नेट (गणित): Difference between revisions
Line 65: | Line 65: | ||
यदि समुच्चय <math>S = \{x\} \cup \left\{x_a : a \in A\right\}</math> <math>X,</math> द्वारा प्रेरित [[सबस्पेस टोपोलॉजी|उप अंतराल सांस्थितिकी]] से संपन्न है, तो <math>\lim_{} x_\bull \to x</math> <math>X</math> में यदि और केवल अगर <math>\lim_{} x_\bull \to x</math> <math>S</math> में। इस तरह, नेट <math>x_\bull</math> दिए गए बिंदु <math>x</math> पर अभिसरण करता है या नहीं, यह सवाल पूरी तरह से इस सांस्थितिक उप अंतराल <math>S</math> पर निर्भर करता है जिसमें <math>x</math> और (अर्थात, बिंदु) नेट <math>x_\bull</math> का [[छवि (गणित)|चित्र]] सम्मिलित है। | यदि समुच्चय <math>S = \{x\} \cup \left\{x_a : a \in A\right\}</math> <math>X,</math> द्वारा प्रेरित [[सबस्पेस टोपोलॉजी|उप अंतराल सांस्थितिकी]] से संपन्न है, तो <math>\lim_{} x_\bull \to x</math> <math>X</math> में यदि और केवल अगर <math>\lim_{} x_\bull \to x</math> <math>S</math> में। इस तरह, नेट <math>x_\bull</math> दिए गए बिंदु <math>x</math> पर अभिसरण करता है या नहीं, यह सवाल पूरी तरह से इस सांस्थितिक उप अंतराल <math>S</math> पर निर्भर करता है जिसमें <math>x</math> और (अर्थात, बिंदु) नेट <math>x_\bull</math> का [[छवि (गणित)|चित्र]] सम्मिलित है। | ||
=== कार्तीय | === कार्तीय गुणनफल में सीमाएं === | ||
[[उत्पाद स्थान| | [[उत्पाद स्थान|गुणनफल अंतराल]] में नेट की सीमा होती है यदि और केवल यदि प्रत्येक प्रक्षेपण की सीमा होती है। | ||
स्पष्ट रूप से, मान लीजिए <math>\left(X_i\right)_{i \in I}</math> सांस्थितिक अंतराल हो, उनके कार्तीय | स्पष्ट रूप से, मान लीजिए <math>\left(X_i\right)_{i \in I}</math> सांस्थितिक अंतराल हो, उनके कार्तीय गुणनफल को समाप्त करें<math display="block">{\textstyle\prod} X_\bull := \prod_{i \in I} X_i</math>[[उत्पाद टोपोलॉजी|गुणनफल सांस्थितिकी]] के साथ, और वह प्रत्येक सूचकांक <math>l \in I,</math> के लिए <math>X_l</math> द्वारा विहित प्रक्षेपण को दर्शाता है<math display="block">\begin{alignat}{4} | ||
\pi_l :\;&& {\textstyle\prod} X_\bull &&\;\to\;& X_l \\[0.3ex] | \pi_l :\;&& {\textstyle\prod} X_\bull &&\;\to\;& X_l \\[0.3ex] | ||
&& \left(x_i\right)_{i \in I} &&\;\mapsto\;& x_l \\ | && \left(x_i\right)_{i \in I} &&\;\mapsto\;& x_l \\ | ||
Line 91: | Line 91: | ||
<math>x \in X,</math> <math>x</math> पर एक अल्ट्रानेट क्लस्टर दिया गया है यदि और केवल यह <math>x</math> में परिवर्तित होता है।{{sfn|Willard|2004|pp=73-77}} | <math>x \in X,</math> <math>x</math> पर एक अल्ट्रानेट क्लस्टर दिया गया है यदि और केवल यह <math>x</math> में परिवर्तित होता है।{{sfn|Willard|2004|pp=73-77}} | ||
=== | === नेट की सीमाओं के उदाहरण === | ||
अनुक्रम की प्रत्येक सीमा और किसी फलन की सीमा की व्याख्या | अनुक्रम की प्रत्येक सीमा और किसी फलन की सीमा की व्याख्या नेट की सीमा के रूप में की जा सकती है (जैसा कि नीचे वर्णित है)। | ||
[[रीमैन इंटीग्रल]] के | [[रीमैन इंटीग्रल|रीमैन समाकल]] के मान की परिभाषा को [[रीमैन योग]] के नेट की सीमा के रूप में व्याख्या किया जा सकता है जहां नेट का निर्देशित समुच्चय समाकलन के अंतराल के सभी विभाजनों का समुच्चय है, आंशिक रूप से समावेशन द्वारा आदेशित है। | ||
प्रोटोटाइप <math>f : \Reals \to \Reals</math> के साथ सभी फलनों के समुच्चय <math>\Reals^\Reals</math> को कार्तीय गुणनफल <math>{\textstyle\prod\limits_{x \in \Reals}} \Reals</math> के रूप में व्याख्या करें (टपल <math>(f(x))_{x \in \Reals},</math> के साथ फलन <math>f</math> की पहचान करके और इसके विपरीत) और इसे गुणनफल सांस्थितिकी के साथ समाप्त करें। <math>\Reals^\Reals</math> पर यह (गुणनफल) सांस्थितिकी [[बिंदुवार अभिसरण की टोपोलॉजी|बिंदुवार अभिसरण की सांस्थितिकी]] के समान है। माना <math>E</math> सभी फलनों के समुच्चय को इंगित करता है <math>f : \Reals \to \{0, 1\}</math> जो कि प्रत्येक स्थान <math>1</math> के बराबर हैं, बजाय इसके कि बहुत से बिंदु हैं (अर्थात, जैसे कि समुच्चय <math>\{x : f(x) = 0\}</math> परिमित है) फिर सतत <math>0</math> फलन <math>\mathbf{0} : \Reals \to \{0\}</math>, <math>\Reals^\Reals</math> में <math>E</math> के समापन होने से संबंधित है, अर्थात, <math>\mathbf{0} \in \operatorname{cl}_{\Reals^\Reals} E</math>।