संयुग्मित व्यास: Difference between revisions
(Created page with "{{Short description|Perpendicular diameters of a circle or hyperbolic-orthogonal diameters of a hyperbola}} ज्यामिति में, एक शंकु खं...") |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Perpendicular diameters of a circle or hyperbolic-orthogonal diameters of a hyperbola}} | {{Short description|Perpendicular diameters of a circle or hyperbolic-orthogonal diameters of a hyperbola}} | ||
[[ज्यामिति]] में, एक शंकु खंड के दो [[व्यास]]ों को संयुग्मित कहा जाता है यदि प्रत्येक तार ( | [[ज्यामिति]] में, एक शंकु खंड के दो [[व्यास]]ों को संयुग्मित कहा जाता है यदि प्रत्येक तार (कॉर्ड) एक व्यास के [[समानांतर (ज्यामिति)]] दूसरे व्यास द्वारा द्विभाजित हो। उदाहरण के लिए, एक वृत्त के दो व्यास संयुग्मित होते हैं यदि और केवल तभी जब वे लंबवत हों। | ||
==दीर्घवृत्त का== | ==दीर्घवृत्त का== | ||
[[Image:Conjugate Diameters.svg|right|300px|thumb| एक दीर्घवृत्त के दो संयुग्मी व्यास। बाउंडिंग समांतर [[चतुर्भुज]] का प्रत्येक किनारा व्यास में से एक के समानांतर (ज्यामिति) है।]]एक दीर्घवृत्त के लिए, दो व्यास संयुग्मित होते हैं यदि और | [[Image:Conjugate Diameters.svg|right|300px|thumb| एक दीर्घवृत्त के दो संयुग्मी व्यास। बाउंडिंग समांतर [[चतुर्भुज]] का प्रत्येक किनारा व्यास में से एक के समानांतर (ज्यामिति) है।]]एक दीर्घवृत्त के लिए, दो व्यास संयुग्मित होते हैं यदि और तभी होते हैं जब एक व्यास के अंतिम बिंदु पर दीर्घवृत्त की स्पर्श रेखा दूसरे व्यास के समानांतर हो। दीर्घवृत्त के संयुग्म व्यासों के प्रत्येक जोड़े में एक संगत स्पर्शरेखा समांतर चतुर्भुज होता है, जिसे कभी-कभी बाउंडिंग समांतर चतुर्भुज भी कहा जाता है ([[बाउंडिंग आयत]] की तुलना में तिरछा (स्क्यूड))। अपनी पांडुलिपि [[एक वृत्त में पिंडों की गति पर|एक वृत्त में पिंडों की गति]] में, और 'फिलोसोफी नेचुरलिस प्रिंसिपिया मैथमेटिका' में, [[आइजैक न्यूटन]] ने पिछले लेखकों द्वारा सिद्ध किए गए [[लेम्मा (गणित)]] के रूप में उद्धृत किया है कि किसी दिए गए दीर्घवृत्त के लिए सभी (सीमाबद्ध) समांतर चतुर्भुजों का [[क्षेत्र]]फल समान होता है। | ||
संयुग्म व्यास के किसी भी जोड़े से, या किसी भी बाउंडिंग समांतर चतुर्भुज से एक दीर्घवृत्त का निर्माण करना और सीधा करना संभव है। उदाहरण के लिए, अपने ''संग्रह'' की पुस्तक आठवीं के [[प्रस्ताव]] 14 में, [[अलेक्जेंड्रिया के पप्पू]] संयुग्म व्यास के दिए गए जोड़े से एक दीर्घवृत्त की अक्षों के निर्माण के लिए एक विधि देते हैं। एक अन्य विधि रिट्ज़ के निर्माण का उपयोग कर रही है, जो [[घूर्णन (ज्यामिति)]] या [[कतरनी मानचित्रण]] की परवाह किए बिना दीर्घवृत्त के प्रमुख और छोटे अक्षों की दिशाओं और लंबाई को खोजने के लिए थेल्स प्रमेय का लाभ उठाती है। | संयुग्म व्यास के किसी भी जोड़े से, या किसी भी बाउंडिंग समांतर चतुर्भुज से एक दीर्घवृत्त का निर्माण करना और सीधा करना संभव है। उदाहरण के लिए, अपने ''संग्रह'' की पुस्तक आठवीं के [[प्रस्ताव]] 14 में, [[अलेक्जेंड्रिया के पप्पू|अलेक्जेंड्रिया के पप्पस]] संयुग्म व्यास के दिए गए जोड़े से एक दीर्घवृत्त की अक्षों के निर्माण के लिए एक विधि देते हैं। एक अन्य विधि रिट्ज़ के निर्माण का उपयोग कर रही है, जो [[घूर्णन (ज्यामिति)]] या [[कतरनी मानचित्रण]] की परवाह किए बिना दीर्घवृत्त के प्रमुख और छोटे अक्षों की दिशाओं और लंबाई को खोजने के लिए थेल्स का प्रमेय का लाभ उठाती है। | ||
