हिल्बर्ट मैट्रिक्स: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
रैखिक बीजगणित में, {{harvs|txt|last=हिल्बर्ट|year=1894|authorlink=David Hilbert}},द्वारा प्रस्तुत '''हिल्बर्ट | रैखिक बीजगणित में, {{harvs|txt|last=हिल्बर्ट|year=1894|authorlink=David Hilbert}},द्वारा प्रस्तुत '''हिल्बर्ट आव्युह''', एक [[वर्ग मैट्रिक्स|वर्ग आव्युह]] है जिसमें इकाई अंशों की प्रविष्टियाँ होती हैं | ||
: <math> H_{ij} = \frac{1}{i+j-1}. </math> | : <math> H_{ij} = \frac{1}{i+j-1}. </math> | ||
उदाहरण के लिए, यह 5 × 5 हिल्बर्ट | उदाहरण के लिए, यह 5 × 5 हिल्बर्ट आव्युह है: | ||
: <math>H = \begin{bmatrix} | : <math>H = \begin{bmatrix} | ||
Line 11: | Line 11: | ||
\frac{1}{5} & \frac{1}{6} & \frac{1}{7} & \frac{1}{8} & \frac{1}{9} | \frac{1}{5} & \frac{1}{6} & \frac{1}{7} & \frac{1}{8} & \frac{1}{9} | ||
\end{bmatrix}.</math> | \end{bmatrix}.</math> | ||
हिल्बर्ट | हिल्बर्ट आव्युह को इंटीग्रल से व्युत्पन्न माना जा सकता है | ||
: <math> H_{ij} = \int_0^1 x^{i+j-2} \, dx, </math> | : <math> H_{ij} = \int_0^1 x^{i+j-2} \, dx, </math> | ||
अर्थात्, x की घातों के लिए एक [[ग्रामियन मैट्रिक्स]] के रूप में उपयोग किया जाता हैं। यह [[बहुपद|बहुपदों]] द्वारा मनमाने कार्यों के न्यूनतम वर्ग सन्निकटन में उत्पन्न होता है। | अर्थात्, x की घातों के लिए एक [[ग्रामियन मैट्रिक्स|ग्रामियन आव्युह]] के रूप में उपयोग किया जाता हैं। यह [[बहुपद|बहुपदों]] द्वारा मनमाने कार्यों के न्यूनतम वर्ग सन्निकटन में उत्पन्न होता है। | ||
हिल्बर्ट मैट्रिसेस खराब स्थिति वाले मैट्रिसेस के विहित उदाहरण हैं, जिनका [[संख्यात्मक विश्लेषण]] में उपयोग करना बेहद कठिन है। उदाहरण के लिए, ऊपर दिए गए | हिल्बर्ट मैट्रिसेस खराब स्थिति वाले मैट्रिसेस के विहित उदाहरण हैं, जिनका [[संख्यात्मक विश्लेषण]] में उपयोग करना बेहद कठिन है। उदाहरण के लिए, ऊपर दिए गए आव्युह की 2-मानदंड स्थिति संख्या लगभग 4.8{{e|5}} है। | ||
==ऐतिहासिक टिप्पणी== | ==ऐतिहासिक टिप्पणी== | ||
{{harvtxt|Hilbert|1894}} [[सन्निकटन सिद्धांत]] में निम्नलिखित प्रश्न का अध्ययन करने के लिए हिल्बर्ट | {{harvtxt|Hilbert|1894}} [[सन्निकटन सिद्धांत]] में निम्नलिखित प्रश्न का अध्ययन करने के लिए हिल्बर्ट आव्युह की शुरुआत की: "मान लीजिए कि I = [a, b], एक वास्तविक अंतराल है। क्या तब पूर्णांक गुणांक के साथ एक गैर-शून्य बहुपद P खोजना संभव है, जैसे कि अभिन्न | ||
:<math>\int_{a}^b P(x)^2 dx</math> | :<math>\int_{a}^b P(x)^2 dx</math> | ||
किसी दिए गए परिबंध ε > 0 से छोटा है, | किसी दिए गए परिबंध ε > 0 से छोटा है, अनेैतिक रूप से छोटा लिया गया है?" इस प्रश्न का उत्तर देने के लिए, हिल्बर्ट हिल्बर्ट आव्युह के निर्धारक के लिए एक सटीक सूत्र प्राप्त करता है और उनके स्पर्शोन्मुखता की जांच करता है। उन्होंने निष्कर्ष निकाला कि उनके प्रश्न का उत्तर धनात्मक है यदि अंतराल की लंबाई {{nowrap|''b'' − ''a''}} 4 से छोटी है। | ||