{{sfn|Willard|2004|p=77}} यह <math>E</math> में नेट बनाकर सिद्ध किया जाएगा जो कि <math>\mathbf{0}</math> में अभिसरण करता है। हालाँकि, <math>E</math> में ऐसा कोई अनुक्रम उपस्थित नहीं है जो <math>\mathbf{0}</math> में अभिसरण करता है{{sfn|Willard|2004|pp=71-72}} जो इसे उदाहरण बनाता है जहाँ (गैर-अनुक्रम) नेट का उपयोग किया जाना चाहिए क्योंकि केवल अनुक्रम वांछित निष्कर्ष तक नहीं पहुँच सकते है। सभी <math>x</math> के लिए <math>f \geq g</math> यदि और केवल अगर <math>f(x) \geq g(x)</math> की घोषणा करके सामान्य तरीके से <math>\Reals^\Reals</math> के अल्पांशों की तुलना करें। यह बिंदुवार तुलना आंशिक क्रम है जो <math>(E, \geq)</math> को एक निर्देशित समुच्चय बनाता है क्योंकि किसी भी <math>f, g \in E</math> को दिए जाने के बाद से उनका बिंदुवार न्यूनतम <math>m := \min \{f, g\}</math> <math>E</math> से संबंधित है और <math>f \geq m</math> और <math>g \geq m.</math> को संतुष्ट करता है। यह आंशिक क्रम [[पहचान मानचित्र]] <math>\operatorname{Id} : (E, \geq) \to E</math> (<math>f \mapsto f</math> द्वारा परिभाषित) को <math>E</math>-मूल्यवान नेट में बदल देता है। यह नेट <math>\Reals^\Reals</math> में <math>\mathbf{0}</math> के लिए बिंदुवार परिवर्तित होता है जिसका अर्थ है कि <math>\mathbf{0}</math> <math>\Reals^\Reals</math> में <math>E</math> के समापन होने के अंतर्गत आता है। | |||
== उदाहरण == | == उदाहरण == | ||
Revision as of 19:03, 10 May 2023
गणित में, विशेष रूप से सामान्य सांस्थितिकी और संबंधित शाखाओं में, नेट या मूर-स्मिथ अनुक्रम अनुक्रम की धारणा का सामान्यीकरण है। संक्षेप में, अनुक्रम एक ऐसा फलन है जिसका क्षेत्र प्राकृतिक संख्याएं हैं। इस फलन का सहक्षेत्र प्रायः कुछ सांस्थितिक अंतराल होता है।
अनुक्रम की धारणा को सामान्य बनाने के लिए प्रेरणा यह है कि, सांस्थितिकी के संदर्भ में, अनुक्रम सांस्थितिक अंतराल के बीच फलनों के बारे में सभी सूचनाओं को पूरी तरह से एन्कोड नहीं करते हैं। विशेष रूप से, निम्नलिखित दो स्थितियाँ, सामान्य रूप से, सांस्थितिक अंतराल और के बीच के मानचित्र के समतुल्य नहीं हैं-
- मानचित्र सांस्थितिक अर्थों में सतत है
- किसी भी बिंदु में, और में किसी भी अनुक्रम को में परिवर्तित करने के लिए, इस अनुक्रम के साथ की संरचना (अनुक्रमिक अर्थ में सतत) में परिवर्तित हो जाती है।
जबकि शर्त 1 हमेशा शर्त 2 की गारंटी देती है, यदि सांस्थितिक अंतराल दोनों प्रथम-गणनीय नहीं हैं, तो इसका विपरीत आवश्यक रूप से सत्य नहीं है। विशेष रूप से, दो शर्तें मीट्रिक अंतरालों के लिए समान हैं। वे अंतराल जिनके लिए व्युत्क्रम धारण करती है अनुक्रमिक अंतराल हैं।
नेट की अवधारणा, प्रथम बार 1922 में ई. एच. मूर और हरमन एल. स्मिथ द्वारा पेश की गई थी,[1] जो अनुक्रम की धारणा को सामान्य बनाने के लिए है। ताकि उपरोक्त शर्तें ("अनुक्रम" को शर्त 2 में "नेट" द्वारा प्रतिस्थापित किया जा रहा है) वास्तव में सांस्थितिक अंतराल के सभी मानचित्रों के बराबर हैं। विशेष रूप से, गणनीय रैखिक रूप से क्रमित समुच्चय पर परिभाषित होने के स्थान पर, नेट को मनमाने ढंग से निर्देशित समुच्चय पर परिभाषित किया जाता है। यह प्रमेय के समान प्रमेय की अनुमति देता है कि उपरोक्त शर्त 1 और 2 सांस्थितिक अंतराल के संदर्भ में धारण करने के बराबर हैं, जो जरूरी नहीं कि एक बिंदु के आसपास गणनीय या रैखिक रूप से क्रमित प्रतिवेश आधार हो। इसलिए, जबकि अनुक्रम सांस्थितिक अंतराल के बीच फलनों के बारे में पर्याप्त जानकारी को एनकोड नहीं करते हैं, नेट करते हैं, क्योंकि सांस्थितिक अंतराल में विवृत समुच्चय का संग्रह व्यवहार में निर्देशित समुच्चय की तरह होता है। "नेट" शब्द जॉन एल. केली द्वारा दिया गया था।[2][3]
नेट सांस्थितिकी में उपयोग किए जाने वाले कई उपकरणों में से एक हैं, जो कुछ अवधारणाओं को सामान्य बनाने के लिए उपयोग किए जाते हैं जो मीट्रिक अंतरालों के संदर्भ में पर्याप्त सामान्य नहीं हो सकते हैं। संबंधित धारणा, फ़िल्टर की, 1937 में हेनरी कार्टन द्वारा विकसित की गई थी।
परिभाषाएँ
कोई भी फलन जिसका क्षेत्र निर्देशित समुच्चय है, उसे नेट कहा जाता है। यदि यह फलन किसी समुच्चय में मान लेता है तो इसे में नेट के रूप में भी संदर्भित किया जा सकता है।
