरज्यामितीय अंतर समीकरण के बराबर है और f(z) श्वार्ज़ त्रिकोण फलन है, जिसे हाइपरजियोमेट्रिक फलन के संदर्भ में लिखा जा सकता है।
एक चतुर्भुज के लिए सहायक पैरामीटर एक स्वतंत्र चर λ पर निर्भर करते हैं। q(z) के उपयुक्त विकल्प के लिए U(z) = q(z)u(z) लिखने पर साधारण अंतर समीकरण का रूप ले लेता है
इस प्रकार अंतराल पर स्टर्म-लिउविल समीकरण के अभिलाक्षणिक फलन हैं . स्टर्म पृथक्करण प्रमेय के अनुसार, विलुप्त न होना , λ को न्यूनतम अभिलाक्षणिक मान होने के लिए बाध्य करता है।
टेइचमुलर स्थान पर समष्टि संरचना
यूनिवर्सल टेइचमुलर स्थान को यूनिट डिस्क D, या समकक्ष ऊपरी आधा तल H, के वास्तविक विश्लेषणात्मक क्वासिकोनफॉर्मल मैपिंग के स्थान के रूप में परिभाषित किया गया है, जिसमें दो मैपिंग को समतुल्य माना जाता है यदि सीमा पर एक मोबियस परिवर्तन के साथ संरचना द्वारा दूसरे से प्राप्त किया जाता है। रीमैन क्षेत्र के निचले गोलार्ध के साथ D की पहचान करते हुए, निचले गोलार्ध का कोई भी अर्ध-अनुरूप स्व-मानचित्र स्वाभाविक रूप से ऊपरी गोलार्ध के अनुरूप मानचित्रण से मेल खाता है स्वयं पर। वास्तव में को बेल्ट्रामी अंतर समीकरण के समाधान के ऊपरी गोलार्ध के प्रतिबंध के रूप में निर्धारित किया जाता है
जहां μ द्वारा परिभाषित परिबद्ध मापनीय फलन है
निचले गोलार्ध पर, ऊपरी गोलार्ध पर 0 तक विस्तारित है।
ऊपरी गोलार्ध की पहचान के साथ D, लिपमैन बेर्स ने बेर्स एम्बेडिंग को परिभाषित करने के लिए श्वार्ज़ियन व्युत्पन्न का उपयोग किया
जो सार्वभौमिक टेइचमुलर स्थान को एकसमान मानदंड के साथ D पर बंधे होलोमोर्फिक फलन g के स्थान के एक विवृत उपसमुच्चय U को एम्बेड करता है। फ्रेडरिक गेहरिंग ने 1977 में दिखाया कि U एकसमान फलनों के श्वार्ज़ियन व्युत्पन्नों के संवृत उपसमुच्चय का आंतरिक भाग है।[11][12][13]
1 से अधिक जीनस की एक कॉम्पैक्ट रीमैन सतह S 1 के लिए, इसका सार्वभौमिक आवरण स्थान इकाई डिस्क है D है जिस पर इसका मूल समूह Γ मोबियस परिवर्तनों द्वारा कार्य करता है। S के टेइचमुलर स्थान को Γ के तहत सार्वभौमिक टेइचमुलर स्थान अपरिवर्तनीय के उप-स्थान से पहचाना जा सकता है। होलोमोर्फिक फलन g में वह गुण होता है
Γ के अंतर्गत अपरिवर्तनीय है, इसलिए S पर द्विघात अंतर निर्धारित करें। इस तरह, S के टेइचमुलर स्थान को एस पर द्विघात अंतर के परिमित-आयामी समष्टि सदिश स्थान के एक विवृत उप-स्थान के रूप में ज्ञात किया जाता है।
वृत्त का द्विरूपता समूह
