बायोइलेक्ट्रॉनिक्स: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{short description|Field of research in the convergence of biology and electronics}} | {{short description|Field of research in the convergence of biology and electronics}} | ||
{{for|प्रत्यारोपित बायो-इलेक्ट्रॉनिक उपकरणों और बायोइलेक्ट्रॉनिक चिकित्सा से संबंधित लेख|प्रत्यारोपण (चिकित्सा)}} | {{for|प्रत्यारोपित बायो-इलेक्ट्रॉनिक उपकरणों और बायोइलेक्ट्रॉनिक चिकित्सा से संबंधित लेख|प्रत्यारोपण (चिकित्सा)}} | ||
बायो[[ इलेक्ट्रानिक्स ]] जीव विज्ञान और इलेक्ट्रॉनिक्स के अभिसरण में अनुसंधान का एक क्षेत्र है। | बायो[[ इलेक्ट्रानिक्स | इलेक्ट्रानिक्स]] जीव विज्ञान और इलेक्ट्रॉनिक्स के अभिसरण में अनुसंधान का एक क्षेत्र है। | ||
== परिभाषाएँ == | == परिभाषाएँ == | ||
[[Image:Protein translation.gif|thumb|300px| [[राइबोसोम]] एक [[जैविक मशीन]] है जो [[प्रोटीन गतिकी]] का उपयोग करती है]]पहले सी. ई.सी. वर्कशॉप, नवंबर 1991 में ब्रसेल्स में, बायोइलेक्ट्रॉनिक्स को 'सूचना प्रसंस्करण प्रणालियों और नए उपकरणों के लिए जैविक पदार्थ | [[Image:Protein translation.gif|thumb|300px| [[राइबोसोम]] एक [[जैविक मशीन]] है जो [[प्रोटीन गतिकी]] का उपयोग करती है]]पहले सी. ई.सी. वर्कशॉप, नवंबर 1991 में ब्रसेल्स में, बायोइलेक्ट्रॉनिक्स को 'सूचना प्रसंस्करण प्रणालियों और नए उपकरणों के लिए जैविक पदार्थ और जैविक आर्किटेक्चर के उपयोग' के रूप में परिभाषित किया गया था। जैव-इलेक्ट्रॉनिक्स, विशेष रूप से जैव-आणविक इलेक्ट्रॉनिक्स, को 'नई सूचना प्रसंस्करण प्रणालियों के कार्यान्वयन के लिए जैव-प्रेरित (अथार्त स्व-विधानसभा) अकार्बनिक और कार्बनिक पदार्थ और जैव-प्रेरित (अथार्त बड़े मापदंड पर समानता) हार्डवेयर आर्किटेक्चर के अनुसंधान और विकास के रूप में वर्णित किया गया था। सेंसर और एक्चुएटर्स, और आणविक निर्माण के लिए परमाणु मापदंड तक <ref>{{cite journal | vauthors = Nicolini C | title = From neural chip and engineered biomolecules to bioelectronic devices: an overview | journal = Biosensors & Bioelectronics | volume = 10 | issue = 1–2 | pages = 105–27 | year = 1995 | pmid = 7734117 | doi = 10.1016/0956-5663(95)96799-5 }}</ref> राष्ट्रीय मानक और प्रौद्योगिकी संस्थान (एनआईएसटी) संयुक्त राज्य अमेरिका के वाणिज्य विभाग की एक एजेंसी, ने 2009 की एक रिपोर्ट में बायोइलेक्ट्रॉनिक्स को जीव विज्ञान और इलेक्ट्रॉनिक्स के अभिसरण से उत्पन्न अनुशासन के रूप में परिभाषित किया जाता है।<ref name="nist">{{cite web |url = https://www.nist.gov/pml/div683/upload/bioelectronics_report.pdf |title = A Framework for Bioelectronics: Discovery and Innovation |publisher=National Institute of Standards and Technology|pages =42|date =February 2009}}</ref>{{rp|5}} | ||