स्पष्ट रूप से, में नेट के रूप का फलन है जहां कुछ निर्देशित समुच्चय है। नेट के क्षेत्र के अल्पांशों को इसका सूचकांक कहा जाता है। एक निर्देशित समुच्चय अरिक्त समुच्चय है जो पूर्वक्रम के साथ होता है, प्रायः स्वचालित रूप से (जब तक अन्यथा इंगित नहीं किया जाता है) द्वारा दर्शाया जाता है, गुण के साथ यह भी (ऊपर की ओर) निर्देशित होता है, जिसका अर्थ है कि किसी भी के लिए कुछ का अस्तित्व है जैसे कि और । शब्दों में, इस गुण का अर्थ है कि किसी भी दो अल्पांशों () के दिए जाने पर, सदैव कुछ ऐसा अल्पांश होता है जो दोनों के "ऊपर" होता है (अर्थात, उनमें से प्रत्येक से अधिक या उसके बराबर) इस तरह, निर्देशित समुच्चय गणितीय रूप से परिशुद्ध तरीके से "एक दिशा" की धारणा को सामान्यीकृत करते हैं। प्राकृतिक संख्या सामान्य पूर्णांक तुलना पूर्वक्रम के साथ मिलकर निर्देशित समुच्चय का आदर्श उदाहरण बनाती हैं। वास्तव में, नेट जिसका क्षेत्र प्राकृतिक संख्या है, एक अनुक्रम है क्योंकि परिभाषा के अनुसार, में अनुक्रम से में केवल एक फलन है। यह इस प्रकार है कि नेट्स अनुक्रमों का सामान्यीकरण है। महत्वपूर्ण रूप से, हालांकि, प्राकृतिक संख्याओं के विपरीत, निर्देशित समुच्चयों को कुल क्रम या आंशिक क्रम होने की आवश्यकता नहीं है। इसके अलावा, निर्देशित समुच्चय में सबसे बड़े अल्पांश और/या अधिकतम अल्पांश होने की अनुमति है, यही कारण है कि नेट का उपयोग करते समय, प्रेरित विशुद्ध पूर्वक्रम के स्थान पर मूल (अविशुद्ध) पर्वक्रम , विशेष रूप से, यदि निर्देशित समुच्चय, में सबसे बड़ा अल्पांश है तो कोई भी उपस्थित नहीं है, जैसे कि (इसके विपरीत, वहाँ सदैव कुछ उपस्थित हैं जैसे कि ।
नेट को प्रायः अंकन का उपयोग करके निरूपित किया जाता है जो अनुक्रमों के साथ उपयोग किए जाने वाले (और प्रेरित) के समान होता है। में नेट को द्वारा दर्शाया जा सकता है, जहां अन्यथा सोचने का कोई कारण नहीं है, यह स्वचालित रूप से माना जाना चाहिए कि समुच्चय निर्देशित है और इससे संबंधित पूर्वक्रम को द्वारा दर्शाया जाता है। हालाँकि, नेट के लिए अंकन कुछ लेखकों के साथ भिन्न होता है, उदाहरण के लिए, कोष्ठक के स्थान पर कोण वाले कोष्ठक का उपयोग करते हैं। में नेट को के रूप में भी लिखा जा सकता है, जो इस तथ्य को व्यक्त करता है कि यह नेट एक फलन है, जिसका मान इसके क्षेत्र में तत्व पर द्वारा दर्शाया जाता है, बजाय सामान्य कोष्ठक संकेतन के जिसका प्रायः उपयोग किया जाता है फलनों के साथ (यह पादांक नोटेशन अनुक्रमों से लिया जा रहा है)। जैसे कि बीजगणितीय सांस्थितिकी के क्षेत्र में, भरी हुई डिस्क या "बुलेट" उस स्थान को दर्शाती है जहां नेट के लिए तर्क (अर्थात, नेट के क्षेत्र के अल्पांश ) रखे गए हैं यह महत्त्व देने में सहायता करता है कि नेट एक फलन है और उन सूचकांक और अन्य प्रतीकों की संख्या को भी कम करता है जिन्हें बाद में संदर्भित करते समय लिखा जाना चाहिए।
नेट मुख्य रूप से विश्लेषण और सांस्थितिकी के क्षेत्र में उपयोग किए जाते हैं, जहां उनका उपयोग कई महत्वपूर्ण सांस्थितिक गुणों को चित्रित करने के लिए किया जाता है, जो (सामान्य रूप से), अनुक्रमों को चिह्नित (अनुक्रमों की यह कमी अनुक्रमिक अंतराल और फ्रेचेट-उरीसोन अंतराल के अध्ययन को प्रेरित करती है) करने में असमर्थ हैं। नेट फिल्टर से घनिष्ठ रूप से संबंधित हैं, जिनका उपयोग प्रायः सांस्थितिकी में भी किया जाता है। प्रत्येक नेट फिल्टर से जुड़ा हो सकता है और प्रत्येक फिल्टर नेट से जुड़ा हो सकता है, जहां इन संबद्ध वस्तुओं के गुणों को एक साथ जोड़ा जाता है (अधिक विवरण के लिए सांस्थितिकी में फिल्टर के बारे में लेख देखें)। नेट प्रत्यक्ष रूप से अनुक्रमों का सामान्यीकरण करते हैं और वे प्रायः अनुक्रमों के समान ही उपयोग किए जा सकते हैं। नतीजतन, नेट का उपयोग करने के लिए सीखने की अवस्था प्रायः फिल्टर की तुलना में बहुत कम होती है, यही वजह है कि कई गणितज्ञ, विशेष रूप से विश्लेषक, उन्हें फिल्टर पर पसंद करते हैं। हालांकि, फिल्टर, और विशेष रूप से अल्ट्राफिल्टर, नेट पर कुछ महत्वपूर्ण तकनीकी लाभ हैं, जिसके परिणामस्वरूप अंततः विश्लेषण और सांस्थितिकी के क्षेत्र के बाहर फिल्टर की तुलना में नेट का सामना बहुत कम होता है।
सबनेट केवल के निर्देशित उपसमुच्चय के लिए नेट का प्रतिबंध नहीं है, परिभाषा के लिए लिंक किए गए पृष्ठ को देखें।
नेट्स के उदाहरण
प्रत्येक अरिक्त पूर्णतः क्रमित समुच्चय को निर्देशित किया जाता है। इसलिए, ऐसे समुच्चय का प्रत्येक फलन एक नेट होता है। विशेष रूप से, सामान्य क्रम वाली प्राकृतिक संख्याएं इस तरह के समुच्चय का निर्माण करती हैं, और अनुक्रम प्राकृतिक संख्याओं पर फलन होता है, इसलिए प्रत्येक अनुक्रम नेट होता है।
एक अन्य महत्वपूर्ण उदाहरण इस प्रकार है। सांस्थितिक अंतराल में एक बिंदु दिया गया है, माना वाले सभी प्रतिवेशों के समुच्चय को दर्शाता है। फिर निर्देशित समुच्चय है, जहां विपरीत समावेशन द्वारा दिशा दी जाती है, ताकि यदि और केवल यदि , में निहित हो। माना के लिए को में बिंदु हैं। तब नेट है। जैसे ही के संबंध में बढ़ता है, बिंदु नेट में, के घटते प्रतिवेश में लाई के लिए विवश हैं, इसलिए सहज रूप से बोलना, हम इस विचार की ओर अग्रसर हैं कि को किसी अर्थ में की ओर प्रवृत्त होना चाहिए। हम इस सीमित अवधारणा को सटीक बना सकते हैं।
