उच्च-क्रम एकवचन मूल्य अपघटन: Difference between revisions

From Vigyanwiki
Line 1: Line 1:
{{Short description|Tensor decomposition}}
{{Short description|Tensor decomposition}}
[[बहुरेखीय बीजगणित]] में, टेंसर का '''उच्च-क्रम एकवचन मूल्य अपघटन''' (एचओएसवीडी) एक विशेष निर्देशीय टकर विघटन है। इसे एक प्रकार के  आव्यूह एकवचन मूल्य विघटन के सामान्यीकरण के रूप में भी देखा जा सकता है। यह कंप्यूटर विजन, कंप्यूटर आरेख, [[ यंत्र अधिगम |यंत्र अधिगम]], [[वैज्ञानिक कंप्यूटिंग]], और [[ संकेत आगे बढ़ाना |संकेत]] प्रसंस्करण में अनुप्रयोगों के साथ उपयोग होता है।
[[बहुरेखीय बीजगणित]] में, टेंसर का '''उच्च-क्रम सिंगुलर मूल्य अपघटन''' (एचओएसवीडी) एक विशेष निर्देशीय टकर विघटन है। इसे एक प्रकार के  आव्यूह सिंगुलर मूल्य विघटन के सामान्यीकरण के रूप में भी देखा जा सकता है। यह कंप्यूटर विजन, कंप्यूटर आरेख, [[ यंत्र अधिगम |यंत्र अधिगम]], [[वैज्ञानिक कंप्यूटिंग]], और [[ संकेत आगे बढ़ाना |संकेत]] प्रसंस्करण में अनुप्रयोगों के साथ उपयोग होता है।


कुछ पहलुओं का पता 1928 में एफ. एल. हिचकॉक से लगाया जा सकता है,<ref name=":0">{{Cite journal|last=Hitchcock|first=Frank L|date=1928-04-01|title=एम-वे ऐरे या टेन्सर के एकाधिक अपरिवर्तनीय और सामान्यीकृत रैंक|journal=Journal of Mathematics and Physics|language=en|volume=7|issue=1–4|pages=39–79|doi=10.1002/sapm19287139|issn=1467-9590}}</ref> परंतु यह एल. आर. टकर ही थे जिन्होंने 1960 के दशक में तीसरे क्रम के टेंसरों के लिए सामान्य टकर अपघटन विकसित किया था,<ref name=":1">{{Cite journal|last=Tucker|first=Ledyard R.|date=1966-09-01|title=तीन-मोड कारक विश्लेषण पर कुछ गणितीय नोट्स|journal=Psychometrika|language=en|volume=31|issue=3|pages=279–311|doi=10.1007/bf02289464|pmid=5221127|s2cid=44301099|issn=0033-3123}}</ref><ref name="Tucker1963">{{Cite journal|last=Tucker|first=L. R.|date=1963|title=परिवर्तन की माप के लिए तीन-तरफा मैट्रिक्स के कारक विश्लेषण के निहितार्थ|journal=In C. W. Harris (Ed.), Problems in Measuring Change. Madison, Wis.: Univ. Wis. Press.|pages=122–137}}</ref><ref name="Tucker1964">{{Cite journal|last=Tucker|first=L. R.|date=1964|title=त्रि-आयामी मैट्रिक्स तक कारक विश्लेषण का विस्तार|journal=In N. Frederiksen and H. Gulliksen (Eds.), Contributions to Mathematical Psychology. New York: Holt, Rinehart and Winston|pages=109–127}}</ref> आगे लिवेन डी लाथौवर एल द्वारा वकालत की गई। डी लाथौवर एट अल।<ref name=":2">{{Cite journal|last1=De Lathauwer|first1=L.|last2=De Moor|first2=B.|last3=Vandewalle|first3=J.|date=2000-01-01|title=एक बहुरेखीय एकवचन मूल्य अपघटन|journal=SIAM Journal on Matrix Analysis and Applications|volume=21|issue=4|pages=1253–1278|doi=10.1137/s0895479896305696|issn=0895-4798|citeseerx=10.1.1.102.9135}}</ref> उनके मल्टीलिनियर एसवीडी कार्य में जो पावर विधि को नियोजित करता है, या वासिलेस्कु और टेरज़ोपोलोस द्वारा समर्थित है जिसने एम-मोड एसवीडी को एक समानांतर कलन विधि विकसित किया है जो आव्यूह एसवीडी को नियोजित करता है।