==अतिपरवलय का== | ==अतिपरवलय का== | ||
:: | ::दीर्घवृत्तीय स्थिति के समान, [[ अतिशयोक्ति ]] के व्यास संयुग्मित होते हैं जब प्रत्येक एक दूसरे के समानांतर सभी जीवाओं को समद्विभाजित करता है।<ref>{{cite book | first=Barry | last=Spain | ||
| year=1957 | url=http://catalog.hathitrust.org/Record/000660610 | title=विश्लेषणात्मक शंकु| series=International series of monographs in pure and applied mathematics.v.3 | | year=1957 | url=http://catalog.hathitrust.org/Record/000660610 | title=विश्लेषणात्मक शंकु| series=International series of monographs in pure and applied mathematics.v.3 | ||
| location=New York | publisher=Pergamon Press | page=49}}</ref> इस | | location=New York | publisher=Pergamon Press | page=49}}</ref> इस स्थिति में हाइपरबोला और उसके संयुग्म दोनों जीवा और व्यास के स्रोत हैं। | ||
एक आयताकार हाइपरबोला के | एक आयताकार हाइपरबोला के स्थिति में, इसका संयुग्म एक [[अनंतस्पर्शी]] पर [[प्रतिबिंब (गणित)]] है। एक हाइपरबोला का व्यास अनंतस्पर्शी में उसके प्रतिबिंब से संयुग्मित होता है, जो दूसरे हाइपरबोला का व्यास होता है। चूँकि लम्बवतता एक वृत्त के संयुग्मी व्यासों का संबंध है, इसलिए अतिशयोक्तिपूर्ण ऑर्थोगोनैलिटी आयताकार अतिपरवलय के संयुग्मी व्यासों का संबंध है। | ||
टाई रॉड्स की नियुक्ति विश्लेषणात्मक ज्यामिति पर एक पुस्तक में संयुग्म व्यास के संबंध द्वारा निर्देशित होती है। | |||
गर्डर्स की एक वर्गाकार असेंबली को मजबूत करने वाली [[टाई रॉड]]्स की नियुक्ति [[विश्लेषणात्मक ज्यामिति]] पर एक पुस्तक में संयुग्म व्यास के संबंध द्वारा निर्देशित होती है।<ref>{{cite book|last1=Osgood | first1=William F. | last2=Graustein | first2=William C. | title=समतल और ठोस विश्लेषणात्मक ज्यामिति| location=New York | publisher=The Macmillan Company | year=1921 | page=[https://archive.org/details/planeandsolidan00graugoog/page/n329 307] | url=https://archive.org/details/planeandsolidan00graugoog}}</ref> | |||
[[ अंतरिक्ष समय | अंतरिक्ष समय]] की आधुनिक भौतिकी में सापेक्षता के सिद्धांत को बताने के लिए हाइपरबोलस के संयुग्मी व्यास भी उपयोगी हैं। सापेक्षता की अवधारणा को पहली बार [[अंतरिक्ष]] में एक आयाम वाले विमान में पेश किया गया है, दूसरा आयाम [[समय]] है। इस तरह के एक विमान में, इकाई हाइपरबोला मूल घटना से एक निरंतर अंतरिक्ष-समान अंतराल की घटनाओं से मेल खाती है, [[इकाई अतिपरवलय]] घटनाओं से एक निरंतर समय-समान अंतराल से मेल खाती है। [[सापेक्षता का सिद्धांत]] तैयार किया जा सकता है, अंतरिक्ष और समय के अक्षों के लिए संयुग्मी अतिपरवलय के संयुग्मी व्यासों की किसी भी जोड़ी को लिया जा सकता है। सापेक्षता की यह व्याख्या 1910 में ई. टी. व्हिटेकर द्वारा प्रतिपादित की गई थी।