मोनोटोन अभिसरण प्रमेय: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 129: Line 129:
</math>
</math>
चूंकि सभी समुच्चय <math>S_j\cap A_i</math> जोड़ीवार असंयुक्त हैं, गणनीय योगात्मकता <math>\mu</math>
चूंकि सभी समुच्चय <math>S_j\cap A_i</math> जोड़ीवार असंयुक्त हैं, गणनीय योगात्मकता <math>\mu</math>
हमें देता है
हमें देता है
:<math>
:<math>
Line 239: Line 240:
{{reflist}}
{{reflist}}
[[Category: प्रमाण युक्त लेख]] [[Category: कलन में प्रमेय]] [[Category: अनुक्रम और श्रृंखला]] [[Category: वास्तविक विश्लेषण में प्रमेय]] [[Category: माप सिद्धांत में प्रमेय]]  
[[Category: प्रमाण युक्त लेख]] [[Category: कलन में प्रमेय]] [[Category: अनुक्रम और श्रृंखला]] [[Category: वास्तविक विश्लेषण में प्रमेय]] [[Category: माप सिद्धांत में प्रमेय]]  
[[it:Passaggio al limite sotto segno di integrale#Integrale di Lebesg


[[Category: Machine Translated Page]]
[[Category: Machine Translated Page]]
[[Category:Created On 25/07/2023]]
[[Category:Created On 25/07/2023]]

Revision as of 23:23, 1 August 2023

वास्तविक विश्लेषण के गणितीय क्षेत्र में, मोनोटोन अभिसरण प्रमेय अनेक संबंधित प्रमेयों में से एक है जो मोनोटोनिक अनुक्रमों (ऐसे अनुक्रम जो गैर-घटते या गैर-बढ़ते हैं) के अभिसरण (गणित) को सिद्ध करना करते हैं जो कि बंधा हुआ कार्य भी हैं। इस प्रकार अनौपचारिक रूप से, प्रमेय बताते हैं कि यदि कोई अनुक्रम बढ़ रहा है और ऊपर सर्वोच्च से घिरा हुआ है, तब अनुक्रम सर्वोच्च में परिवर्तित हो जाएगा; उसी तरह, यदि कोई अनुक्रम घट रहा है और नीचे एक अनंत से घिरा है, तब यह अनंत में परिवर्तित हो जाएगा।

वास्तविक संख्याओं के मोनोटोन अनुक्रम का अभिसरण

लेम्मा 1

यदि वास्तविक संख्याओं का अनुक्रम बढ़ रहा है और ऊपर से घिरा हुआ है, तब इसकी सर्वोच्च सीमा है।

प्रमाण

होने देना ऐसा क्रम हो, और चलो की शर्तों का समुच्चय हो . अनुमान से, गैर-रिक्त है और ऊपर से घिरा हुआ है। इस प्रकार वास्तविक संख्याओं की न्यूनतम-ऊपरी-सीमा वाली संपत्ति द्वारा, अस्तित्व में है और सीमित है। अभी, प्रत्येक के लिए , वहां उपस्तिथ ऐसा है कि , अन्यथा से की ऊपरी सीमा है , जो की परिभाषा के विपरीत है . तब से बढ़ रहा है, और प्रत्येक के लिए इसकी ऊपरी सीमा है , अपने पास है . इसलिए, परिभाषा के अनुसार, की सीमा है।

लेम्मा 2

यदि वास्तविक संख्याओं का कोई क्रम घट रहा हो और नीचे परिबद्ध हो, तब उसकी न्यूनतम सीमा होती है।

प्रमाण

प्रमाण उस मामले के प्रमाण के समान है जब अनुक्रम बढ़ रहा है और ऊपर से घिरा हुआ है।

प्रमेय

यदि वास्तविक संख्याओं का मोनोटोन अनुक्रम है (अर्थात्, यदि anan+1 प्रत्येक n ≥ 1 और anan+1 प्रत्येक n ≥ 1) तो इस अनुक्रम की एक सीमित सीमा होती है यदि और केवल यदि अनुक्रम परिबद्ध अनुक्रम है।[1]

प्रमाण

  • "यदि" -दिशा: प्रमाण सीधे लेम्मा से आता है।
  • "केवल यदि" -दिशा: (ε, δ) द्वारा - सीमा की परिभाषा, प्रत्येक अनुक्रम सीमित सीमा के साथ आवश्यक रूप से परिबद्ध है।

एक मोनोटोन श्रृंखला का अभिसरण

प्रमेय

यदि सभी प्राकृतिक संख्याओं j और k के लिए, k, aj,k गैर-ऋणात्मक वास्तविक संख्या है और aj,kaj+1,k, तो[2]: 168 