क्रॉस्ड समरूपताएँ
परिवर्तन संपत्ति
श्वार्ज़ियन व्युत्पन्न को वृत्तपर डिग्री 2 के घनत्व के मॉड्यूल में गुणांक के साथ वृत्त के होलोमोर्फिक समूह के निरंतर 1-सहचक्र या पार होलोमोर्फिक के रूप में व्याख्या करने की अनुमति देता है।[14]
मान लीजिए Fλ(S1)डिग्री के टेंसर घनत्व का स्थान हो λ पर S1. अभिविन्यास-संरक्षण भिन्नताओं का समूह S1, Diff(S1), पर कार्य करता है Fλ(S1) पुशफॉरवर्ड (अंतर) के माध्यम से। यदिf का एक तत्व है Diff(S1) फिर मैपिंग पर विचार करें
समूह सहसंरचना की भाषा में ऊपर दिया गया चेन-जैसा नियम कहता है कि यह मैपिंग F2(S1) में गुणांक के साथ Diff(S1) पर 1-सहचक्र पर है।
और 1-सहचक्र सहसंयोजी उत्पन्न करता है f → S(f−1). 1-कोहोमोलॉजी की गणना अधिक सामान्य परिणाम का एक विशेष स्थिति है
ध्यान दें कि यदि G एक समूह है और M ए G-मॉड्यूल, फिर एक क्रॉस्ड समरूपताएँ को परिभाषित करने वाली पहचान c का G में M को समूहों के मानक होलोमोर्फिक के संदर्भ में व्यक्त किया जा सकता है: यह एक होलोमोर्फिक में इनकोडिंग किया गया है 𝜙 का G अर्धप्रत्यक्ष उत्पाद में ऐसी है कि की रचना 𝜙 प्रक्षेपण के साथ पर G पहचान मानचित्र है; पत्राचार मानचित्र द्वारा होता है C(g) = (c(g), g). क्रॉस्ड समरूपताएँ एक सदिश स्थान बनाते हैं और इसमें उप-स्थान के रूप में सहसीमा क्रॉस्ड समरूपताएँ सम्मलित होते हैं b(g) = g ⋅ m − m के लिए m में M. एक साधारण औसत तर्क यह दर्शाता है कि, यदि K एक सघन समूह है और V एक टोपोलॉजिकल सदिश स्थान जिस पर K लगातार कार्य करता है, तो उच्च कोहोलॉजी समूह गायब हो जाते हैं Hm(K, V) = (0) के लिए m > 0. विशेष रूप से 1-सहचक्र के लिए χ साथ
औसत से अधिक y, हार माप के बाएँ अपरिवर्तनीय का उपयोग करते हुए K देता है
साथ
इस प्रकार औसत से यह माना जा सकता है कि c, Rot(S1) में x के लिए सामान्यीकरण स्थिति c(x) = 0 को संतुष्ट करता है। ध्यान दें कि यदि G में कोई तत्व x,में c(x) = 0 को संतुष्ट करता है तो C(x) = (0,x)। लेकिन फिर, चूँकि C एक होलोमोर्फिक है, C(xgx−1) = C(x)C(g)C(x)−1, जिससे कि c समतुल्य स्थिति c(xgx−1) = x ⋅ c(g) को संतुष्ट करे। इस प्रकार यह माना जा सकता है कि सहचक्र इन सामान्यीकरण शर्तों को पूरा करता है Rot(S1). श्वार्ज़ियन व्युत्पन्न वास्तव में जब भी गायब हो जाता है x एक मोबियस परिवर्तन के अनुरूप है SU(1,1). नीचे चर्चा की गई अन्य दो 1-चक्र केवल विलुप्त हो जाते हैं Rot(S1) (λ = 0, 1).