एक अनुक्रम का सबनेट आवश्यक नहीं कि अनुक्रम हो।[4] उदाहरण के लिए, मान लीजिए और मान लीजिए प्रत्येक के लिए, ताकि सतत शून्य क्रम हो। मान लीजिए को सामान्य क्रम द्वारा निर्देशित किया जाता है और प्रत्येक के लिए है। को को की सीमा मान कर परिभाषित करें। मानचित्र क्रम आकारिकी है जिसका चित्र इसके सहक्षेत्र में अंतिम है और प्रत्येक के लिए है। इससे पता चलता है कि अनुक्रम का एक सबनेट है (जहां यह सबनेट का अनुवर्ती नहीं है क्योंकि यह अनुक्रम भी नहीं है क्योंकि इसका क्षेत्र अगणनीय समुच्चय है)।
नेट की सीमाएँ
नेट को समुच्चय में अंततः या अवशिष्ट रूप से कहा जाता है यदि कुछ उपस्थित है जैसे कि प्रत्येक के साथ बिंदु । और इसे में बार-बार या अंतिम रूप से कहा जाता है यदि प्रत्येक के लिए कुछ उपस्थित है जैसे कि और ।[4] बिंदु को नेट का एक सीमा बिंदु (क्रमशः, क्लस्टर बिंदु) कहा जाता है यदि वह नेट अंततः (क्रमशः, अंतिम रूप से) उस बिंदु के प्रत्येक प्रतिवेश में होता है।
स्पष्ट रूप से, बिंदु को नेट का संचय बिंदु या गुच्छ बिंदु कहा जाता है यदि के प्रत्येक प्रतिवेश के लिए, नेट प्रायः में होता है।[4]
बिंदु को में नेट की सीमा बिंदु या सीमा कहा जाता है यदि (और केवल अगर)
- के प्रत्येक विवृत प्रतिवेश के लिए, नेट अंततः में है,
किस स्थिति में, इस नेट को तब की ओर अभिसरण करने के लिए और को एक सीमा के रूप में रखने के लिए भी कहा जाता है।
सहज रूप से, नेट के अभिसरण का अर्थ है कि मान आते हैं और उतने ही समीप रहते हैं जितना हम चाहते हैं कि पर्याप्त बड़ा के लिए हो। एक बिंदु के प्रतिवेश प्रणाली पर ऊपर दिया गया उदाहरण नेट वास्तव में इस परिभाषा के अनुसार में अभिसरण करता है।
सीमाओं के लिए संकेतन
यदि नेट में बिंदु पर अभिसरित होता है तो इस तथ्य को निम्न में से किसी को लिखकर व्यक्त किया जा सकता है-
आधार और उप आधार
पर सांस्थितिकी के लिए उप आधार दिया गया है (जहां ध्यान दें कि सांस्थितिकी के लिए प्रत्येक आधार भी उप आधार है) और दिया गया बिंदु नेट में अभिसरण करता है यदि और केवल यदि यह अंततः के प्रत्येक प्रतिवेश में है। यह लक्षण वर्णन दिए गए बिंदु के प्रतिवेश के उप आधारों (और इसी तरह प्रतिवेश के आधार) तक फैला हुआ है।
मीट्रिक अंतराल में अभिसरण
मान लीजिए कि मीट्रिक अंतराल (या एक स्यूडोमेट्रिक अंतराल) है और मीट्रिक सांस्थितिकी से संपन्न है। यदि बिंदु है और नेट है, तो में यदि और केवल यदि जहां वास्तविक संख्याओं का नेट है। सामान्य अंग्रेजी में, यह विशेषता कहती है कि नेट मीट्रिक अंतराल में बिंदु पर अभिसरण करता है यदि और केवल अगर नेट और बिंदु के बीच की दूरी शून्य हो जाती है। यदि एक आदर्श स्थान (या एक सेमिनोर्म्ड अंतराल) है तो में यदि और केवल यदि में जहां है।
सांस्थितिक उप-अंतरालों में अभिसरण
यदि समुच्चय द्वारा प्रेरित उप अंतराल सांस्थितिकी से संपन्न है, तो में यदि और केवल अगर में। इस तरह, नेट दिए गए बिंदु पर अभिसरण करता है या नहीं, यह सवाल पूरी तरह से इस सांस्थितिक उप अंतराल पर निर्भर करता है जिसमें और (अर्थात, बिंदु) नेट का चित्र सम्मिलित है।
कार्तीय गुणनफल में सीमाएं
गुणनफल अंतराल में नेट की सीमा होती है यदि और केवल यदि प्रत्येक प्रक्षेपण की सीमा होती है।
स्पष्ट रूप से, मान लीजिए सांस्थितिक अंतराल हो, उनके कार्तीय गुणनफल को समाप्त करें
टाइकोनॉफ की प्रमेय और चयन के स्वयंसिद्ध से संबंध
यदि कोई नहीं दिया गया है, लेकिन प्रत्येक के लिए कुछ उपस्थित है जैसे कि में है तो द्वारा परिभाषित टपल में की एक सीमा होगी। हालाँकि, यह निष्कर्ष निकालने के लिए चयन के स्वयंसिद्ध को ग्रहण करने की आवश्यकता हो सकती है कि यह टपल उपस्थित है कुछ स्थितियों में चयन की अभिगृहीत की आवश्यकता नहीं होती है, जैसे कि जब परिमित होता है या जब प्रत्येक नेट की अद्वितीय सीमा होती है (क्योंकि तब इसके बीच चयन करने के लिए कुछ नहीं होता है), जो उदाहरण के लिए होता है, जब प्रत्येक एक हॉसडॉर्फ अंतराल है। यदि अनंत है और खाली नहीं है, तो चयन के स्वयंसिद्ध (सामान्य रूप से) अभी भी यह निष्कर्ष निकालने की आवश्यकता होगी कि अनुमान विशेषण मानचित्र हैं।
चयन का स्वयंसिद्ध टाइकोनॉफ के प्रमेय के बराबर है, जिसमें कहा गया है कि सघन सांस्थितिक अंतराल के किसी भी संग्रह का गुणन सघन है। लेकिन यदि प्रत्येक सघन अंतराल हॉसडॉर्फ भी है, तो तथाकथित "सघन हौसडॉर्फ अंतराल के लिए टाइकोनॉफ प्रमेय" का उपयोग किया जा सकता है, जो अल्ट्राफिल्टर लेम्मा के बराबर है और इसलिए चयन के स्वयंसिद्ध से दृढ़ता से दुर्बल है। ऊपर दिए गए नेट अभिसरण के विशेषीकरण वर्णन का उपयोग करके टाइकोनॉफ के प्रमेय के दोनों संस्करणों के लघु प्रमाण देने के लिए नेट का उपयोग इस तथ्य के साथ किया जा सकता है कि स्थान सघन है यदि और केवल अगर प्रत्येक नेट में एक अभिसारी सबनेट है।