प्रमेय कहता है कि यदि आपके पास गैर-ऋणात्मक वास्तविक संख्याओं का अनंत आव्युह है

  1. कॉलम अशक्त रूप से बढ़ रहे हैं और बंधे हुए हैं, और
  2. प्रत्येक पंक्ति के लिए, श्रृंखला (गणित) जिसके पद इस पंक्ति द्वारा दिए गए हैं, उसका एक अभिसरण योग है,

तब पंक्तियों के योग की सीमा उस श्रृंखला के योग के सामान्तर होती है जिसका पद k स्तंभ k की सीमा द्वारा दिया जाता है (जो इसका सर्वोच्च भी है)। श्रृंखला में अभिसरण योग होता है यदि और केवल यदि पंक्ति योगों का (अशक्त रूप से बढ़ता हुआ) क्रम परिबद्ध है और इसलिए अभिसरण है।

उदाहरण के तौर पर, पंक्तियों की अनंत श्रृंखला पर विचार करें

जहां n अनंत तक पहुंचता है (इस श्रृंखला की सीमा e (गणितीय स्थिरांक) है)। यहां पंक्ति n और कॉलम k में आव्युह प्रविष्टि है

कॉलम (निश्चित k) वास्तव में n के साथ अशक्त रूप से बढ़ रहे हैं और (1/k से!) बंधे हुए हैं, जबकि पंक्तियों में केवल सीमित रूप से अनेक गैर-शून्य पद हैं, इसलिए शर्त 2 संतुष्ट है; प्रमेय अभी कहता है कि आप पंक्ति योग की सीमा की गणना कर सकते हैं अर्थात्, स्तंभ सीमाओं का योग लेकर.

बेप्पो लेवी की लेम्मा

निम्नलिखित परिणाम बेप्पो लेवी के कारण है, जिन्होंने सत्र 1906 में हेनरी लेब्सग्यू द्वारा पहले के परिणाम का थोड़ा सा सामान्यीकरण सिद्ध करना किया था।[3] इस प्रकार जो आगे हुआ, को दर्शाता है - बोरेल का बीजगणित चालू होता है . परिभाषा से, समुच्चय सम्मिलित है और सभी बोरेल उपसमुच्चय

प्रमेय

होने देना माप हो (गणित), और . बिंदुवार गैर-घटते क्रम पर विचार करें का -मापने योग्य कार्य गैर-ऋणात्मक कार्य , अर्थात, प्रत्येक के लिए और हर ,

अनुक्रम की बिन्दुवार सीमा निर्धारित करें होना . अर्थात हर किसी के लिए ,

तब है -मापने योग्य और

टिप्पणी 1. अभिन्न अंग परिमित या अनंत हो सकते हैं।

टिप्पणी 2. यदि इसकी धारणाएँ मान्य हैं तब प्रमेय सत्य रहता है -लगभग हर स्थान। दूसरे शब्दों में, यह पर्याप्त है कि शून्य समुच्चय है ऐसा कि क्रम प्रत्येक के लिए गैर-कमी यह देखने के लिए कि यह सच क्यों है, हम अवलोकन से प्रारंभ करते हैं जो अनुक्रम की अनुमति देता है बिंदुवार गैर-घटाना लगभग हर स्थान इसकी बिंदुवार सीमा का कारण बनता है कुछ शून्य समुच्चय पर अपरिभाषित होना . उस शून्य समुच्चय पर, फिर इच्छानुसार से परिभाषित किया जा सकता है, उदाहरण के लिए शून्य के रूप में, या किसी अन्य तरीके से जो मापनीयता को सुरक्षित रखता है। यह देखने के लिए कि यह प्रमेय के परिणाम को प्रभावित क्यों नहीं करेगा, तब से ध्यान दें हमारे पास, हर किसी के लिए है

और

उसे उपलब्ध कराया है -मापने योग्य.[4]: धारा 21.38  (यह समानताएं गैर-ऋणात्मक फलन के लिए लेबेस्ग इंटीग्रल की परिभाषा से सीधे अनुसरण करती हैं)।

टिप्पणी 3. प्रमेय की मान्यताओं के अनुसार ,

(ध्यान दें कि समानता की दूसरी श्रृंखला टिप्पणी 5 से अनुसरण करती है)।

टिप्पणी 4. नीचे दिया गया प्रमाण यहां स्थापित किए गए को छोड़कर लेबेस्ग इंटीग्रल के किसी भी गुण का उपयोग नहीं करता है। इस प्रकार, प्रमेय का उपयोग लेबेस्ग एकीकरण से संबंधित अन्य बुनियादी गुणों, जैसे कि रैखिकता, को सिद्ध करना करने के लिए किया जा सकता है।

टिप्पणी 5 (लेबेस्ग इंटीग्रल की एकरसता)। नीचे दिए गए प्रमाण में, हम लेबेस्ग इंटीग्रल के मोनोटोनिक गुण को केवल गैर-ऋणात्मक कार्यों पर प्रयुक्त करते हैं। विशेष रूप से (टिप्पणी 4 देखें), कार्य करें होना -मापने योग्य.