इस परिणाम का एक अत्यंत छोटा संस्करण है जो 1-सहचक्र देता है Vect(S1), चिकने सदिश क्षेत्रों का बीजगणित, और इसलिए विट बीजगणित के लिए, त्रिकोणमितीय बहुपद सदिश क्षेत्रों का उप बीजगणित हैं। दरअसल, जब G एक लाई समूह और की कार्रवाई है G पर M सुचारू है, लाई बीजगणित (पहचान पर होलोमोर्फिक के व्युत्पन्न) के संगत होलोमोर्फिक को ले कर प्राप्त किए गए पार होलोमोर्फिक का एक लाई बीजगणितीय संस्करण है। यह भी समझ आता है Diff(S1) और 1-सहचक्र की ओर ले जाता है
जो पहचान को संतुष्ट करता है
ली बीजगणित स्थिति में, सह-सीमा मानचित्रों का रूप होता है b(X) = X ⋅ m के लिए m में M. दोनों ही स्थितियों में 1-कोहोमोलॉजी को क्रॉस्ड समरूपताएँ मॉड्यूलो सहसीमा के स्थान के रूप में परिभाषित किया गया है। समूह होलोमोर्फिक और लाई बीजगणित होलोमोर्फिक के बीच प्राकृतिक पत्राचार वैन एस्ट समावेशन मानचित्र की ओर ले जाता है
इस तरह से गणना को लाई बीजगणित सहसंरचना तक कम किया जा सकता है। निरंतरता से यह क्रॉस समरूपताएँ की गणना को कम कर देता है 𝜙 विट बीजगणित में Fλ(S1). समूह पार होलोमोर्फिकपर सामान्यीकरण की स्थिति निम्नलिखित अतिरिक्त शर्तों को दर्शाती है 𝜙:
के लिए x में Rot(S1).
की परिपाटी का पालन कर रहे हैं केएसी & रैना (1987), विट बीजगणित का एक आधार दिया गया है
जिससे कि[dm,dn] = (m – n) dm + n. की समष्टिता के लिए एक आधार Fλ(S1) द्वारा दिया गया है
जिससे कि
के लिए gζ में Rot(S1) = T. ये वाध्य करता है 𝜙(dn) = an ⋅ vn उपयुक्त गुणांकों के लिए an. पार की गई होलोमोर्फिक स्थिति 𝜙([X,Y]) = X𝜙(Y) – Y𝜙(X) के लिए पुनरावृत्ति संबंध देता है an:
स्थिति 𝜙(d/dθ) = 0, इसका आशय है a0 = 0. इस स्थिति और पुनरावृत्ति संबंध से, यह पता चलता है कि अदिश गुणज तक, इसका एक अद्वितीय गैर-शून्य समाधान होता है जब λ 0, 1 या 2 के बराबर है और अन्यथा केवल शून्य समाधान है। के लिए समाधान λ = 1 समूह 1-सहचक्र से मेल खाता है . के लिए समाधान λ = 0 समूह 1-सहचक्र से मेल खाता है 𝜙0(f) = log f' . संबंधित लाई बीजगणित 1-सहचक्र के लिए λ = 0, 1, 2 को एक अदिश गुणज तक दिया जाता है
केंद्रीय विस्तार
बदले में पार की गई समरूपताएं Diff(S1) और इसके लेई बीजगणित Vect(S1) के केंद्रीय विस्तार, तथाकथित विरासोरो बीजगणित की उत्पति करती हैं।
सहसंयुक्त क्रिया
समूह Diff(S1) और इसका केंद्रीय विस्तार टेइचमुलर सिद्धांत और स्ट्रिंग सिद्धांत के संदर्भ में भी स्वाभाविक रूप से दिखाई देता है।[15] वास्तव में D के अर्ध-अनुरूप स्व-मानचित्रों से प्रेरित S1 की समरूपताएं सटीक रूप से S1की अर्धसममितीय मानचित्र समरूपताएं हैं; ये बिल्कुल होमियोमोर्फिज्म हैं जो 1/2 के क्रॉस अनुपात वाले चार बिंदुओं को 1 या 0 के करीब क्रॉस अनुपात वाले बिंदुओं पर नहीं भेजते हैं। सीमा मूल्यों को लेते हुए, सार्वभौमिक टेइचमुलर को क्वासिसिमेट्रिक समरूपताएँ के समूह के भागफल के साथ पहचाना जा सकता है। QS(S1) मोबियस परिवर्तनों के उपसमूह द्वारा Moeb(S1). (इसे स्वाभाविक रूप से अर्धवृत्त के स्थान के रूप में भी महसूस किया जा सकता है C।)