नेट के क्लस्टर बिंदु
बिंदु किसी दिए गए नेट का एक क्लस्टर बिंदु है यदि और केवल यदि इसका उपसमुच्चय है जो में अभिसरण करता है।[8] यदि , में एक नेट है, तो में के सभी क्लस्टर बिंदुओं का समुच्चय बराबर है[7]
अल्ट्रानेट
समुच्चय में नेट को सार्वभौमिक नेट या अल्ट्रानेट कहा जाता है यदि प्रत्येक उपसमुच्चय के लिए, अंततः में है या अंततः पूरक में है।[4] अल्ट्रानेट अल्ट्राफिल्टर से निकटता से संबंधित हैं।
प्रत्येक सतत नेट अल्ट्रानेट है। अल्ट्रानेट का प्रत्येक सबनेट एक अल्ट्रानेट होता है।[7] प्रत्येक नेट का कुछ सबनेट होता है जो कि अल्ट्रानेट होता है।[4] यदि , में अल्ट्रानेट है और फलन है तो में अल्ट्रानेट है।[4]
पर एक अल्ट्रानेट क्लस्टर दिया गया है यदि और केवल यह में परिवर्तित होता है।[4]
नेट की सीमाओं के उदाहरण
अनुक्रम की प्रत्येक सीमा और किसी फलन की सीमा की व्याख्या नेट की सीमा के रूप में की जा सकती है (जैसा कि नीचे वर्णित है)।
रीमैन समाकल के मान की परिभाषा को रीमैन योग के नेट की सीमा के रूप में व्याख्या किया जा सकता है जहां नेट का निर्देशित समुच्चय समाकलन के अंतराल के सभी विभाजनों का समुच्चय है, आंशिक रूप से समावेशन द्वारा आदेशित है।
प्रोटोटाइप के साथ सभी फलनों के समुच्चय को कार्तीय गुणनफल के रूप में व्याख्या करें (टपल के साथ फलन की पहचान करके और इसके विपरीत) और इसे गुणनफल सांस्थितिकी के साथ समाप्त करें। पर यह (गुणनफल) सांस्थितिकी बिंदुवार अभिसरण की सांस्थितिकी के समान है। माना सभी फलनों के समुच्चय को इंगित करता है जो कि प्रत्येक स्थान के बराबर हैं, बजाय इसके कि बहुत से बिंदु हैं (अर्थात, जैसे कि समुच्चय परिमित है) फिर सतत फलन , में के समापन होने से संबंधित है, अर्थात, ।[7] यह में नेट बनाकर सिद्ध किया जाएगा जो कि में अभिसरण करता है। हालाँकि, में ऐसा कोई अनुक्रम उपस्थित नहीं है जो में अभिसरण करता है[9] जो इसे उदाहरण बनाता है जहाँ (गैर-अनुक्रम) नेट का उपयोग किया जाना चाहिए क्योंकि केवल अनुक्रम वांछित निष्कर्ष तक नहीं पहुँच सकते है। सभी के लिए यदि और केवल अगर की घोषणा करके सामान्य तरीके से के अल्पांशों की तुलना करें। यह बिंदुवार तुलना आंशिक क्रम है जो को एक निर्देशित समुच्चय बनाता है क्योंकि किसी भी को दिए जाने के बाद से उनका बिंदुवार न्यूनतम से संबंधित है और और को संतुष्ट करता है। यह आंशिक क्रम पहचान मानचित्र ( द्वारा परिभाषित) को -मूल्यवान नेट में बदल देता है। यह नेट में के लिए बिंदुवार परिवर्तित होता है जिसका अर्थ है कि में के समापन होने के अंतर्गत आता है।
उदाहरण
टोपोलॉजिकल स्पेस में अनुक्रम
एक क्रम एक टोपोलॉजिकल स्पेस में में नेट माना जा सकता है पर परिभाषित नेट अंततः एक सबसेट में है का यदि कोई मौजूद है ऐसा है कि हर पूर्णांक के लिए बिंदु में है इसलिए अगर और केवल अगर हर पड़ोस के लिए का नेट अंत में अंदर है नेट अक्सर एक सबसेट में होता है का यदि और केवल यदि प्रत्येक के लिए कुछ पूर्णांक मौजूद है ऐसा है कि यानी, अगर और केवल अगर अनुक्रम के असीमित रूप से कई तत्व अंदर हैं इस प्रकार एक बिंदु नेट का एक क्लस्टर बिंदु है अगर और केवल अगर हर पड़ोस का अनुक्रम के असीमित रूप से कई तत्व शामिल हैं।
मेट्रिक स्पेस से टोपोलॉजिकल स्पेस तक फंक्शन
एक बिंदु ठीक करें एक मीट्रिक अंतरिक्ष में जिसमें कम से कम दो बिंदु हों (जैसे यूक्लिडियन मीट्रिक के साथ मूल होना, उदाहरण के लिए) और सेट को निर्देशित करें से दूरी के अनुसार उलटा यह घोषित करके अगर और केवल अगर दूसरे शब्दों में, संबंध की कम से कम समान दूरी है के रूप में, इसलिए कि इस संबंध के संबंध में काफी बड़े का मतलब काफी करीब है . डोमेन के साथ कोई फ़ंक्शन दिया गया इसके लिए प्रतिबंध द्वारा निर्देशित नेट के रूप में कैनोनिक रूप से व्याख्या की जा सकती है [7]
एक शुद्ध अंततः एक उपसमुच्चय में है एक टोपोलॉजिकल स्पेस का अगर और केवल अगर कुछ मौजूद है ऐसा कि प्रत्येक के लिए संतुष्टि देने वाला बिंदु में है ऐसा जाल में विलीन हो जाता है किसी दिए गए बिंदु पर अगर और केवल अगर सामान्य अर्थों में (जिसका अर्थ है कि हर पड़ोस के लिए का अंत में है ).[7]
जाल अक्सर उपसमुच्चय में होता है का यदि और केवल यदि प्रत्येक के लिए कुछ मौजूद है साथ ऐसा है कि में है नतीजतन, एक बिंदु नेट का एक क्लस्टर बिंदु है अगर और केवल अगर हर पड़ोस के लिए का नेट अक्सर अंदर होता है
एक सुव्यवस्थित सेट से एक टोपोलॉजिकल स्पेस में कार्य