<ref>{{Cite book | author=Whittaker, E.T. | authorlink=E. T. Whittaker | year=1910 | edition=1 | title=[[A History of the Theories of Aether and Electricity]] | page=[https://archive.org/details/historyoftheorie00whitrich/page/441 441] | location=Dublin | publisher=Longman, Green and Co.}}</ref> | |||
Revision as of 21:02, 27 July 2023
ज्यामिति में, एक शंकु खंड के दो व्यासों को संयुग्मित कहा जाता है यदि प्रत्येक तार (कॉर्ड) एक व्यास के समानांतर (ज्यामिति) दूसरे व्यास द्वारा द्विभाजित हो। उदाहरण के लिए, एक वृत्त के दो व्यास संयुग्मित होते हैं यदि और केवल तभी जब वे लंबवत हों।
दीर्घवृत्त का
एक दीर्घवृत्त के लिए, दो व्यास संयुग्मित होते हैं यदि और तभी होते हैं जब एक व्यास के अंतिम बिंदु पर दीर्घवृत्त की स्पर्श रेखा दूसरे व्यास के समानांतर हो। दीर्घवृत्त के संयुग्म व्यासों के प्रत्येक जोड़े में एक संगत स्पर्शरेखा समांतर चतुर्भुज होता है, जिसे कभी-कभी बाउंडिंग समांतर चतुर्भुज भी कहा जाता है (बाउंडिंग आयत की तुलना में तिरछा (स्क्यूड))। अपनी पांडुलिपि एक वृत्त में पिंडों की गति में, और 'फिलोसोफी नेचुरलिस प्रिंसिपिया मैथमेटिका' में, आइजैक न्यूटन ने पिछले लेखकों द्वारा सिद्ध किए गए लेम्मा (गणित) के रूप में उद्धृत किया है कि किसी दिए गए दीर्घवृत्त के लिए सभी (सीमाबद्ध) समांतर चतुर्भुजों का क्षेत्रफल समान होता है।
संयुग्म व्यास के किसी भी जोड़े से, या किसी भी बाउंडिंग समांतर चतुर्भुज से एक दीर्घवृत्त का निर्माण करना और सीधा करना संभव है। उदाहरण के लिए, अपने संग्रह की पुस्तक आठवीं के प्रस्ताव 14 में, अलेक्जेंड्रिया के पप्पस संयुग्म व्यास के दिए गए जोड़े से एक दीर्घवृत्त की अक्षों के निर्माण के लिए एक विधि देते हैं। एक अन्य विधि रिट्ज़ के निर्माण का उपयोग कर रही है, जो घूर्णन (ज्यामिति) या कतरनी मानचित्रण की परवाह किए बिना दीर्घवृत्त के प्रमुख और छोटे अक्षों की दिशाओं और लंबाई को खोजने के लिए थेल्स का प्रमेय का लाभ उठाती है।
अतिपरवलय का
- दीर्घवृत्तीय स्थिति के समान, अतिशयोक्ति के व्यास संयुग्मित होते हैं जब प्रत्येक एक दूसरे के समानांतर सभी जीवाओं को समद्विभाजित करता है।[1] इस स्थिति में हाइपरबोला और उसके संयुग्म दोनों जीवा और व्यास के स्रोत हैं।
एक आयताकार हाइपरबोला के स्थिति में, इसका संयुग्म एक अनंतस्पर्शी पर प्रतिबिंब (गणित) है। एक हाइपरबोला का व्यास अनंतस्पर्शी में उसके प्रतिबिंब से संयुग्मित होता है, जो दूसरे हाइपरबोला का व्यास होता है। चूँकि लम्बवतता एक वृत्त के संयुग्मी व्यासों का संबंध है, इसलिए अतिशयोक्तिपूर्ण ऑर्थोगोनैलिटी आयताकार अतिपरवलय के संयुग्मी व्यासों का संबंध है।
टाई रॉड्स की नियुक्ति विश्लेषणात्मक ज्यामिति पर एक पुस्तक में संयुग्म व्यास के संबंध द्वारा निर्देशित होती है।