सजातीय स्थान Diff(S1)/Moeb(S1) स्वाभाविक रूप से सार्वभौमिक टेइचमुलर स्थान का एक उपस्थान है। यह स्वाभाविक रूप से एक समष्टि विविधता है और यह और अन्य प्राकृतिक ज्यामितीय संरचनाएं टेइचमुलर स्थान पर उपस्थित संरचनाओं के साथ संगत हैं। Diff(S1) के लाई बीजगणित के दोहरे को S1पर हिल के ऑपरेटरों के स्थान से पहचाना जा सकता है
और Diff(S1) की सहसंयुक्त क्रिया श्वार्ज़ियन व्युत्पन्न का आह्वान करती है। भिन्नता f का व्युत्क्रम हिल के ऑपरेटर को भेजता है
छद्मसमूह और सम्बन्ध
श्वार्ज़ियन व्युत्पन्न और Diff(S1) पर परिभाषित अन्य 1-सहचक्र को समष्टि तल में विवृत समूहो के बीच बायोलोमोर्फिक तक बढ़ाया जा सकता है। इस स्थिति में स्थानीय विवरण विश्लेषणात्मक छद्म समूहों के सिद्धांत की ओर ले जाता है, जो अनंत-आयामी समूहों के सिद्धांत को औपचारिक बनाता है और ली बीजगणित का अध्ययन पहली बार 1910 के दशक में एली कार्टन द्वारा किया गया था। यह रीमैन सतहों पर एफ़िन और प्रोजेक्टिव संरचनाओं के साथ-साथ श्वार्ज़ियन या प्रोजेक्टिव सम्बन्ध के सिद्धांत से संबंधित है, जिस पर गनिंग, शिफ़र और हॉले ने चर्चा की है।
C पर एक होलोमोर्फिक छद्म समूह Γ में विवृत समूह U और V के बीच बिहोलोमोर्फिज्म f का एक संग्रह होता है जिसमें प्रत्येक विवृतU के लिए पहचान मानचित्र सम्मलित होते हैं, जो विवृत को प्रतिबंधित करने के तहत संवृत होता है, जो संरचना (जब संभव हो) के तहत संवृत होता है, जो व्युत्क्रम लेने के तहत संवृत कर दिया गया है और इस तरह कि यदि कोई बायोलोमोर्फिज्म स्थानीय रूप से Γ में है, तो यह भी Γ में होता है। छद्म समूह को सकर्मक कहा जाता है यदि, C में z और w दिए जाने पर, Γ में एक बायोलोमोर्फिज्म f है जैसे कि f(z) = w। सकर्मक छद्म समूहों का एक विशेष स्थिति वे हैं जो सपाट हैं, अर्थात जिनमें सभी समष्टि अनुवाद Tb(z) = z + b सम्मलित हैं। मान लीजिए कि संरचना के अंतर्गत G, औपचारिक शक्ति श्रृंखला परिवर्तनों F(z) = a1z + a2z2 + .... का समूह है, जिसमें a1 ≠ 0 है। एक होलोमोर्फिक छद्म समूह Γ, G के एक उपसमूह A को परिभाषित करता है, अर्थात् टेलर श्रृंखला के विस्तार द्वारा परिभाषित उपसमूह Γ के तत्वों f के 0 (या "जेट") के साथ f(0) = 0. U पर एक बायोलोमोर्फिज्म एफ Γ में निहित है यदि और केवल यदि T–f(a) ∘ f ∘ Ta की पावर श्रृंखला U में प्रत्येक a के लिए A में निहित है: दूसरे शब्दों में f पर f के लिए औपचारिक पावर श्रृंखला दी गई है A के एक तत्व द्वारा z को z − a द्वारा प्रतिस्थापित किया गया; या संक्षेप में कहें तो f के सभी जेट A में स्थित हैं।[16]