==गुण== | ==गुण== | ||
हिल्बर्ट | हिल्बर्ट आव्युह [[सममित मैट्रिक्स|सममित आव्युह]] और [[सकारात्मक-निश्चित मैट्रिक्स|धनात्मक-निश्चित आव्युह]] है। हिल्बर्ट आव्युह भी पूरी तरह से धनात्मक है (जिसका अर्थ है कि प्रत्येक [[सबमैट्रिक्स|सबआव्युह]] का निर्धारक धनात्मक है)। | ||
हिल्बर्ट | हिल्बर्ट आव्युह [[हैंकेल मैट्रिक्स|हैंकेल आव्युह]] का एक उदाहरण है। यह [[कॉची मैट्रिक्स|कॉची आव्युह]] का एक विशिष्ट उदाहरण भी है। | ||
[[कॉची निर्धारक]] के एक विशेष मामले के रूप में, निर्धारक को [[Index.php?title=बंद-रूप|बंद-रूप अभिव्यक्ति]] में व्यक्त किया जा सकता है। n × n हिल्बर्ट | [[कॉची निर्धारक]] के एक विशेष मामले के रूप में, निर्धारक को [[Index.php?title=बंद-रूप|बंद-रूप अभिव्यक्ति]] में व्यक्त किया जा सकता है। n × n हिल्बर्ट आव्युह का निर्धारक है | ||
: <math>\det(H) = \frac{c_n^4}{c_{2n}},</math> | : <math>\det(H) = \frac{c_n^4}{c_{2n}},</math> | ||
Line 37: | Line 37: | ||
: <math>c_n = \prod_{i=1}^{n-1} i^{n-i} = \prod_{i=1}^{n-1} i!.</math> | : <math>c_n = \prod_{i=1}^{n-1} i^{n-i} = \prod_{i=1}^{n-1} i!.</math> | ||
हिल्बर्ट ने पहले ही इस जिज्ञासु तथ्य का उल्लेख किया है कि हिल्बर्ट | हिल्बर्ट ने पहले ही इस जिज्ञासु तथ्य का उल्लेख किया है कि हिल्बर्ट आव्युह का निर्धारक एक पूर्णांक का व्युत्क्रम है([[OEIS|ओइआईएस]] में अनुक्रम {{OEIS2C|A005249}}देखें), जो पहचान से भी अनुसरण करता है | ||
: <math>\frac{1}{\det(H)} = \frac{c_{2n}}{c_n^4} = n! \cdot \prod_{i=1}^{2n-1} \binom{i}{[i/2]}. | : <math>\frac{1}{\det(H)} = \frac{c_{2n}}{c_n^4} = n! \cdot \prod_{i=1}^{2n-1} \binom{i}{[i/2]}. | ||
</math> | </math> | ||
Line 45: | Line 45: | ||
जहाँ एक<sub>''n''</sub> स्थिरांक में परिवर्तित हो जाता है <math>e^{1/4}\, 2^{1/12}\, A^{-3} \approx 0.6450</math> के रूप में <math>n \to \infty</math>, जहां ए ग्लैशर-किंकेलिन स्थिरांक है। | जहाँ एक<sub>''n''</sub> स्थिरांक में परिवर्तित हो जाता है <math>e^{1/4}\, 2^{1/12}\, A^{-3} \approx 0.6450</math> के रूप में <math>n \to \infty</math>, जहां ए ग्लैशर-किंकेलिन स्थिरांक है। | ||
हिल्बर्ट | हिल्बर्ट आव्युह का व्युत्क्रम [[द्विपद गुणांक]] का उपयोग करके बंद रूप में व्यक्त किया जा सकता है; इसकी प्रविष्टियाँ हैं | ||
: <math>(H^{-1})_{ij} = (-1)^{i+j}(i + j - 1) \binom{n + i - 1}{n - j} \binom{n + j - 1}{n - i} \binom{i + j - 2}{i - 1}^2,</math> | : <math>(H^{-1})_{ij} = (-1)^{i+j}(i + j - 1) \binom{n + i - 1}{n - j} \binom{n + j - 1}{n - i} \binom{i + j - 2}{i - 1}^2,</math> | ||