क्षेत्र के बारे में जानकारी के स्रोतों में इंस्टीट्यूट ऑफ इलेक्ट्रिकल एंड इलेक्ट्रॉनिक्स इंजीनियर्स (आईईईई) सम्मिलित है, जिसका एल्सेवियर जर्नल बायोसेंसर एंड बायोइलेक्ट्रॉनिक्स 1990 से प्रकाशित हो रहा है। जर्नल बायोइलेक्ट्रॉनिक्स के सीमा का वर्णन इस प्रकार करता है: "... इलेक्ट्रॉनिक्स के साथ मिलकर जीव विज्ञान का दोहन करें उदाहरण के लिए, सूचना प्रसंस्करण, सूचना संचयन , इलेक्ट्रॉनिक घटकों और एक्चुएटर्स के लिए जैविक ईंधन सेल, बायोनिक्स और बायोमटेरियल्स को सम्मिलित करने वाला एक व्यापक संदर्भ एक प्रमुख पहलू जैविक पदार्थो | क्षेत्र के बारे में जानकारी के स्रोतों में इंस्टीट्यूट ऑफ इलेक्ट्रिकल एंड इलेक्ट्रॉनिक्स इंजीनियर्स (आईईईई) सम्मिलित है, जिसका एल्सेवियर जर्नल बायोसेंसर एंड बायोइलेक्ट्रॉनिक्स 1990 से प्रकाशित हो रहा है। जर्नल बायोइलेक्ट्रॉनिक्स के सीमा का वर्णन इस प्रकार करता है: "... इलेक्ट्रॉनिक्स के साथ मिलकर जीव विज्ञान का दोहन करें उदाहरण के लिए, सूचना प्रसंस्करण, सूचना संचयन , इलेक्ट्रॉनिक घटकों और एक्चुएटर्स के लिए जैविक ईंधन सेल, बायोनिक्स और बायोमटेरियल्स को सम्मिलित करने वाला एक व्यापक संदर्भ एक प्रमुख पहलू जैविक पदार्थो और सूक्ष्म और नैनो-इलेक्ट्रॉनिक्स के बीच इंटरफेस है।<nowiki>''</nowiki><ref>{{cite web |url = http://www.elsevier.com/wps/find/journaldescription.cws_home/405913/authorinstructions |title = बायोसेंसर और बायोइलेक्ट्रॉनिक्स|publisher=Elsevier}}</ref> | ||
== इतिहास == | == इतिहास == | ||
बायोइलेक्ट्रॉनिक्स का पहला ज्ञात अध्ययन 18वीं शताब्दी में हुआ जब वैज्ञानिक [[लुइगी गलवानी]] ने अलग-अलग | बायोइलेक्ट्रॉनिक्स का पहला ज्ञात अध्ययन 18वीं शताब्दी में हुआ जब वैज्ञानिक [[लुइगी गलवानी]] ने अलग-अलग फॉग पैरों की एक जोड़ी पर वोल्टेज प्रयुक्त किया गया था। पैर हिले, जिससे बायोइलेक्ट्रॉनिक्स की उत्पत्ति हुई <ref name=":0">{{Cite journal| authors = Rivnay J, Owens RM, Malliaras GG |date=2014-01-14|title=ऑर्गेनिक बायोइलेक्ट्रॉनिक्स का उदय|journal=Chemistry of Materials|volume=26|issue=1|pages=679–685|doi=10.1021/cm4022003 }}</ref> [[पेसमेकर]] का आविष्कार होने के बाद से और चिकित्सा इमेजिंग उद्योग के साथ इलेक्ट्रॉनिक्स प्रौद्योगिकी को जीव विज्ञान और चिकित्सा में प्रयुक्त किया गया है। 2009 में, शीर्षक या सार शब्द का उपयोग करते हुए प्रकाशनों के एक सर्वेक्षण ने सुझाव दिया कि गतिविधि का केंद्र यूरोप (43 प्रतिशत) में था, इसके बाद एशिया (23 प्रतिशत) और संयुक्त राज्य अमेरिका (20 प्रतिशत) थे।<ref name=nist/>{{rp|6}} | ||
== पदार्थ == | == पदार्थ == | ||
कार्बनिक बायोइलेक्ट्रॉनिक्स बायोइलेक्ट्रॉनिक्स के क्षेत्र में जैविक इलेक्ट्रॉनिक पदार्थ | कार्बनिक बायोइलेक्ट्रॉनिक्स बायोइलेक्ट्रॉनिक्स के क्षेत्र में जैविक इलेक्ट्रॉनिक पदार्थ का अनुप्रयोग है। जब जैविक प्रणालियों के साथ इंटरफेसिंग की बात आती है तो कार्बनिक पदार्थ (अर्थात कार्बन युक्त) बहुत आशाजनक होते हैं।<ref>{{cite journal | vauthors = Owens R, Kjall P, Richter-Dahlfors A, Cicoira F | title = कार्बनिक बायोइलेक्ट्रॉनिक्स - बायोमेडिसिन में उपन्यास अनुप्रयोग। प्रस्तावना| journal = Biochimica et Biophysica Acta | volume = 1830 | issue = 9 | pages = 4283–5 | date = September 2013 | pmid = 23623969 | doi = 10.1016/j.bbagen.2013.04.025 }}</ref> वर्तमान अनुप्रयोग तंत्रिका विज्ञान के आसपास ध्यान <ref>{{cite journal | vauthors = Simon DT, Larsson KC, Nilsson D, Burström G, Galter D, Berggren M, Richter-Dahlfors A | title = एक कार्बनिक इलेक्ट्रॉनिक बायोमिमेटिक न्यूरॉन ऑटो-विनियमित न्यूरोमॉड्यूलेशन को सक्षम बनाता है| journal = Biosensors & Bioelectronics | volume = 71 | pages = 359–364 | date = September 2015 | pmid = 25932795 | doi = 