समूह G में k-जेड के समूह Gk पर एक प्राकृतिक होलोमोर्फिक है जो कि शब्द zk तक ली गई काटे गए पावर श्रृंखला को लेकर प्राप्त की गई है। यह समूह घात k वाले बहुपदों के स्थान पर (k से अधिक क्रम के पदों को छोटा करके) निष्कपट से कार्य करता है। ट्रंकेशन इसी तरह Gk पर Gk − 1 की होलोमोर्फिक को परिभाषित करते हैं; कर्नेल में ff(z) = z + bzk के साथ मानचित्र f सम्मलित हैं, एबेलियन भी ऐसा ही है। इस प्रकार समूह Gk हल करने योग्य है, एक तथ्य इस तथ्य से भी स्पष्ट है कि यह एकपदी के आधार के लिए त्रिकोणीय रूप में है।
एक समतल छद्मसमूह Γ को अंतर समीकरणों द्वारा परिभाषित किया जाता है यदि कोई परिमित पूर्णांक है k ऐसा कि A में यथातथ्य है और छवि एक संवृत उपसमूह है। ऐसे सबसे छोटे k Γ का क्रम कहा जाता है।
इस प्रकार उत्पन्न होने वाले सभी उपसमूहों A का एक संपूर्ण वर्गीकरण है जो अतिरिक्त धारणाओं को संतुष्ट करता है कि Gk में A की छवि एक समष्टि उपसमूह है और G1, C* के बराबर है:इसका तात्पर्य यह है कि छद्म समूह में a ≠ 0 के लिए स्केलिंग परिवर्तन Sa(z) = az भी सम्मलित है, अर्थात A में ≠ 0 के साथ प्रत्येक बहुपद az सम्मलित है।
इस स्थितिय में एकमात्र संभावना यह है कि k = 1 और A = {az: a ≠ 0}; या कि k = 2 और A = {az/(1−bz) : a ≠ 0}। पूर्व समष्टि मोबियस समूह के एफ़िन उपसमूह द्वारा परिभाषित छद्म समूह है (az + b परिवर्तन फिक्सिंग ∞); उत्तरार्द्ध संपूर्ण समष्टि मोबियस समूह द्वारा परिभाषित छद्म समूह है।
औपचारिक लाई बीजगणित के पश्चात से इस वर्गीकरण को आसानी से लाई बीजगणितीय समस्या में बदला जा सकता है के G में F के साथ एक औपचारिक शक्ति श्रृंखला के साथ औपचारिक सदिश क्षेत्रF(z) d/dz सम्मलित हैं। इसमें बहुपद सदिश क्षेत्र सम्मलित हैं जिनका आधार dn = zn+1 d/dz (n ≥ 0) है, जो विट बीजगणित का एक उपबीजगणित है। लाई कोष्ठक [dm,dn] = (n − m)dm+n द्वारा दिए गए हैं। फिर से ये डिग्री ≤ k के बहुपदों के स्थान पर विभेदन द्वारा कार्य करते हैं -इसे C[[z]]/(zk+1)—से पहचाना जा सकता है - और d0, ..., dk – 1 की छवियां एक आधार देती हैं Gk का लाई बीजगणितहैं। ध्यान दें कि Ad(Sa) dn= a–n dn मान लीजिए के लाई बीजगणित को निरूपित करें A: यह Gkके लाई बीजगणित के एक उपबीजगणित के समरूपी है। इसमें d0 सम्मलित है और Ad(Sa) के अंतर्गत अपरिवर्तनीय है। तब से विट बीजगणित का एक लाई उपबीजगणित है, एकमात्र संभावना यह है कि इसका आधार d0 या कुछ n ≥ 1 के लिए आधार d0, dn है। प्रपत्र f(z)= z + bzn+1 + .... के संगत समूह तत्व हैं। अनुवाद के साथ इसकी रचना करने पर T–f(ε) ∘ f ∘ T ε(z) = cz + dz2 + ... प्राप्त होता है c, d ≠ 0 के साथ। जब तक n = 2, न हो, यह उपसमूह A; के रूप का खंडन करता है; तो n = 2.[17]