जहाँ n | जहाँ n आव्युह का क्रम है।<ref>{{Cite journal |last=Choi |first=Man-Duen |date= 1983|title=हिल्बर्ट मैट्रिक्स के साथ युक्तियाँ या व्यवहार|jstor=2975779 |journal=The American Mathematical Monthly |volume=90 |issue=5 |pages=301–312 |doi=10.2307/2975779}}</ref> इसका तात्पर्य यह है कि व्युत्क्रम आव्युह की प्रविष्टियाँ सभी पूर्णांक हैं, और यह कि चिह्न एक चेकरबोर्ड पैटर्न बनाते हैं, जो [[मुख्य विकर्ण]] पर धनात्मक होते हैं। उदाहरण के लिए, | ||
: <math>\begin{bmatrix} | : <math>\begin{bmatrix} | ||
Line 64: | Line 64: | ||
630 & -12600 & 56700 & -88200 & 44100 | 630 & -12600 & 56700 & -88200 & 44100 | ||
\end{array}\right].</math> | \end{array}\right].</math> | ||
''n'' × ''n'' हिल्बर्ट | ''n'' × ''n'' हिल्बर्ट आव्युह की स्थिति संख्या बढ़ती है <math>O\left(\left(1 + \sqrt{2}\right)^{4n}/\sqrt{n}\right)</math>. | ||
==अनुप्रयोग== | ==अनुप्रयोग== | ||
बहुपद वितरणों पर | बहुपद वितरणों पर क्रियान्वित क्षणों की विधि के परिणामस्वरूप हेंकेल आव्युह बनता है, जो अंतराल [0, 1] पर संभाव्यता वितरण का अनुमान लगाने के विशेष मामले में हिल्बर्ट आव्युह में परिणामित होता है। बहुपद वितरण सन्निकटन के भार पैरामीटर प्राप्त करने के लिए इस आव्युह को उलटा करने की आवश्यकता है।<ref name="PolyD2">J. Munkhammar, L. Mattsson, J. Rydén (2017) [https://doi.org/10.1371/journal.pone.0174573 "Polynomial probability distribution estimation using the method of moments"]. PLoS ONE 12(4): e0174573.</ref> | ||
Revision as of 14:17, 30 July 2023
रैखिक बीजगणित में, हिल्बर्ट (1894),द्वारा प्रस्तुत हिल्बर्ट आव्युह, एक वर्ग आव्युह है जिसमें इकाई अंशों की प्रविष्टियाँ होती हैं
उदाहरण के लिए, यह 5 × 5 हिल्बर्ट आव्युह है:
हिल्बर्ट आव्युह को इंटीग्रल से व्युत्पन्न माना जा सकता है
अर्थात्, x की घातों के लिए एक ग्रामियन आव्युह के रूप में उपयोग किया जाता हैं। यह बहुपदों द्वारा मनमाने कार्यों के न्यूनतम वर्ग सन्निकटन में उत्पन्न होता है।
हिल्बर्ट मैट्रिसेस खराब स्थिति वाले मैट्रिसेस के विहित उदाहरण हैं, जिनका संख्यात्मक विश्लेषण में उपयोग करना बेहद कठिन है। उदाहरण के लिए, ऊपर दिए गए आव्युह की 2-मानदंड स्थिति संख्या लगभग 4.8×105 है।
ऐतिहासिक टिप्पणी
Hilbert (1894) सन्निकटन सिद्धांत में निम्नलिखित प्रश्न का अध्ययन करने के लिए हिल्बर्ट आव्युह की शुरुआत की: "मान लीजिए कि I = [a, b], एक वास्तविक अंतराल है। क्या तब पूर्णांक गुणांक के साथ एक गैर-शून्य बहुपद P खोजना संभव है, जैसे कि अभिन्न
किसी दिए गए परिबंध ε > 0 से छोटा है, अनेैतिक रूप से छोटा लिया गया है?" इस प्रश्न का उत्तर देने के लिए, हिल्बर्ट हिल्बर्ट आव्युह के निर्धारक के लिए एक सटीक सूत्र प्राप्त करता है और उनके स्पर्शोन्मुखता की जांच करता है। उन्होंने निष्कर्ष निकाला कि उनके प्रश्न का उत्तर धनात्मक है यदि अंतराल की लंबाई b − a 4 से छोटी है।
गुण
हिल्बर्ट आव्युह सममित आव्युह और धनात्मक-निश्चित आव्युह है। हिल्बर्ट आव्युह भी पूरी तरह से धनात्मक है (जिसका अर्थ है कि प्रत्येक सबआव्युह का निर्धारक धनात्मक है)।