10.1016/j.bios.2015.04.058 | url = http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-120203 }}</ref><ref>{{cite journal | vauthors = Jonsson A, Song Z, Nilsson D, Meyerson BA, Simon DT, Linderoth B, Berggren M | title = प्रत्यारोपित कार्बनिक बायोइलेक्ट्रॉनिक का उपयोग कर थेरेपी| journal = Science Advances | volume = 1 | issue = 4 | pages = e1500039 | date = May 2015 | pmid = 26601181 | pmc = 4640645 | doi = 10.1126/sciadv.1500039 | bibcode = 2015SciA....1E0039J }}</ref> और संक्रमण केंद्रित करते हैं।<ref>{{cite journal| vauthors = Löffler S, Libberton B, Richter-Dahlfors A |title=संक्रमण में कार्बनिक बायोइलेक्ट्रॉनिक्स|journal=Journal of Materials Chemistry B|volume=3|issue=25|pages=4979–4992|doi=10.1039/C5TB00382B |year=2015|pmid=32262450|doi-access=free}}</ref><ref>{{cite journal| vauthors = Löffler S, Libberton B, Richter-Dahlfors A |title=बायोमेडिकल अनुप्रयोगों के लिए जैविक बायोइलेक्ट्रॉनिक उपकरण|journal=Electronics |date=November 2015 |volume=4 |issue=4 |pages=879–908 |doi=10.3390/electronics4040879 |doi-access=free }}</ref> | ||
एक कार्बनिक इलेक्ट्रॉनिक पदार्थ , बहुलक कोटिंग्स का संचालन पदार्थ | एक कार्बनिक इलेक्ट्रॉनिक पदार्थ , बहुलक कोटिंग्स का संचालन पदार्थ की तकनीक में बड़े मापदंड पर सुधार दिखाता है। यह विद्युत उत्तेजना का सबसे परिष्कृत रूप था। इसने विद्युत उत्तेजना में इलेक्ट्रोड की प्रतिबाधा में सुधार किया गया था, जिसके परिणामस्वरूप उत्तम रिकॉर्डिंग हुई और हानिकारक विद्युत रासायनिक पक्ष प्रतिक्रियाओं को कम किया गया था। [[ कार्बनिक विद्युत ट्रांजिस्टर |कार्बनिक विद्युत ट्रांजिस्टर]] (ओईसीटी) का आविष्कार 1984 में [[मार्क राइटन]] और उनके सहयोगियों द्वारा किया गया था, जिसमें आयनों को ले जाने की क्षमता थी। यह सिग्नल-से-ध्वनि अनुपात में सुधार करता है और कम मापा प्रतिबाधा देता है। ऑर्गेनिक इलेक्ट्रॉनिक आयन पंप (ओईआईपी), एक उपकरण जिसका उपयोग विशिष्ट शरीर के अंगों और अंगों को दवा का पालन करने के लिए लक्षित करने के लिए किया जा सकता है, मैग्नस बर्गग्रेन द्वारा बनाया गया था।<ref name=":0" /> | ||
सीएमओएस प्रौद्योगिकी में अच्छी तरह से स्थापित कुछ पदार्थो | सीएमओएस प्रौद्योगिकी में अच्छी तरह से स्थापित कुछ पदार्थो में से एक के रूप में, [[टाइटेनियम नाइट्राइड]] (टीआईएन) [[चिकित्सा प्रत्यारोपण]] में इलेक्ट्रोड अनुप्रयोगों के लिए असाधारण रूप से स्थिर और उपयुक्त सिद्ध हुआ ।<ref name="Haemmerle2002">{{cite journal | vauthors = Hämmerle H, Kobuch K, Kohler K, Nisch W, Sachs H, Stelzle M | title = सबरेटिनल इम्प्लांटेशन के लिए माइक्रो-फोटोडायोड सरणियों की बायोस्टेबिलिटी| journal = Biomaterials | volume = 23 | issue = 3 | pages = 797–804 | date = February 2002 | pmid = 11771699 | doi = 10.1016/S0142-9612(01)00185-5 }}</ref><ref name="BS2018">{{cite journal | vauthors = Glogener P, Krause M, Katzer J, Schubert MA, Birkholz M, Bellmann O, Kröger-Koch C, Hammonn HM, Metges CC, Welsch C, Ruff R, Hoffmann KP |title=विवो एक्सपोजर के दौरान माइक्रोचिप सेंसर इम्प्लांट की लंबी जंग स्थिरता|journal=Biosensors |date=2018|volume=8|issue=1|pages=13 | doi=10.3390/bios8010013 | pmid=29389853 |pmc=5872061 |doi-access=free}}</ref> | ||