श्वार्ज़ियन व्युत्पन्न समष्टि मोबियस समूह के लिए छद्म समूह से संबंधित है। वास्तव में यदि f, V पर परिभाषित एक द्विघात अंतर है तो 𝜙2(f) = S(f), V पर एक द्विघात अंतर है। यदि g पर परिभाषित एक बायोहोमोलोर्फिज्म है और g(V) ⊆ U, S(f ∘ g) और S(g) U पर द्विघात अवकलन हैं; इसके अतिरिक्त S(f) V पर एक द्विघात अंतर है, इसलिए g∗S(f) भी U पर एक द्विघात अंतर है।
इस प्रकार होलोमोर्फिक द्विघात अंतर में गुणांक के साथ बायोलोमोर्फिज्म के छद्म समूह के लिए 1-सहचक्र का एनालॉग है। उसी प्रकार और होलोमोर्फिक फलन और होलोमोर्फिक अंतरों में मूल्यों के साथ एक ही छद्म समूह के लिए 1-सहचक्र हैं। सामान्यतः 1-सहचक्र को किसी भी क्रम के होलोमोर्फिक अंतर के लिए परिभाषित किया जा सकता है
उउपरोक्त पहचान को समावेशन मानचित्र j पर क्रियान्वित करने पर, यह इस प्रकार है कि 𝜙(j) = 0; और इसलिए यदि f1, f2 का प्रतिबंध है, तो f2 ∘ j = f1, तब 𝜙(f1) = 𝜙 (f2).दूसरी ओर, होलोमोर्फिक सदिश क्षेत्रों द्वारा परिभाषित स्थानीय होलोमोर्फिक प्रवाह को लेते हुए - सदिश क्षेत्रों का घातांक - स्थानीय बायोलोमोर्फिज्म का होलोमोर्फिक छद्म समूह होलोमोर्फिक सदिश क्षेत्रों द्वारा उत्पन्न होता है। यदि 1-सहचक्र 𝜙 उपयुक्त निरंतरता या विश्लेषणात्मकता स्थितियों को संतुष्ट करता है, तो यह होलोमोर्फिक सदिश क्षेत्र 1-सहचक्र को प्रेरित करता है, जो प्रतिबंध के साथ भी संगत है। तदनुसार, यह C पर होलोमोर्फिक सदिश क्षेत्र पर 1-सहचक्र को परिभाषित करता है:
आधार dn = zn+1 d/dz (n ≥ −1) के साथ बहुपद सदिश क्षेत्रों के ली बीजगणित को सीमित करते हुए, इन्हें ली बीजगणित को होमोलॉजी के समान उपायो का उपयोग करके निर्धारित किया जा सकता है (जैसा कि पार किए गए होलोमोर्फिक पर पिछले अनुभाग में)। वहां गणना क्रम k, के घनत्वों पर कार्य करने वाले संपूर्ण विट बीजगणित के लिए थी, जबकि यहां यह केवल क्रम k के समरूपता (या बहुपद) अंतरों पर कार्य करने वाले उपबीजगणित के लिए थी। फिर से, यह मानते हुए कि 𝜙 C के घूर्णन पर गायब हो जाता है, गैर-शून्य 1-सहचक्र होते हैं, जो अदिश गुणकों तक अद्वितीय होते हैं। केवल समान व्युत्पन्न सूत्र द्वारा दिए गए घात 0, 1 और 2 के अंतरों के लिए
जहां p(z) एक बहुपद है।
1-सहचक्र्स तीन छद्म समूहों को 𝜙k(f) = 0 द्वारा परिभाषित करते हैं: यह स्केलिंग समूह (k = 0) देता है; एफ़िन समूह (k = 1); और संपूर्ण समष्टि मोबियस समूह (k = 2)। तो ये 1-सहचक्र छद्म समूह को परिभाषित करने वाले विशेष साधारण अंतर समीकरण हैं। अधिक महत्वपूर्ण रूप से उनका उपयोग रीमैन सतहों पर संबंधित एफ़िन या प्रक्षेपीय संरचनाओं और सम्बन्ध को परिभाषित करने के लिए किया जा सकता है। यदि Γ Rn पर सुचारू मैपिंग का एक छद्म समूह है, तो एक टोपोलॉजिकल स्थान M को Γ-संरचना कहा जाता है यदि इसमें चार्ट f का संग्रह होता है जो M में विवृत समूह Vi से Rn में विवृत समूह Ui तक समरूपताएँ होता है, जैसे कि, प्रत्येक