गर्डर्स की एक वर्गाकार असेंबली को मजबूत करने वाली टाई रॉड्स की नियुक्ति विश्लेषणात्मक ज्यामिति पर एक पुस्तक में संयुग्म व्यास के संबंध द्वारा निर्देशित होती है।[2] अंतरिक्ष समय की आधुनिक भौतिकी में सापेक्षता के सिद्धांत को बताने के लिए हाइपरबोलस के संयुग्मी व्यास भी उपयोगी हैं। सापेक्षता की अवधारणा को पहली बार अंतरिक्ष में एक आयाम वाले विमान में पेश किया गया है, दूसरा आयाम समय है। इस तरह के एक विमान में, इकाई हाइपरबोला मूल घटना से एक निरंतर अंतरिक्ष-समान अंतराल की घटनाओं से मेल खाती है, इकाई अतिपरवलय घटनाओं से एक निरंतर समय-समान अंतराल से मेल खाती है। सापेक्षता का सिद्धांत तैयार किया जा सकता है, अंतरिक्ष और समय के अक्षों के लिए संयुग्मी अतिपरवलय के संयुग्मी व्यासों की किसी भी जोड़ी को लिया जा सकता है। सापेक्षता की यह व्याख्या 1910 में ई. टी. व्हिटेकर द्वारा प्रतिपादित की गई थी।[3]
प्रक्षेप्य ज्यामिति में
प्रक्षेप्य ज्यामिति में प्रत्येक रेखा में अनंत पर एक बिंदु होता है, जिसे आलंकारिक बिंदु भी कहा जाता है। प्रक्षेप्य ज्यामिति में दीर्घवृत्त, परवलय और अतिपरवलय को शंकु के रूप में देखा जाता है, और प्रत्येक शंकु बिंदुओं और रेखाओं के बीच ध्रुव और ध्रुवीय का संबंध निर्धारित करता है। इन अवधारणाओं का उपयोग करते हुए, दो व्यास संयुग्मित होते हैं जब प्रत्येक दूसरे के आलंकारिक बिंदु का ध्रुव होता है।[4] हाइपरबोला के संयुग्मित व्यासों में से केवल एक ही वक्र को काटता है।
बिंदु-युग्म पृथक्करण की धारणा एक दीर्घवृत्त को एक अतिपरवलय से अलग करती है: दीर्घवृत्त में संयुग्म व्यास का प्रत्येक जोड़ा प्रत्येक दूसरे जोड़े को अलग करता है। हाइपरबोला में, संयुग्म व्यास का एक जोड़ा कभी भी ऐसे दूसरे जोड़े को अलग नहीं करता है।
संदर्भ
- ↑ Spain, Barry (1957). विश्लेषणात्मक शंकु. International series of monographs in pure and applied mathematics.v.3. New York: Pergamon Press. p. 49.
- ↑ Osgood, William F.; Graustein, William C. (1921). समतल और ठोस विश्लेषणात्मक ज्यामिति. New York: The Macmillan Company. p. 307.
- ↑ Whittaker, E.T. (1910). A History of the Theories of Aether and Electricity (1 ed.). Dublin: Longman, Green and Co. p. 441.
- ↑ G. B. Halsted (1906) Synthetic Projective Geometry, #135, #141
अग्रिम पठन
- Chasles, Michel (1865). "Diamètres conjugués". Traité des sections coniques, Ie partie. faisant suite au traité de géométrie supérieure (in French). Paris: Gauthier-Villars. pp. 116–23.
{{cite book}}
: CS1 maint: unrecognized language (link)
- W. K. Clifford (1878) Elements of Dynamic, page 90, link from HathiTrust.
- Coxeter, HSM (1955). The Real Projective Plane (2nd ed.). Cambridge University Press. pp. 130–5.
- Salmon, George (1900). A Treatise on Conic Sections. London: Longmans, Green & Co. p. 165.
बाहरी संबंध
- "Conjugate Diameters in Ellipse". cut-the-knot.org.
- Besant, W. H. (1895). "Properties of Conjugate Diameters". Conic sections treated geometrically. Historical Math Monographs. London; Ithaca, NY: G. Bell; Cornell University. p. 109.