== महत्वपूर्ण अनुप्रयोग == | == महत्वपूर्ण अनुप्रयोग == | ||
बायोइलेक्ट्रॉनिक्स का उपयोग अक्षमताओं और बीमारियों से ग्रस्त लोगों के जीवन को उत्तम | बायोइलेक्ट्रॉनिक्स का उपयोग अक्षमताओं और बीमारियों से ग्रस्त लोगों के जीवन को उत्तम बनाने में सहायता के लिए किया जाता है। उदाहरण के लिए, [[ग्लूकोज मॉनिटर]] एक पोर्टेबल उपकरण है जो [[मधुमेह|डायबिटिक]] रोगियों को उनके रक्त शर्करा के स्तर को नियंत्रित करने और मापने की अनुमति देता है।<ref name=":0" /> विद्युत उत्तेजना का उपयोग मिर्गी, पुराने दर्द, पार्किंसंस, बहरापन, आवश्यक कंपन और अंधापन के रोगियों के इलाज के लिए किया जाता है।<ref>{{cite journal | vauthors = Simon DT, Gabrielsson EO, Tybrandt K, Berggren M | title = Organic Bioelectronics: Bridging the Signaling Gap between Biology and Technology | journal = Chemical Reviews | volume = 116 | issue = 21 | pages = 13009–13041 | date = November 2016 | pmid = 27367172 | doi = 10.1021/acs.chemrev.6b00146 | doi-access = free }}</ref><ref>{{cite web |url=https://www.accessdata.fda.gov/cdrh_docs/reviews/DEN170028.pdf |format=PDF |title=कैला वन के लिए डे नोवो वर्गीकरण अनुरोध|accessdate=2021-09-11 }}</ref> मैग्नस बर्गग्रेन और उनके सहयोगियों ने अपने ओईआईपी का एक रूपांतर बनाया गया था, पहला बायोइलेक्ट्रॉनिक इम्प्लांट उपकरण , जिसका उपयोग चिकित्सीय कारणों से एक जीवित, मुक्त जानवर में किया गया था। इसने विद्युत धाराओं को गाबा, एक अम्ल में प्रेषित किया था। शरीर में गाबा की कमी पुराने दर्द का एक कारक है। गाबा तब क्षतिग्रस्त नसों में ठीक से फैल जाएगा, दर्द निवारक के रूप में कार्य करेगा।<ref>{{cite journal | vauthors = Jonsson A, Song Z, Nilsson D, Meyerson BA, Simon DT, Linderoth B, Berggren M | title = प्रत्यारोपित कार्बनिक बायोइलेक्ट्रॉनिक का उपयोग कर थेरेपी| journal = Science Advances | volume = 1 | issue = 4 | pages = e1500039 | date = May 2015 | pmid = 26601181 | pmc = 4640645 | doi = 10.1126/sciadv.1500039 | bibcode = 2015SciA....1E0039J }}</ref> [[ वागस तंत्रिका उत्तेजना |वागस तंत्रिका उत्तेजना]] (वीएनएस) का उपयोग [[चोलिनर्जिक विरोधी भड़काऊ मार्ग|वेगस तंत्रिका में कोलीनर्जिक एंटी-इंफ्लेमेटरी पाथवे (सीएपी)]] को सक्रिय करने के लिए किया जाता है। वागस नर्व में कोलीनर्जिक एंटी-इंफ्लेमेटरी पाथवे ([[चोलिनर्जिक विरोधी भड़काऊ मार्ग|सीएपी]]), गठिया जैसे रोगों के रोगियों में कम सूजन में समाप्त होता है। चूंकि [[अवसाद (मूड)]]मनोदशा और मिर्गी के रोगी एक संवर्त सीएपी होने के प्रति अधिक संवेदनशील होते हैं, वीएनएस उनकी भी सहायता कर सकता है।<ref>{{cite journal | vauthors = Koopman FA, Schuurman PR, Vervoordeldonk MJ, Tak PP | title = Vagus nerve stimulation: a new bioelectronics approach to treat rheumatoid arthritis? | journal = Best Practice & Research. Clinical Rheumatology | volume = 28 | issue = 4 | pages = 625–35 | date = August 2014 | pmid = 25481554 | doi = 10.1016/j.berh.2014.10.015 | doi-access = free }}</ref> जिसमे यह साथ ही, लोगों के जीवन को उत्तम बनाने में सहायता करने के लिए जिन प्रणालियों में इलेक्ट्रॉनिक्स का उपयोग किया जाता है, वे आवश्यक रूप से बायोइलेक्ट्रॉनिक उपकरण नहीं हैं, किंतु केवल वे हैं जिनमें इलेक्ट्रॉनिक्स और जैविक प्रणालियों का एक अंतरंग और प्रत्यक्ष इंटरफ़ेस सम्मिलित है।