एक सुव्यवस्थित सेट पर विचार करें | सुव्यवस्थित सेट सीमा बिंदु के साथ और एक समारोह से एक टोपोलॉजिकल स्पेस के लिए यह फ़ंक्शन नेट ऑन है यह अंततः एक उपसमुच्चय में है का यदि कोई मौजूद है ऐसा कि प्रत्येक के लिए बिंदु में है इसलिए अगर और केवल अगर हर पड़ोस के लिए का अंत में है जाल अक्सर उपसमुच्चय में होता है का यदि और केवल यदि प्रत्येक के लिए कुछ मौजूद है ऐसा है कि एक बिंदु नेट का एक क्लस्टर बिंदु है अगर और केवल अगर हर पड़ोस के लिए का नेट अक्सर अंदर होता है पहला उदाहरण इसका एक विशेष मामला है ऑर्डर टोपोलॉजी#ऑर्डिनल-इंडेक्स्ड सीक्वेंस|ऑर्डिनल-इंडेक्स्ड सीक्वेंस भी देखें।
सबनेट
नेट के लिए अनुगामी का एनालॉग एक सबनेट की धारणा है। सबनेट की कई अलग-अलग गैर-समतुल्य परिभाषाएँ हैं और यह लेख 1970 में स्टीफन विलार्ड द्वारा शुरू की गई परिभाषा का उपयोग करेगा,[10] जो इस प्रकार है: अगर और नेट हैं तो ए कहा जाता है subnet या Willard-subnet[10] का यदि कोई आदेश-संरक्षण मानचित्र मौजूद है ऐसा है कि का अंतिम उपसमुच्चय है और
वो नक्शा कहा जाता है order-preserving और एक order homomorphism अगर कभी भी तब सेट प्राणी cofinal में का अर्थ है कि प्रत्येक के लिए कुछ मौजूद है ऐसा है कि
गुण
वस्तुतः टोपोलॉजी की सभी अवधारणाओं को नेट और लिमिट की भाषा में फिर से परिभाषित किया जा सकता है। यह अंतर्ज्ञान का मार्गदर्शन करने के लिए उपयोगी हो सकता है क्योंकि नेट की सीमा की धारणा अनुक्रम की सीमा के समान ही है। प्रमेय और नींबू के निम्नलिखित सेट इस समानता को मजबूत करने में मदद करते हैं:
स्थलाकृतिक गुणों की विशेषताएं
बंद सेट और बंद
उपसमुच्चय में बंद है यदि और केवल यदि प्रत्येक अभिसरण नेट का प्रत्येक सीमा बिंदु का अनिवार्य रूप से है स्पष्ट रूप से, एक उपसमूह बंद है अगर और केवल अगर जब भी और में नेट वैल्यू है (मतलब है कि सभी के लिए ) ऐसा है कि में फिर अनिवार्य रूप से अधिक सामान्यतः, यदि कोई उपसमुच्चय है तो एक बिंदु के क्लोजर (टोपोलॉजी) में है अगर और केवल अगर कोई नेट मौजूद है में सीमा के साथ और ऐसा है प्रत्येक सूचकांक के लिए [8]
टोपोलॉजी के खुले सेट और लक्षण वर्णन
उपसमुच्चय खुला है अगर और केवल अगर कोई नेट नहीं है के एक बिन्दु पर आ जाता है [11] इसके अलावा, सबसेट खुला है अगर और केवल अगर प्रत्येक नेट के एक तत्व में परिवर्तित हो रहा है अंत में निहित है यह खुले उपसमुच्चय की ये विशेषताएँ हैं जो नेट को टोपोलॉजी (संरचना) को चिह्नित करने की अनुमति देती हैं। टोपोलॉजी को बंद उपसमुच्चय द्वारा भी चित्रित किया जा सकता है क्योंकि एक सेट खुला है अगर और केवल अगर इसका पूरक बंद है। तो नेट के संदर्भ में बंद सेट के लक्षण वर्णन का उपयोग टोपोलॉजी को चिह्नित करने के लिए भी किया जा सकता है।
निरंतरता
एक समारोह टोपोलॉजिकल स्पेस के बीच एक दिए गए बिंदु पर निरंतर कार्य (टोपोलॉजी) है अगर और केवल अगर हर नेट के लिए इसके डोमेन में, यदि में तब में [8] अधिक संक्षेप में, एक समारोह कहा निरंतर है अगर और केवल अगर जब भी में तब में सामान्य तौर पर, यह कथन सत्य नहीं होगा यदि शब्द नेट को अनुक्रम द्वारा प्रतिस्थापित किया गया हो; यही है, केवल प्राकृतिक संख्याओं के अलावा अन्य निर्देशित सेटों के लिए अनुमति देना आवश्यक है प्रथम-गणनीय स्थान नहीं है (या अनुक्रमिक स्थान नहीं है)।
style="background: #F0F2F5; font-size:87%; padding:0.2em 0.3em; text-align:left; " | Proof
|
---|
() होने देना बिंदु पर निरंतर रहें और जाने ऐसा जाल बनो फिर हर खुले पड़ोस के लिए का इसके तहत पूर्वकल्पना का पड़ोस है (की निरंतरता से पर ). इस प्रकार का आंतरिक (टोपोलॉजी)। जिसे द्वारा दर्शाया गया है का खुला पड़ोस है और इसके परिणामस्वरूप अंत में है इसलिए अंत में है और इस प्रकार अंत में भी जो का उपसमुच्चय है इस प्रकार और यह दिशा सिद्ध होती है। () होने देना एक बिंदु ऐसा हो कि हर नेट के लिए ऐसा है कि अब मान लीजिए पर निरंतर नहीं है फिर एक पड़ोस है (गणित) का जिसके तहत प्रीइमेज है का पड़ोस नहीं है क्योंकि अनिवार्य रूप से अब के खुले पड़ोस का सेट सबसेट प्रीऑर्डर के साथ एक निर्देशित सेट है (चूंकि इस तरह के हर दो पड़ोस का चौराहा एक खुला पड़ोस है भी)। हम जाल बनाते हैं ऐसा कि हर खुले पड़ोस के लिए जिसका सूचकांक है इस पड़ोस में एक बिंदु है जो अंदर नहीं है ; कि वहाँ हमेशा एक बिंदु इस तथ्य से अनुसरण करता है कि कोई खुला पड़ोस नहीं है में शामिल है (क्योंकि धारणा से, का पड़ोस नहीं है ). यह इस प्रकार है कि इसमें नहीं है अब, प्रत्येक खुले पड़ोस के लिए का यह पड़ोस उस निर्देशित सेट का सदस्य है जिसका सूचकांक हम निरूपित करते हैं हरएक के लिए निर्देशित सेट का सदस्य जिसका सूचकांक है के भीतर निहित है ; इसलिए इस प्रकार और हमारी धारणा से लेकिन का खुला पड़ोस है और इस तरह अंत में है और इसलिए में भी के विपरीत में नहीं होना हरएक के लिए यह एक विरोधाभास है पर निरंतर होना चाहिए यह प्रमाण को पूरा करता है। |
सघनता