गैर-रिक्त प्रतिच्छेदन fi (Ui ∩ Uj) से fj (Ui ∩ Uj) तक का प्राकृतिक मानचित्र Γ में स्थित होता है। यह एक सुचारू n-कई गुना की संरचना को परिभाषित करता है यदि Γ में स्थानीय डिफोमोर्फिम्स और एक रीमैन सतह होती है यदि n = 2-जिससे किR2 ≡ C-और Γ में बिहोलोमोर्फिम्स सम्मलित हों। यदि Γ एफ़िन छद्म समूह है,तो M को एफ़िन संरचना कहा जाता है; और यदि Γ मोबियस छद्म समूहहै, तो M को एक प्रक्षेपी संरचना कहा जाता है। इस प्रकार कुछ लैटिस C/Λ के लिए Λ ⊂ C के रूप में दी गई एक जीनस एक सतह में एक एफ़िन संरचना होती है; और फुच्सियन समूह द्वारा ऊपरी आधे तल या इकाई डिस्क के भागफल के रूप में दी गई एक जीनस p > 1 सतह में एक प्रक्षेपी संरचना होती है।[18]
1966 में गनिंग ने बताया कि इस प्रक्रिया को कैसे व्युत्पन्न किया जा सकता है: जीनस p > 1 के लिए, एक प्रक्षेप्य सम्बन्ध का अस्तित्व, जिसे श्वार्ज़ियन व्युत्पन्न 𝜙2 का उपयोग करके परिभाषित किया गया है और कोहोलॉजी पर मानक परिणामों का उपयोग करके सिद्ध किया गया है, इसका ऊपरी आधे तल या यूनिट डिस्क के साथ सार्वभौमिक कवरिंग सतह की पहचान करने के लिए उपयोग किया जा सकता है (एफ़िन सम्बन्ध और 𝜙1 का उपयोग करके जीनस 1 के लिए एक समान परिणाम होता है)।[18]
यह भी देखें
- रिकाती समीकरण का एक महत्वपूर्ण अनुप्रयोग तीसरे क्रम के श्वार्ज़ियन अंतर समीकरण के लिए है
टिप्पणियाँ
- ↑ 1.0 1.1 Thurston, William P. "Zippers and univalent functions." The Bieberbach conjecture (West Lafayette, Ind., 1985) 21 (1986): 185-197.
- ↑ Weisstein, Eric W. "Schwarzian Derivative." From MathWorld—A Wolfram Web Resource.
- ↑ Schiffer 1966
- ↑ Hille 1976, pp. 374–401
- ↑ Lehto 1987, p. 60
- ↑ Duren 1983
- ↑ Lehto 1987, p. 90
- ↑ Nehari 1952
- ↑ von Koppenfels & Stallmann 1959
- ↑ Klein 1922
- ↑ Ahlfors 1966
- ↑ Lehto 1987
- ↑ Imayoshi & Taniguchi 1992
- ↑ Ovsienko & Tabachnikov 2005, pp. 21–22
- ↑ Pekonen 1995
- ↑ Sternberg 1983, pp. 421–424
- ↑ Gunning 1978
- ↑ 18.0 18.1 Gunning 1966
संदर्भ
- अहलफोर्स, लार्स (1966), क्वासिकोनफॉर्मल मैपिंग पर व्याख्यान, वैन नॉस्ट्रैंड, pp. 117–146, अध्याय 6, "टेइचमुलर रिक्त स्थान"
- डुरेन, पीटर एल. (1983), असमान फलन, ग्रुंडलेह्रेन डेर मैथेमेटिसचेन विसेंसचाफ्टन, vol. 259, स्प्रिंगर-वेरलाग, pp. 258–265, ISBN 978-0-387-90795-6]
- गुइउ, लॉरेंट; रोजर, क्लाउड (2007), L'algèbre et le groupe de Virasoro, Montreal: CRM, ISBN 978-2-921120-44-9
- गनिंग, आर. सी. (1966), रीमैन सतहों पर व्याख्यान, प्रिंसटन गणितीय नोट्स, प्रिंसटन यूनिवर्सिटी प्रेस
- गनिंग, आर. सी. (1978), जटिल मैनिफोल्ड्स के एकरूपीकरण पर: कनेक्शन की भूमिका, गणितीय नोट्स, vol. 22, प्रिंसटन यूनिवर्सिटी प्रेस, ISBN 978-0-691-08176-2