<ref>{{cite book | vauthors = Carrara S, Iniewski K | title = बायोइलेक्ट्रॉनिक्स की हैंडबुक| publisher= Cambridge University Press | pages = 1–569 | date = 2015 | doi = 10.1017/CBO9781139629539 | isbn = 9781139629539 | editor1-last = Carrara | editor1-first = Sandro | editor2-last = Iniewski | editor2-first = Krzysztof }}</ref> | ||
== भविष्य == | == भविष्य == | ||
उपकोशिकीय संकल्पों पर कोशिकाओं की स्थिति की निगरानी के लिए मानकों और उपकरणों के सुधार में धन और रोजगार की कमी है। यह एक समस्या है क्योंकि विज्ञान के अन्य क्षेत्रों में प्रगति बड़ी सेल आबादी का विश्लेषण करना प्रारंभ कर रही है, जिससे एक ऐसे उपकरण की आवश्यकता बढ़ रही है जो इस तरह की दृष्टि से कोशिकाओं की निगरानी कर सकते है। कोशिकाओं को उनके मुख्य उद्देश्य के अतिरिक्त अनेक तरह से उपयोग नहीं किया जा सकता है, जैसे हानिकारक पदार्थों का पता लगाया जाता है । इस विज्ञान को [[नैनो]]टेक्नोलॉजी के रूपों के साथ विलय करने से अविश्वसनीय रूप से स्पष्ट पता लगाने के विधि सामने आ सकते हैं। बिओटेर्रोरिसम से सुरक्षा जैसे मानव जीवन का संरक्षण बायोइलेक्ट्रॉनिक्स में किया जा रहा कार्य का सबसे बड़ा क्षेत्र है। सरकारें रासायनिक और जैविक खतरों का पता लगाने वाले उपकरणों और पदार्थो | उपकोशिकीय संकल्पों पर कोशिकाओं की स्थिति की निगरानी के लिए मानकों और उपकरणों के सुधार में धन और रोजगार की कमी है। यह एक समस्या है क्योंकि विज्ञान के अन्य क्षेत्रों में प्रगति बड़ी सेल आबादी का विश्लेषण करना प्रारंभ कर रही है, जिससे एक ऐसे उपकरण की आवश्यकता बढ़ रही है जो इस तरह की दृष्टि से कोशिकाओं की निगरानी कर सकते है। कोशिकाओं को उनके मुख्य उद्देश्य के अतिरिक्त अनेक तरह से उपयोग नहीं किया जा सकता है, जैसे हानिकारक पदार्थों का पता लगाया जाता है । इस विज्ञान को [[नैनो]]टेक्नोलॉजी के रूपों के साथ विलय करने से अविश्वसनीय रूप से स्पष्ट पता लगाने के विधि सामने आ सकते हैं। बिओटेर्रोरिसम से सुरक्षा जैसे मानव जीवन का संरक्षण बायोइलेक्ट्रॉनिक्स में किया जा रहा कार्य का सबसे बड़ा क्षेत्र है। सरकारें रासायनिक और जैविक खतरों का पता लगाने वाले उपकरणों और पदार्थो की मांग करने लगी हैं। उपकरणों का आकार जितना अधिक घटेगा, प्रदर्शन और क्षमताओं में वृद्धि होगी।<ref name="nist" /> | ||
Revision as of 11:17, 30 July 2023
बायो इलेक्ट्रानिक्स जीव विज्ञान और इलेक्ट्रॉनिक्स के अभिसरण में अनुसंधान का एक क्षेत्र है।
परिभाषाएँ
पहले सी. ई.सी. वर्कशॉप, नवंबर 1991 में ब्रसेल्स में, बायोइलेक्ट्रॉनिक्स को 'सूचना प्रसंस्करण प्रणालियों और नए उपकरणों के लिए जैविक पदार्थ और जैविक आर्किटेक्चर के उपयोग' के रूप में परिभाषित किया गया था। जैव-इलेक्ट्रॉनिक्स, विशेष रूप से जैव-आणविक इलेक्ट्रॉनिक्स, को 'नई सूचना प्रसंस्करण प्रणालियों के कार्यान्वयन के लिए जैव-प्रेरित (अथार्त स्व-विधानसभा) अकार्बनिक और कार्बनिक पदार्थ और जैव-प्रेरित (अथार्त बड़े मापदंड पर समानता) हार्डवेयर आर्किटेक्चर के अनुसंधान और विकास के रूप में वर्णित किया गया था। सेंसर और एक्चुएटर्स, और आणविक निर्माण के लिए परमाणु मापदंड तक [1] राष्ट्रीय मानक और प्रौद्योगिकी संस्थान (एनआईएसटी) संयुक्त राज्य अमेरिका के वाणिज्य विभाग की एक एजेंसी, ने 2009 की एक रिपोर्ट में बायोइलेक्ट्रॉनिक्स को जीव विज्ञान और इलेक्ट्रॉनिक्स के अभिसरण से उत्पन्न अनुशासन के रूप में परिभाषित किया जाता है।[2]: 5