एक स्थान कॉम्पैक्ट जगह है अगर और केवल अगर हर नेट में में एक सीमा के साथ एक सबनेट है इसे बोलजानो-वीयरस्ट्रास प्रमेय और हेइन-बोरेल प्रमेय के सामान्यीकरण के रूप में देखा जा सकता है।
style="background: #F0F2F5; font-size:87%; padding:0.2em 0.3em; text-align:left; " | Proof
|
---|
() सबसे पहले, मान लीजिए कॉम्पैक्ट है। हमें निम्नलिखित अवलोकन की आवश्यकता होगी (परिमित चौराहे की संपत्ति देखें)। होने देना कोई भी गैर-खाली सेट हो और के बंद उपसमुच्चय का संग्रह हो ऐसा है कि प्रत्येक परिमित के लिए तब भी। अन्यथा, के लिए एक खुला आवरण होगा की सघनता के विपरीत कोई परिमित उपकवर नहीं है होने देना में एक जाल हो निर्देशक हरएक के लिए परिभाषित करना
संग्रह संपत्ति है कि प्रत्येक परिमित उपसंग्रह में गैर-रिक्त चौराहा है। इस प्रकार, ऊपर की टिप्पणी से, हमारे पास वह है
और यह सटीक रूप से क्लस्टर बिंदुओं का सेट है अगले खंड में दिए गए सबूत से, यह अभिसरण सबनेट की सीमाओं के सेट के बराबर है इस प्रकार एक अभिसारी सबनेट है।
() इसके विपरीत, मान लीजिए कि प्रत्येक नेट इन एक अभिसारी सबनेट है। विरोधाभास के लिए, चलो का खुला आवरण हो बिना किसी परिमित उपकवर के। विचार करना उसका अवलोकन करो समावेशन के तहत और प्रत्येक के लिए एक निर्देशित सेट है वहाँ मौजूद है ऐसा है कि सभी के लिए नेट पर विचार करें इस नेट में अभिसारी सबनेट नहीं हो सकता, क्योंकि प्रत्येक के लिए वहां मौजूद ऐसा है कि का पड़ोस है ; हालाँकि, सभी के लिए हमारे पास वह है यह एक विरोधाभास है और प्रमाण को पूरा करता है। |
क्लस्टर और सीमा बिंदु
किसी नेट के क्लस्टर बिंदुओं का समुच्चय उसके अभिसारी सबनेट (गणित) की सीमाओं के समुच्चय के बराबर होता है।
style="background: #F0F2F5; font-size:87%; padding:0.2em 0.3em; text-align:left; " | Proof
|
---|
होने देना एक टोपोलॉजिकल स्पेस में नेट बनें (जहां हमेशा की तरह स्वचालित रूप से एक निर्देशित सेट माना जाता है) और जाने भी अगर के सबनेट की एक सीमा है तब का समूह बिन्दु है इसके विपरीत मान लीजिए का समूह बिन्दु है होने देना जोड़े का सेट हो कहाँ का खुला पड़ोस है में और इस प्रकार कि वो नक्शा मानचित्रण को तो अंतिम है। इसके अलावा दे रहा है उत्पाद क्रम (के पड़ोस समावेशन द्वारा आदेश दिया जाता है) इसे एक निर्देशित सेट बनाता है, और net द्वारा परिभाषित में विलीन हो जाता है |
एक नेट की एक सीमा होती है यदि और केवल यदि उसके सभी सबनेट की सीमाएँ हों। ऐसे में नेट की हर सीमा हर सबनेट की भी एक सीमा होती है।
अन्य गुण
सामान्य तौर पर, एक अंतरिक्ष में एक जाल एक से अधिक सीमा हो सकती है, लेकिन यदि हॉसडॉर्फ स्पेस है, तो नेट की सीमा, यदि यह मौजूद है, अद्वितीय है। इसके विपरीत यदि हॉसडॉर्फ नहीं है, तो वहां एक नेट मौजूद है दो अलग-अलग सीमाओं के साथ। इस प्रकार सीमा की विशिष्टता है equivalent अंतरिक्ष पर हॉसडॉर्फ स्थिति के लिए, और वास्तव में इसे परिभाषा के रूप में लिया जा सकता है। यह परिणाम दिशात्मकता की स्थिति पर निर्भर करता है; एक सामान्य प्रीऑर्डर या आंशिक ऑर्डर द्वारा अनुक्रमित एक सेट में हौसडॉर्फ स्पेस में भी अलग सीमा बिंदु हो सकते हैं।
कॉची नेट्स
एक कॉची नेट एकसमान स्थानों पर परिभाषित नेट के लिए कॉची अनुक्रम की धारणा को सामान्यीकृत करता है।[12] एक शुद्ध एक है Cauchy net यदि प्रत्येक प्रतिवेश (गणित) के लिए वहां मौजूद ऐसा कि सभी के लिए का सदस्य है [12][13] अधिक आम तौर पर, कॉची स्पेस में, एक नेट कॉची है अगर नेट द्वारा उत्पन्न फ़िल्टर कॉची फिल्टर है।
एक टोपोलॉजिकल वेक्टर स्पेस (टीवीएस) कहा जाता है complete अगर हर कॉची नेट किसी बिंदु पर अभिसरण करता है। एक आदर्श स्थान, जो एक विशेष प्रकार का टोपोलॉजिकल वेक्टर स्पेस है, एक पूर्ण टीवीएस (समतुल्य रूप से, एक बनच स्थान) है यदि और केवल अगर प्रत्येक कॉची अनुक्रम किसी बिंदु पर अभिसरण करता है (एक संपत्ति जिसे कहा जाता है sequential completeness). हालांकि कॉची जालों को मानक स्थानों की पूर्णता का वर्णन करने की आवश्यकता नहीं है, उन्हें अधिक सामान्य (संभवतः गैर-सामान्य स्थान) टोपोलॉजिकल वेक्टर रिक्त स्थान की पूर्णता का वर्णन करने की आवश्यकता है।
फिल्टर से संबंध
एक फ़िल्टर (गणित) टोपोलॉजी में एक और विचार है जो सामान्य टोपोलॉजिकल रिक्त स्थान में अभिसरण के लिए सामान्य परिभाषा की अनुमति देता है। दो विचार इस अर्थ में समतुल्य हैं कि वे अभिसरण की समान अवधारणा देते हैं।[14] अधिक विशेष रूप से, प्रत्येक फ़िल्टर आधार के लिए a associated net का निर्माण किया जा सकता है, और फिल्टर बेस के अभिसरण का तात्पर्य संबंधित नेट के अभिसरण से है - और इसके विपरीत (प्रत्येक नेट के लिए एक फिल्टर बेस है, और नेट के अभिसरण का तात्पर्य फिल्टर बेस के अभिसरण से है)।[15] उदाहरण के लिए, कोई भी net में पूंछ के एक फिल्टर बेस को प्रेरित करता है जहां फ़िल्टर अंदर है इस फ़िल्टर बेस द्वारा उत्पन्न को नेट कहा जाता है eventuality filter. यह पत्राचार किसी भी प्रमेय के लिए अनुमति देता है जिसे एक अवधारणा के साथ दूसरे के साथ सिद्ध किया जा सकता है।[15]उदाहरण के लिए, एक टोपोलॉजिकल स्पेस से दूसरे तक किसी फ़ंक्शन की निरंतरता को या तो डोमेन में नेट के अभिसरण द्वारा विशेषता दी जा सकती है, जो कोडोमेन में संबंधित नेट के अभिसरण को दर्शाता है, या फ़िल्टर बेस के साथ एक ही कथन द्वारा।