कुछ पहलुओं का पता 1928 में एफ. एल. हिचकॉक से लगाया जा सकता है,<ref name=":0">{{Cite journal|last=Hitchcock|first=Frank L|date=1928-04-01|title=एम-वे ऐरे या टेन्सर के एकाधिक अपरिवर्तनीय और सामान्यीकृत रैंक|journal=Journal of Mathematics and Physics|language=en|volume=7|issue=1–4|pages=39–79|doi=10.1002/sapm19287139|issn=1467-9590}}</ref> परंतु यह एल. आर. टकर ही थे जिन्होंने 1960 के दशक में तीसरे क्रम के टेंसरों के लिए सामान्य टकर अपघटन विकसित किया था,<ref name=":1">{{Cite journal|last=Tucker|first=Ledyard R.|date=1966-09-01|title=तीन-मोड कारक विश्लेषण पर कुछ गणितीय नोट्स|journal=Psychometrika|language=en|volume=31|issue=3|pages=279–311|doi=10.1007/bf02289464|pmid=5221127|s2cid=44301099|issn=0033-3123}}</ref><ref name="Tucker1963">{{Cite journal|last=Tucker|first=L. R.|date=1963|title=परिवर्तन की माप के लिए तीन-तरफा मैट्रिक्स के कारक विश्लेषण के निहितार्थ|journal=In C. W. Harris (Ed.), Problems in Measuring Change. Madison, Wis.: Univ. Wis. Press.|pages=122–137}}</ref><ref name="Tucker1964">{{Cite journal|last=Tucker|first=L. R.|date=1964|title=त्रि-आयामी मैट्रिक्स तक कारक विश्लेषण का विस्तार|journal=In N. Frederiksen and H. Gulliksen (Eds.), Contributions to Mathematical Psychology. New York: Holt, Rinehart and Winston|pages=109–127}}</ref> आगे लिवेन डी लाथौवर एल द्वारा वकालत की गई। डी लाथौवर एट अल।<ref name=":2">{{Cite journal|last1=De Lathauwer|first1=L.|last2=De Moor|first2=B.|last3=Vandewalle|first3=J.|date=2000-01-01|title=एक बहुरेखीय एकवचन मूल्य अपघटन|journal=SIAM Journal on Matrix Analysis and Applications|volume=21|issue=4|pages=1253–1278|doi=10.1137/s0895479896305696|issn=0895-4798|citeseerx=10.1.1.102.9135}}</ref> उनके मल्टीलिनियर एसवीडी कार्य में जो पावर विधि को नियोजित करता है, या वासिलेस्कु और टेरज़ोपोलोस द्वारा समर्थित है जिसने एम-मोड एसवीडी को एक समानांतर कलन विधि विकसित किया है जो आव्यूह एसवीडी को नियोजित करता है।


उच्च क्रम एकवचन मूल्य अपघटन एचओएसवीडी शब्द डेलाथौवर के नाम से निर्मित किया गया था, परंतु साहित्य में सामान्यतः एचओएसवीडी के रूप में संदर्भित कलन विधि और टकर या डेलाथौवर को स्पष्टीकरणीय ठहराया गया था, जिसे वासिलेस्कु और टेरज़ोपोलोस द्वारा विकसित किया गया था।<ref name=":Vasilescu2002">M. A. O. Vasilescu, D. Terzopoulos (2002) with the name M-mode SVD.  The M-mode SVD is suitable for parallel computation and employs the matrix SVD  [http://www.cs.toronto.edu/~maov/tensorfaces/Springer%20ECCV%202002_files/eccv02proceeding_23500447.pdf "Multilinear Analysis of Image Ensembles: TensorFaces"],  Proc. 7th European Conference on Computer Vision (ECCV'02), Copenhagen, Denmark, May, 2002</ref><ref name="Vasilescu2003">M. A. O. Vasilescu, D. Terzopoulos (2003) [http://www.cs.toronto.edu/~maov/tensorfaces/cvpr03.pdf "Multilinear Subspace Analysis of Image Ensembles"], "Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR’03), Madison, WI, June, 2003"</ref><ref name=":Vasilescu2005">M. A. O. Vasilescu, D. Terzopoulos (2005) [http://www.media.mit.edu/~maov/mica/mica05.pdf "Multilinear Independent Component Analysis"], "Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, June 2005, vol.1, 547–553."</ref> के प्रतिस्थानीय और L1-नॉर्म-आधारित विभिन्न प्रकार भी प्रस्तावित किए गए हैं।<ref name="robustHOSVD">{{Cite journal|last1=Godfarb|first1=Donald|last2=Zhiwei|first2=Qin|title=Robust low-rank tensor recovery: Models and algorithms|