क्षेत्र के बारे में जानकारी के स्रोतों में इंस्टीट्यूट ऑफ इलेक्ट्रिकल एंड इलेक्ट्रॉनिक्स इंजीनियर्स (आईईईई) सम्मिलित है, जिसका एल्सेवियर जर्नल बायोसेंसर एंड बायोइलेक्ट्रॉनिक्स 1990 से प्रकाशित हो रहा है। जर्नल बायोइलेक्ट्रॉनिक्स के सीमा का वर्णन इस प्रकार करता है: "... इलेक्ट्रॉनिक्स के साथ मिलकर जीव विज्ञान का दोहन करें उदाहरण के लिए, सूचना प्रसंस्करण, सूचना संचयन , इलेक्ट्रॉनिक घटकों और एक्चुएटर्स के लिए जैविक ईंधन सेल, बायोनिक्स और बायोमटेरियल्स को सम्मिलित करने वाला एक व्यापक संदर्भ एक प्रमुख पहलू जैविक पदार्थो और सूक्ष्म और नैनो-इलेक्ट्रॉनिक्स के बीच इंटरफेस है।''[3]
इतिहास
बायोइलेक्ट्रॉनिक्स का पहला ज्ञात अध्ययन 18वीं शताब्दी में हुआ जब वैज्ञानिक लुइगी गलवानी ने अलग-अलग फॉग पैरों की एक जोड़ी पर वोल्टेज प्रयुक्त किया गया था। पैर हिले, जिससे बायोइलेक्ट्रॉनिक्स की उत्पत्ति हुई [4] पेसमेकर का आविष्कार होने के बाद से और चिकित्सा इमेजिंग उद्योग के साथ इलेक्ट्रॉनिक्स प्रौद्योगिकी को जीव विज्ञान और चिकित्सा में प्रयुक्त किया गया है। 2009 में, शीर्षक या सार शब्द का उपयोग करते हुए प्रकाशनों के एक सर्वेक्षण ने सुझाव दिया कि गतिविधि का केंद्र यूरोप (43 प्रतिशत) में था, इसके बाद एशिया (23 प्रतिशत) और संयुक्त राज्य अमेरिका (20 प्रतिशत) थे।[2]: 6
पदार्थ
कार्बनिक बायोइलेक्ट्रॉनिक्स बायोइलेक्ट्रॉनिक्स के क्षेत्र में जैविक इलेक्ट्रॉनिक पदार्थ का अनुप्रयोग है। जब जैविक प्रणालियों के साथ इंटरफेसिंग की बात आती है तो कार्बनिक पदार्थ (अर्थात कार्बन युक्त) बहुत आशाजनक होते हैं।[5] वर्तमान अनुप्रयोग तंत्रिका विज्ञान के आसपास ध्यान [6][7] और संक्रमण केंद्रित करते हैं।[8][9]
एक कार्बनिक इलेक्ट्रॉनिक पदार्थ , बहुलक कोटिंग्स का संचालन पदार्थ की तकनीक में बड़े मापदंड पर सुधार दिखाता है। यह विद्युत उत्तेजना का सबसे परिष्कृत रूप था। इसने विद्युत उत्तेजना में इलेक्ट्रोड की प्रतिबाधा में सुधार किया गया था, जिसके परिणामस्वरूप उत्तम रिकॉर्डिंग हुई और हानिकारक विद्युत रासायनिक पक्ष प्रतिक्रियाओं को कम किया गया था। कार्बनिक विद्युत ट्रांजिस्टर (ओईसीटी) का आविष्कार 1984 में मार्क राइटन और उनके सहयोगियों द्वारा किया गया था, जिसमें आयनों को ले जाने की क्षमता थी। यह सिग्नल-से-ध्वनि अनुपात में सुधार करता है और कम मापा प्रतिबाधा देता है। ऑर्गेनिक इलेक्ट्रॉनिक आयन पंप (ओईआईपी), एक उपकरण जिसका उपयोग विशिष्ट शरीर के अंगों और अंगों को दवा का पालन करने के लिए लक्षित करने के लिए किया जा सकता है, मैग्नस बर्गग्रेन द्वारा बनाया गया था।[4]
सीएमओएस प्रौद्योगिकी में अच्छी तरह से स्थापित कुछ पदार्थो में से एक के रूप में, टाइटेनियम नाइट्राइड (टीआईएन) चिकित्सा प्रत्यारोपण में इलेक्ट्रोड अनुप्रयोगों के लिए असाधारण रूप से स्थिर और उपयुक्त सिद्ध हुआ ।[10][11]
महत्वपूर्ण अनुप्रयोग