रॉबर्ट जी। बार्टले का तर्क है कि उनकी समानता के बावजूद, दोनों अवधारणाओं का होना उपयोगी है।[15]उनका तर्क है कि अनुक्रमों के सादृश्य में प्राकृतिक प्रमाण और परिभाषाएँ बनाने के लिए जाल पर्याप्त हैं, विशेष रूप से अनुक्रमिक तत्वों का उपयोग करने वाले, जैसे कि विश्लेषण में सामान्य है, जबकि बीजगणितीय टोपोलॉजी में फ़िल्टर सबसे अधिक उपयोगी हैं। किसी भी मामले में, वह दिखाता है कि सामान्य टोपोलॉजी में विभिन्न प्रमेयों को साबित करने के लिए संयोजन में दोनों का उपयोग कैसे किया जा सकता है।
सीमा श्रेष्ठ
वास्तविक संख्याओं के जाल की सीमा श्रेष्ठ और सीमा अवर को उसी तरह से परिभाषित किया जा सकता है जैसे अनुक्रमों के लिए।[16][17][18] कुछ लेखक वास्तविक रेखा की तुलना में अधिक सामान्य संरचनाओं के साथ भी काम करते हैं, जैसे पूर्ण जाली।[19] एक जाल के लिए रखना
यह भी देखें
- Characterizations of the category of topological spaces
- Filter (set theory)
- Filters in topology
- Preorder – Reflexive and transitive binary relation
- Sequential space
- Ultrafilter (set theory)
उद्धरण
- ↑ Moore, E. H.; Smith, H. L. (1922). "सीमाओं का एक सामान्य सिद्धांत". American Journal of Mathematics. 44 (2): 102–121. doi:10.2307/2370388. JSTOR 2370388.
- ↑ (Sundström 2010, p. 16n)
- ↑ Megginson, p. 143
- ↑ 4.0 4.1 4.2 4.3 4.4 4.5 4.6 Willard 2004, pp. 73–77.
- ↑ 5.0 5.1 Kelley 1975, pp. 65–72.
- ↑ Willard 2004, p. 76.
- ↑ 7.0 7.1 7.2 7.3 7.4 7.5 7.6 Willard 2004, p. 77.
- ↑ 8.0 8.1 8.2 8.3 Willard 2004, p. 75.
- ↑ Willard 2004, pp. 71–72.
- ↑ 10.0 10.1 Schechter 1996, pp. 157–168.
- ↑ Howes 1995, pp. 83–92.
- ↑ 12.0 12.1 Willard, Stephen (2012), General Topology, Dover Books on Mathematics, Courier Dover Publications, p. 260, ISBN 9780486131788.
- ↑ Joshi, K. D. (1983), Introduction to General Topology, New Age International, p. 356, ISBN 9780852264447.
- ↑ "संग्रहीत प्रति" (PDF). Archived from the original (PDF) on 2015-04-24. Retrieved 2013-01-15.
- ↑ 15.0 15.1 15.2 R. G. Bartle, Nets and Filters In Topology, American Mathematical Monthly, Vol. 62, No. 8 (1955), pp. 551–557.
- ↑ Aliprantis-Border, p. 32
- ↑ Megginson, p. 217, p. 221, Exercises 2.53–2.55
- ↑ Beer, p. 2
- ↑ Schechter, Sections 7.43–7.47
संदर्भ
- Sundström, Manya Raman (2010). "A pedagogical history of compactness". arXiv:1006.4131v1 [math.HO].
- Aliprantis, Charalambos D.; Border, Kim C. (2006). Infinite dimensional analysis: A hitchhiker's guide (3rd ed.). Berlin: Springer. pp. xxii, 703. ISBN 978-3-540-32696-0. MR 2378491.
- Beer, Gerald (1993). Topologies on closed and closed convex sets. Mathematics and its Applications 268. Dordrecht: Kluwer Academic Publishers Group. pp. xii, 340. ISBN 0-7923-2531-1. MR 1269778.
- Howes, Norman R. (23 June 1995). Modern Analysis and Topology. Graduate Texts in Mathematics. New York: Springer-Verlag Science & Business Media. ISBN 978-0-387-97986-1. OCLC 31969970. OL 1272666M.
- Kelley, John L. (1975). General Topology. Graduate Texts in Mathematics. Vol. 27. New York: Springer Science & Business Media. ISBN 978-0-387-90125-1. OCLC 338047.
- Kelley, John L. (1991). General Topology. Springer. ISBN 3-540-90125-6.
- Megginson, Robert E. (1998). An Introduction to Banach Space Theory. Graduate Texts in Mathematics. Vol. 193. New York: Springer. ISBN 0-387-98431-3.
- Schechter, Eric (1997). Handbook of Analysis and Its Foundations. San Diego: Academic Press. ISBN 9780080532998. Retrieved 22 June 2013.
- Schechter, Eric (1996). Handbook of Analysis and Its Foundations. San Diego, CA: Academic Press. ISBN 978-0-12-622760-4. OCLC 175294365.
- Willard, Stephen (2004) [1970]. General Topology. Mineola, N.Y.: Dover Publications. ISBN 978-0-486-43479-7. OCLC 115240.