- हिले, एइनर (1976), जटिल डोमेन में साधारण अंतर समीकरण, डोवर, pp. 374–401, ISBN 978-0-486-69620-1, अध्याय 10, "द श्वार्ज़ियन"।
- इमायोशी, वाई; तानिगुची, एम (1992), टेइचमुलर स्थानों का परिचय, स्प्रिंगर-वेरलाग, ISBN 978-4-431-70088-3
- केएसी, वी. जी.; रैना, ए. के. (1987), बॉम्बे ने अनंत-आयामी झूठ बीजगणित के उच्चतम वजन प्रतिनिधित्व पर व्याख्यान दिया, विश्व वैज्ञानिक, ISBN 978-9971-50-395-6
- वॉन कोपेनफेल्स, डब्ल्यू.; स्टॉलमैन, एफ. (1959), प्रैक्सिस डेर कॉन्फॉर्मेन एबिल्डुंग, दि ग्रुन्डलेह्रेन डेर मैथेमेटिसचेन विसेनशाफ्टेन, vol. 100, स्प्रिंगर-वेरलाग, pp. 114–141,धारा 12, "वृत्ताकार चापों के साथ बहुभुजों का मानचित्रण"।
- क्लेन, फ़ेलिक्स (1922), एकत्रित कार्य, vol. 2, स्प्रिंगर-वेरलाग, pp. 540–549, "सामान्यीकृत लैम फ़ंक्शंस के सिद्धांत पर"।
- लेहटो, ओटो (1987), Univalent functions and Teichmüller spaces, स्प्रिंगर-वेरलाग, pp. 50–59, 111–118, 196–205, ISBN 978-0-387-96310-5
- लिबरमैन, पौलेट (1959), "स्यूडोग्रुप्स इनफिनिटेसिमॉक्स अटैचेस ऑक्स स्यूडोग्रुप्स डी ली", बुल. समाज. गणित। फ्रांस, 87: 409–425, doi:10.24033/bsmf.1536
- नेहारी, Zeev (1949), "श्वार्ज़ियन व्युत्पन्न और श्लिच्ट फ़ंक्शन", अमेरिकन गणितीय सोसायटी का बुलेटिन, 55 (6): 545–551, doi:10.1090/S0002-9904-1949-09241-8, ISSN 0002-9904, MR 0029999
- नेहारी, ज़ीव (1952), अनुरूप मानचित्रण, डोवर, pp. 189–226, ISBN 978-0-486-61137-2
- ओवसिएन्को, वी.; टाबाच्निकोव, एस. (2005), प्रोजेक्टिव डिफरेंशियल ज्योमेट्री पुराना और नया, कैम्ब्रिज यूनिवर्सिटी प्रेस, ISBN 978-0-521-83186-4
- ओवसिएन्को, वैलेन्टिन; टाबाच्निकोव, सर्गेई (2009), "क्या है । . . श्वार्ज़ियन व्युत्पन्न?" (PDF), एएमएस नोटिस, 56 (1): 34–36
- पेकोनेन, ओस्मो (1995), "ज्यामिति और भौतिकी में यूनिवर्सल टीचमुलर स्थान", जे. जियोम. भौतिक., 15 (3): 227–251, arXiv:hep-th/9310045, Bibcode:1995JGP....15..227P, doi:10.1016/0393-0440(94)00007-Q, S2CID 119598450
- शिफर, मनहेम (1966), "रीमैन सतहों पर आधे-आदेश के अंतर", अनुप्रयुक्त गणित पर सियाम जर्नल, 14 (4): 922–934, doi:10.1137/0114073, JSTOR 2946143, S2CID 120194068
- सहगल, ग्रीम (1981), "कुछ अनंत-आयामी समूहों का एकात्मक प्रतिनिधित्व", कॉम. गणित। भौतिक।, 80 (3): 301–342, Bibcode:1981सीएमएपीएच.80..301S, doi:10.1007/bf01208274, S2CID 121367853
{{citation}}
: Check|bibcode=
length (help) - स्टर्नबर्ग, श्लोमो (1983), विभेदक ज्यामिति पर व्याख्यान (द्वितीय ed.), चेल्सी प्रकाशन, ISBN 978-0-8284-0316-0
- तख्तजा, लियोन ए.; टेओ, ली-पेंग (2006), यूनिवर्सल टीचमुलर स्पेस पर वेइल-पीटरसन मीट्रिक, मेम। आमेर। गणित। समाज।, vol. 183