बायोइलेक्ट्रॉनिक्स का उपयोग अक्षमताओं और बीमारियों से ग्रस्त लोगों के जीवन को उत्तम बनाने में सहायता के लिए किया जाता है। उदाहरण के लिए, ग्लूकोज मॉनिटर एक पोर्टेबल उपकरण है जो डायबिटिक रोगियों को उनके रक्त शर्करा के स्तर को नियंत्रित करने और मापने की अनुमति देता है।[4] विद्युत उत्तेजना का उपयोग मिर्गी, पुराने दर्द, पार्किंसंस, बहरापन, आवश्यक कंपन और अंधापन के रोगियों के इलाज के लिए किया जाता है।[12][13] मैग्नस बर्गग्रेन और उनके सहयोगियों ने अपने ओईआईपी का एक रूपांतर बनाया गया था, पहला बायोइलेक्ट्रॉनिक इम्प्लांट उपकरण , जिसका उपयोग चिकित्सीय कारणों से एक जीवित, मुक्त जानवर में किया गया था। इसने विद्युत धाराओं को गाबा, एक अम्ल में प्रेषित किया था। शरीर में गाबा की कमी पुराने दर्द का एक कारक है। गाबा तब क्षतिग्रस्त नसों में ठीक से फैल जाएगा, दर्द निवारक के रूप में कार्य करेगा।[14] वागस तंत्रिका उत्तेजना (वीएनएस) का उपयोग वेगस तंत्रिका में कोलीनर्जिक एंटी-इंफ्लेमेटरी पाथवे (सीएपी) को सक्रिय करने के लिए किया जाता है। वागस नर्व में कोलीनर्जिक एंटी-इंफ्लेमेटरी पाथवे (सीएपी), गठिया जैसे रोगों के रोगियों में कम सूजन में समाप्त होता है। चूंकि अवसाद (मूड)मनोदशा और मिर्गी के रोगी एक संवर्त सीएपी होने के प्रति अधिक संवेदनशील होते हैं, वीएनएस उनकी भी सहायता कर सकता है।[15] जिसमे यह साथ ही, लोगों के जीवन को उत्तम बनाने में सहायता करने के लिए जिन प्रणालियों में इलेक्ट्रॉनिक्स का उपयोग किया जाता है, वे आवश्यक रूप से बायोइलेक्ट्रॉनिक उपकरण नहीं हैं, किंतु केवल वे हैं जिनमें इलेक्ट्रॉनिक्स और जैविक प्रणालियों का एक अंतरंग और प्रत्यक्ष इंटरफ़ेस सम्मिलित है।[16]
भविष्य
उपकोशिकीय संकल्पों पर कोशिकाओं की स्थिति की निगरानी के लिए मानकों और उपकरणों के सुधार में धन और रोजगार की कमी है। यह एक समस्या है क्योंकि विज्ञान के अन्य क्षेत्रों में प्रगति बड़ी सेल आबादी का विश्लेषण करना प्रारंभ कर रही है, जिससे एक ऐसे उपकरण की आवश्यकता बढ़ रही है जो इस तरह की दृष्टि से कोशिकाओं की निगरानी कर सकते है। कोशिकाओं को उनके मुख्य उद्देश्य के अतिरिक्त अनेक तरह से उपयोग नहीं किया जा सकता है, जैसे हानिकारक पदार्थों का पता लगाया जाता है । इस विज्ञान को नैनोटेक्नोलॉजी के रूपों के साथ विलय करने से अविश्वसनीय रूप से स्पष्ट पता लगाने के विधि सामने आ सकते हैं। बिओटेर्रोरिसम से सुरक्षा जैसे मानव जीवन का संरक्षण बायोइलेक्ट्रॉनिक्स में किया जा रहा कार्य का सबसे बड़ा क्षेत्र है। सरकारें रासायनिक और जैविक खतरों का पता लगाने वाले उपकरणों और पदार्थो की मांग करने लगी हैं। उपकरणों का आकार जितना अधिक घटेगा, प्रदर्शन और क्षमताओं में वृद्धि होगी।[2]
यह भी देखें
- बायोकंप्यूटर
- बायोइलेक्ट्रोकेमिकल रिएक्टर
- बायोइलेक्ट्रोकैमिस्ट्री
- बायोसेंसर
- जैविक मशीन
- जैवचिकित्सा अभियांत्रिकी
- डाइइलेक्ट्रोफोरेसिस
- डीएनए डिजिटल डेटा संचयन
- इलेक्ट्रोकेमिकल इंजीनियरिंग
- इलेक्ट्रोफिजियोलॉजी
- इलेक्ट्रोट्रॉफ़
- गैल्वनिज्म
- जीएचके वर्तमान समीकरण
- हॉजकिन-हक्सले मॉडल
- प्रत्यारोपण (दवा)
- मेम्ब्रेन क्षमता
- मल्टीइलेक्ट्रोड सरणी
- नर्न्स्ट-प्लैंक समीकरण
- न्यूरोफिजिक्स
- पैच दबाना
- कार्रवाई क्षमता के मात्रात्मक मॉडल
- सल्तटोरी कोंडुक्ट्न
संदर्भ
- ↑ Nicolini C (1995). "From neural chip and engineered biomolecules to bioelectronic devices: an overview". Biosensors & Bioelectronics. 10 (1–2): 105–27. doi:10.1016/0956-5663(95)96799-5. PMID 7734117.
- ↑ 2.0 2.1 2.2 "A Framework for Bioelectronics: Discovery and Innovation" (PDF). National Institute of Standards and Technology. February 2009. p. 42.