उच्च क्रम सिंगुलर मूल्य अपघटन एचओएसवीडी शब्द डेलाथौवर के नाम से निर्मित किया गया था, परंतु साहित्य में सामान्यतः एचओएसवीडी के रूप में संदर्भित कलन विधि और टकर या डेलाथौवर को स्पष्टीकरणीय ठहराया गया था, जिसे वासिलेस्कु और टेरज़ोपोलोस द्वारा विकसित किया गया था।<ref name=":Vasilescu2002">M. A. O. Vasilescu, D. Terzopoulos (2002) with the name M-mode SVD.  The M-mode SVD is suitable for parallel computation and employs the matrix SVD  [http://www.cs.toronto.edu/~maov/tensorfaces/Springer%20ECCV%202002_files/eccv02proceeding_23500447.pdf "Multilinear Analysis of Image Ensembles: TensorFaces"],  Proc. 7th European Conference on Computer Vision (ECCV'02), Copenhagen, Denmark, May, 2002</ref><ref name="Vasilescu2003">M. A. O. Vasilescu, D. Terzopoulos (2003) [http://www.cs.toronto.edu/~maov/tensorfaces/cvpr03.pdf "Multilinear Subspace Analysis of Image Ensembles"], "Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR’03), Madison, WI, June, 2003"</ref><ref name=":Vasilescu2005">M. A. O. Vasilescu, D. Terzopoulos (2005) [http://www.media.mit.edu/~maov/mica/mica05.pdf "Multilinear Independent Component Analysis"], "Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, June 2005, vol.1, 547–553."</ref> के प्रतिस्थानीय और L1-नॉर्म-आधारित विभिन्न प्रकार भी प्रस्तावित किए गए हैं।<ref name="robustHOSVD">{{Cite journal|last1=Godfarb|first1=Donald|last2=Zhiwei|first2=Qin|title=Robust low-rank tensor recovery: Models and algorithms|
   journal=SIAM Journal on Matrix Analysis and Applications|volume=35|number=1|pages=225–253|date=2014|doi=10.1137/130905010|arxiv=1311.6182|s2cid=1051205}}</ref><ref name="l1tucker">{{cite journal|last1=Chachlakis|first1=Dimitris G.|last2=Prater-Bennette|first2=Ashley|last3=Markopoulos|first3=Panos P.|title=L1-मानदंड टकर टेंसर अपघटन|journal=IEEE Access|date=22 November 2019|volume=7|pages=178454–178465|doi=10.1109/ACCESS.2019.2955134|doi-access=free}}</ref><ref name="l1tucker3">{{cite journal|last1=Markopoulos|first1=Panos P.|last2=Chachlakis|first2=Dimitris G.|last3=Papalexakis|first3=Evangelos|title=The Exact Solution to Rank-1 L1-Norm TUCKER2 Decomposition|journal=IEEE Signal Processing Letters|volume=25|issue=4|date=April 2018|pages=511–515|doi=10.1109/LSP.2018.2790901|arxiv=1710.11306|bibcode=2018ISPL...25..511M|s2cid=3693326}}</ref><ref name="l1tucker2">{{cite book|last1=Markopoulos|first1=Panos P.|last2=Chachlakis|first2=Dimitris G.|last3=Prater-Bennette|first3=Ashley|title=2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP) |chapter=L1-Norm Higher-Order Singular-Value Decomposition |date=21 February 2019|pages=1353–1357|doi=10.1109/GlobalSIP.2018.8646385|isbn=978-1-7281-1295-4|s2cid=67874182}}</ref>