  • यदि हर स्थान पर तब
  • यदि और तब

प्रमाण। निरूपित सरल का समुच्चय -मापने योग्य कार्य ऐसा है कि हर स्थान पर 1. चूँकि अपने पास

लेबेस्ग इंटीग्रल की परिभाषा और सुप्रीमम के गुणों के अनुसार,

2. चलो समुच्चय का सूचक कार्य हो इसका अनुमान लेबेस्ग इंटीग्रल की परिभाषा से लगाया जा सकता है

यदि हम उस पर ध्यान दें, प्रत्येक के लिए के बाहर पिछली संपत्ति के साथ संयुक्त, असमानता तात्पर्य

प्रमाण

यह प्रमाण फ़तौ की प्रमेयिका पर निर्भर नहीं करता है; चूँकि, हम बताते हैं कि उस लेम्मा का उपयोग कैसे किया जा सकता है। जो लोग प्रमाण की इस स्वतंत्रता में रुचि नहीं रखते हैं वह नीचे दिए गए मध्यवर्ती परिणामों को छोड़ सकते हैं।

मध्यवर्ती परिणाम

लेब्सग्यू माप के रूप में अभिन्न

लेम्मा 1. चलो मापने योग्य स्थान बनें. सरल पर विचार करें -मापने योग्य गैर-ऋणात्मक कार्य . उपसमुच्चय के लिए , परिभाषित करना

तब पर उपाय है .

प्रमाण

एकरसता टिप्पणी 5 से आती है। यहां, हम केवल गणनीय योगात्मकता सिद्ध करेंगे, बाकी पाठक पर छोड़ देंगे। होने देना , जहां सभी समुच्चय जोड़ीवार असंयुक्त हैं. सरलता के कारण,

कुछ परिमित गैर-ऋणात्मक स्थिरांकों के लिए और जोड़ीवार असंयुक्त समुच्चय ऐसा है कि . लेब्सेग इंटीग्रल की परिभाषा के अनुसार,

चूंकि सभी समुच्चय जोड़ीवार असंयुक्त हैं, गणनीय योगात्मकता

हमें देता है

चूँकि सभी सारांश गैर-ऋणात्मक हैं, श्रृंखला का योग, चाहे यह योग परिमित हो या अनंत, यदि योग क्रम बदलता है तब नहीं बदल सकता। इसी कारणवश,

आवश्यकता अनुसार।

"नीचे से निरंतरता"

निम्नलिखित संपत्ति माप की परिभाषा का प्रत्यक्ष परिणाम है।

लेम्मा 2. चलो उपाय हो, और , कहाँ

अपने सभी समुच्चयों के साथ गैर-घटती हुई श्रृंखला है -मापने योग्य. तब

प्रमेय का प्रमाण

चरण 1. हम इसे दिखाकर शुरुआत करते हैं है -मापने योग्य.[4]: धारा 21.3 

टिप्पणी। यदि हम फ़तौ की लेम्मा का उपयोग कर रहे थे, तब मापनीयता टिप्पणी 3(ए) से आसानी से अनुसरण करेगी।

फ़तौ के लेम्मा का उपयोग किए बिना ऐसा करने के लिए, यह दिखाना पर्याप्त है कि अंतराल की उलटी छवि अंतर्गत सिग्मा-बीजगणित का तत्व है पर , क्योंकि (बंद) अंतराल वास्तविक पर बोरेल सिग्मा बीजगणित उत्पन्न करते हैं। तब से बंद अंतराल है, और, प्रत्येक के लिए , ,

इस प्रकार,

एक के नीचे स्थापित बोरेल की उलटी छवि होना -मापने योग्य कार्य , गणनीय प्रतिच्छेदन में प्रत्येक समुच्चय का तत्व है . तब से -बीजगणित, परिभाषा के अनुसार, गणनीय प्रतिच्छेदन के अंतर्गत बंद होते हैं, इससे पता चलता है है -मापने योग्य, और अभिन्न अच्छी तरह से परिभाषित है (और संभवतः अनंत)।

चरण 2. हम सबसे पहले वो दिखाएंगे की परिभाषा और की एकरसता इसका कारणयह है , हरएक के लिए और हर . लेबेस्ग इंटीग्रल की एकरसता (या, अधिक त्रुटिहीन रूप से, रिमार्क 5 में स्थापित इसका संकीर्ण संस्करण; रिमार्क 4 भी देखें) द्वारा,

और

ध्यान दें कि दाईं ओर की सीमा उपस्तिथ है (सीमित या अनंत) क्योंकि, एकरसता के कारण (टिप्पणी 5 और टिप्पणी 4 देखें), अनुक्रम गैर-घटता नहीं है।

चरण 2 का अंत.