- ↑ "बायोसेंसर और बायोइलेक्ट्रॉनिक्स". Elsevier.
- ↑ 4.0 4.1 4.2 Rivnay J, Owens RM, Malliaras GG (January 14, 2014). "ऑर्गेनिक बायोइलेक्ट्रॉनिक्स का उदय". Chemistry of Materials. 26 (1): 679–685. doi:10.1021/cm4022003.
{{cite journal}}
: CS1 maint: uses authors parameter (link) - ↑ Owens R, Kjall P, Richter-Dahlfors A, Cicoira F (September 2013). "कार्बनिक बायोइलेक्ट्रॉनिक्स - बायोमेडिसिन में उपन्यास अनुप्रयोग। प्रस्तावना". Biochimica et Biophysica Acta. 1830 (9): 4283–5. doi:10.1016/j.bbagen.2013.04.025. PMID 23623969.
- ↑ Simon DT, Larsson KC, Nilsson D, Burström G, Galter D, Berggren M, Richter-Dahlfors A (September 2015). "एक कार्बनिक इलेक्ट्रॉनिक बायोमिमेटिक न्यूरॉन ऑटो-विनियमित न्यूरोमॉड्यूलेशन को सक्षम बनाता है". Biosensors & Bioelectronics. 71: 359–364. doi:10.1016/j.bios.2015.04.058. PMID 25932795.
- ↑ Jonsson A, Song Z, Nilsson D, Meyerson BA, Simon DT, Linderoth B, Berggren M (May 2015). "प्रत्यारोपित कार्बनिक बायोइलेक्ट्रॉनिक का उपयोग कर थेरेपी". Science Advances. 1 (4): e1500039. Bibcode:2015SciA....1E0039J. doi:10.1126/sciadv.1500039. PMC 4640645. PMID 26601181.
- ↑ Löffler S, Libberton B, Richter-Dahlfors A (2015). "संक्रमण में कार्बनिक बायोइलेक्ट्रॉनिक्स". Journal of Materials Chemistry B. 3 (25): 4979–4992. doi:10.1039/C5TB00382B. PMID 32262450.
- ↑ Löffler S, Libberton B, Richter-Dahlfors A (November 2015). "बायोमेडिकल अनुप्रयोगों के लिए जैविक बायोइलेक्ट्रॉनिक उपकरण". Electronics. 4 (4): 879–908. doi:10.3390/electronics4040879.
- ↑ Hämmerle H, Kobuch K, Kohler K, Nisch W, Sachs H, Stelzle M (February 2002). "सबरेटिनल इम्प्लांटेशन के लिए माइक्रो-फोटोडायोड सरणियों की बायोस्टेबिलिटी". Biomaterials. 23 (3): 797–804. doi:10.1016/S0142-9612(01)00185-5. PMID 11771699.
- ↑ Glogener P, Krause M, Katzer J, Schubert MA, Birkholz M, Bellmann O, Kröger-Koch C, Hammonn HM, Metges CC, Welsch C, Ruff R, Hoffmann KP (2018). "विवो एक्सपोजर के दौरान माइक्रोचिप सेंसर इम्प्लांट की लंबी जंग स्थिरता". Biosensors. 8 (1): 13. doi:10.3390/bios8010013. PMC 5872061. PMID 29389853.
- ↑ Simon DT, Gabrielsson EO, Tybrandt K, Berggren M (November 2016). "Organic Bioelectronics: Bridging the Signaling Gap between Biology and Technology". Chemical Reviews. 116 (21): 13009–13041. doi:10.1021/acs.chemrev.6b00146. PMID 27367172.
- ↑ "कैला वन के लिए डे नोवो वर्गीकरण अनुरोध" (PDF). Retrieved September 11, 2021.
- ↑ Jonsson A, Song Z, Nilsson D, Meyerson BA, Simon DT, Linderoth B, Berggren M (May 2015). "प्रत्यारोपित कार्बनिक बायोइलेक्ट्रॉनिक का उपयोग कर थेरेपी". Science Advances. 1 (4): e1500039. Bibcode:2015SciA....1E0039J. doi:10.1126/sciadv.1500039. PMC 4640645. PMID 26601181.
- ↑ Koopman FA, Schuurman PR, Vervoordeldonk MJ, Tak PP (August 2014). "Vagus nerve stimulation: a new bioelectronics approach to treat rheumatoid arthritis?". Best Practice & Research. Clinical Rheumatology. 28 (4): 625–35. doi:10.1016/j.berh.2014.10.015. PMID 25481554.
- ↑ Carrara S, Iniewski K (2015). Carrara S, Iniewski K (eds.). बायोइलेक्ट्रॉनिक्स की हैंडबुक. Cambridge University Press. pp. 1–569. doi:10.1017/CBO9781139629539. ISBN 9781139629539.
बाहरी संबंध
The dictionary definition of bioelectronics at Wiktionary
- Biolectronics at Answers.com