हिल्बर्ट आव्युह हैंकेल आव्युह का एक उदाहरण है। यह कॉची आव्युह का एक विशिष्ट उदाहरण भी है।
कॉची निर्धारक के एक विशेष मामले के रूप में, निर्धारक को बंद-रूप अभिव्यक्ति में व्यक्त किया जा सकता है। n × n हिल्बर्ट आव्युह का निर्धारक है
जहाँ
हिल्बर्ट ने पहले ही इस जिज्ञासु तथ्य का उल्लेख किया है कि हिल्बर्ट आव्युह का निर्धारक एक पूर्णांक का व्युत्क्रम है(ओइआईएस में अनुक्रम OEIS: A005249देखें), जो पहचान से भी अनुसरण करता है
स्टर्लिंग के भाज्य संबंधी सन्निकटन का उपयोग करके, कोई निम्नलिखित स्पर्शोन्मुख परिणाम स्थापित कर सकता है:
जहाँ एकn स्थिरांक में परिवर्तित हो जाता है के रूप में , जहां ए ग्लैशर-किंकेलिन स्थिरांक है।
हिल्बर्ट आव्युह का व्युत्क्रम द्विपद गुणांक का उपयोग करके बंद रूप में व्यक्त किया जा सकता है; इसकी प्रविष्टियाँ हैं
जहाँ n आव्युह का क्रम है।[1] इसका तात्पर्य यह है कि व्युत्क्रम आव्युह की प्रविष्टियाँ सभी पूर्णांक हैं, और यह कि चिह्न एक चेकरबोर्ड पैटर्न बनाते हैं, जो मुख्य विकर्ण पर धनात्मक होते हैं। उदाहरण के लिए,
n × n हिल्बर्ट आव्युह की स्थिति संख्या बढ़ती है .
अनुप्रयोग
बहुपद वितरणों पर क्रियान्वित क्षणों की विधि के परिणामस्वरूप हेंकेल आव्युह बनता है, जो अंतराल [0, 1] पर संभाव्यता वितरण का अनुमान लगाने के विशेष मामले में हिल्बर्ट आव्युह में परिणामित होता है। बहुपद वितरण सन्निकटन के भार पैरामीटर प्राप्त करने के लिए इस आव्युह को उलटा करने की आवश्यकता है।[2]
संदर्भ
- ↑ Choi, Man-Duen (1983). "हिल्बर्ट मैट्रिक्स के साथ युक्तियाँ या व्यवहार". The American Mathematical Monthly. 90 (5): 301–312. doi:10.2307/2975779. JSTOR 2975779.
- ↑ J. Munkhammar, L. Mattsson, J. Rydén (2017) "Polynomial probability distribution estimation using the method of moments". PLoS ONE 12(4): e0174573.
अग्रिम पठन
- Hilbert, David (1894), "Ein Beitrag zur Theorie des Legendre'schen Polynoms", Acta Mathematica, 18: 155–159, doi:10.1007/BF02418278, ISSN 0001-5962, JFM 25.0817.02. Reprinted in Hilbert, David. "article 21". Collected papers. Vol. II.
- Beckermann, Bernhard (2000). "The condition number of real Vandermonde, Krylov and positive definite Hankel matrices". Numerische Mathematik. 85 (4): 553–577. CiteSeerX 10.1.1.23.5979. doi:10.1007/PL00005392. S2CID 17777214.
- Choi, M.-D. (1983). "Tricks or Treats with the Hilbert Matrix". American Mathematical Monthly. 90 (5): 301–312. doi:10.2307/2975779. JSTOR 2975779.
- Todd, John (1954). "The Condition Number of the Finite Segment of the Hilbert Matrix". National Bureau of Standards, Applied Mathematics Series. 39: 109–116.
- Wilf, H. S. (1970). Finite Sections of Some Classical Inequalities. Heidelberg: Springer. ISBN 978-3-540-04809-1.