अभी हम विपरीत असमानता को सिद्ध करते हैं। हम यह दिखाना चाहते हैं

.

फ़तौ की लेम्मा का उपयोग करके प्रमाण। टिप्पणी 3 के अनुसार, जिस असमानता को हम सिद्ध करना चाहते हैं वह इसके समतुल्य है

किन्तु पश्चात् वाला फ़तौ की लेम्मा से तुरंत अनुसरण करता है, और प्रमाण पूरा हो गया है।

स्वतंत्र प्रमाण. फ़तौ की लेम्मा का उपयोग किए बिना असमानता को सिद्ध करना करने के लिए, हमें कुछ अतिरिक्त मशीनरी की आवश्यकता है। निरूपित सरल का समुच्चय -मापने योग्य कार्य ऐसा है कि पर .

चरण 3. सरल कार्य दिया गया है और वास्तविक संख्या , परिभाषित करना

तब , , और .

चरण 3ए. पहले दावे को सिद्ध करना करने के लिए आइए , जोड़ीवार असंयुक्त मापन योग्य समुच्चयों के कुछ सीमित संग्रह के लिए ऐसा है कि , कुछ (परिमित) गैर-ऋणात्मक स्थिरांक , और समुच्चय के सूचक फलन को दर्शाते हुए .

हरएक के लिए यदि और केवल यदि धारण करता है यह देखते हुए कि समुच्चय जोड़ीवार असंयुक्त हैं,

पूर्व छवि के पश्चात् से बोरेल समुच्चय का

मापने योग्य फलन के अंतर्गत मापने योग्य है, और -बीजगणित, परिभाषा के अनुसार, परिमित प्रतिच्छेदन और संघों के अंतर्गत बंद हैं, पहला प्रामाणित इस प्रकार है।

चरण 3बी. दूसरे दावे को सिद्ध करना करने के लिए, प्रत्येक के लिए उस पर ध्यान दें और हर ,

चरण 3सी. तीसरे दावे को सिद्ध करना करने के लिए हम उसे दिखाते हैं .

वास्तव में, यदि, इसके विपरीत, , फिर तत्व

ऐसा उपस्तिथ है , हर एक के लिए . सीमा मान कर , हम पाते हैं

किन्तु प्रारंभिक धारणा से, . यह विरोधाभास है.

चरण 4. हर सरल के लिए -मापने योग्य गैर-ऋणात्मक कार्य ,

इसे सिद्ध करने के लिए परिभाषित करें . लेम्मा 1 द्वारा, पर उपाय है . नीचे से निरंतरता द्वारा (लेम्मा 2),

आवश्यकता अनुसार।

चरण 5. अभी हम इसे प्रत्येक के लिए सिद्ध करते हैं ,

मुख्य रूप से, की परिभाषा का उपयोग करते हुए , की गैर-ऋणात्मकता , और लेबेस्ग इंटीग्रल की एकरसता (टिप्पणी 5 और रिमार्क 4 देखें), हमारे पास है

हरएक के लिए . चरण 4 के अनुसार, जैसे , असमानता हो जाती है

सीमा मान कर पैप्रामाणित र

आवश्यकता अनुसार।

चरण 6. अभी हम विपरीत असमानता को सिद्ध करने में सक्षम हैं, अर्थात।

मुख्य रूप से, गैर-ऋणात्मकता से, और नीचे दी गई गणना के लिए, की गैर-ऋणात्मकता आवश्यक है। लेबेस्ग इंटीग्रल की परिभाषा और चरण 5 में स्थापित असमानता को प्रयुक्त करने पर, हमारे पास है

प्रमाण पूरा है.

यह भी देखें

टिप्पणियाँ

  1. A generalisation of this theorem was given by Bibby, John (1974). "Axiomatisations of the average and a further generalisation of monotonic sequences". Glasgow Mathematical Journal. 15 (1): 63–65. doi:10.1017/S0017089500002135.
  2. See for instance Yeh, J. (2006). Real Analysis: Theory of Measure and Integration. Hackensack, NJ: World Scientific. ISBN 981-256-653-8.
  3. Schappacher, Norbert; Schoof, René (1996), "Beppo Levi and the arithmetic of elliptic curves" (PDF), The Mathematical Intelligencer, 18 (1): 60, doi:10.1007/bf03024818, MR 1381581, S2CID 125072148, Zbl 0849.01036
  4. 4.0 4.1 See for instance Schechter, Erik (1997). Handbook of Analysis and Its Foundations. San Diego: Academic Press. ISBN 0-12-622760-8.