   journal=SIAM Journal on Matrix Analysis and Applications|volume=35|number=1|pages=225–253|date=2014|doi=10.1137/130905010|arxiv=1311.6182|s2cid=1051205}}</ref><ref name="l1tucker">{{cite journal|last1=Chachlakis|first1=Dimitris G.|last2=Prater-Bennette|first2=Ashley|last3=Markopoulos|first3=Panos P.|title=L1-मानदंड टकर टेंसर अपघटन|journal=IEEE Access|date=22 November 2019|volume=7|pages=178454–178465|doi=10.1109/ACCESS.2019.2955134|doi-access=free}}</ref><ref name="l1tucker3">{{cite journal|last1=Markopoulos|first1=Panos P.|last2=Chachlakis|first2=Dimitris G.|last3=Papalexakis|first3=Evangelos|title=The Exact Solution to Rank-1 L1-Norm TUCKER2 Decomposition|journal=IEEE Signal Processing Letters|volume=25|issue=4|date=April 2018|pages=511–515|doi=10.1109/LSP.2018.2790901|arxiv=1710.11306|bibcode=2018ISPL...25..511M|s2cid=3693326}}</ref><ref name="l1tucker2">{{cite book|last1=Markopoulos|first1=Panos P.|last2=Chachlakis|first2=Dimitris G.|last3=Prater-Bennette|first3=Ashley|title=2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP) |chapter=L1-Norm Higher-Order Singular-Value Decomposition |date=21 February 2019|pages=1353–1357|doi=10.1109/GlobalSIP.2018.8646385|isbn=978-1-7281-1295-4|s2cid=67874182}}</ref>


Line 18: Line 18:
\end{array}</math>कहाँ <math>\cdot^H</math> संयुग्म स्थानान्तरण को दर्शाता है। दूसरी समानता इसलिए है क्योंकि <math>{\bf U}_m</math>'एकात्मक आव्यूह हैं। अब कोर टेंसर को परिभाषित करें<math display="block">\mathcal{S} := \mathcal{A} \times ({\bf U}_1^H, {\bf U}_2^H, \ldots, {\bf U}_M^H).</math>पुनः, एचओएसवीडी<ref name=":2" />का विघटन <math>\mathcal{A}</math>  है<math display="block">\mathcal{A} = \mathcal{S}\times ({\bf U}_1, {\bf U}_2, \ldots, {\bf U}_M).</math> उपरोक्त निर्माण से पता चलता है कि प्रत्येक टेंसर में एक एचओएसवीडी होता है।
\end{array}</math>कहाँ <math>\cdot^H</math> संयुग्म स्थानान्तरण को दर्शाता है। दूसरी समानता इसलिए है क्योंकि <math>{\bf U}_m</math>'एकात्मक आव्यूह हैं। अब कोर टेंसर को परिभाषित करें<math display="block">\mathcal{S} := \mathcal{A} \times ({\bf U}_1^H, {\bf U}_2^H, \ldots, {\bf U}_M^H).</math>पुनः, एचओएसवीडी<ref name=":2" />का विघटन <math>\mathcal{A}</math>  है<math display="block">\mathcal{A} = \mathcal{S}\times ({\bf U}_1, {\bf U}_2, \ldots, {\bf U}_M).</math> उपरोक्त निर्माण से पता चलता है कि प्रत्येक टेंसर में एक एचओएसवीडी होता है।
== कॉम्पैक्ट एचओएसवीडी ==
== कॉम्पैक्ट एचओएसवीडी ==
जैसा कि एक आव्यूह के कॉम्पैक्ट एकवचन मूल्य अपघटन के स्थितियों में, एक कॉम्पैक्ट एचओएसवीडी पर विचार करना भी संभव है, जो अनुप्रयोगों में बहुत उपयोगी है।
जैसा कि एक आव्यूह के कॉम्पैक्ट सिंगुलर मूल्य अपघटन के स्थितियों में, एक कॉम्पैक्ट एचओएसवीडी पर विचार करना भी संभव है, जो अनुप्रयोगों में बहुत उपयोगी है।


मान लीजिए कि <math>{\bf U}m\in \mathbb{C}^{I_m\times R_m}</math> एक आव्यूह है जिसके स्तंभ इकाईवार होते हैं और जो मानक फैक्टर-m फ्लैटेनिंग <math>\mathcal{A}{[m]}</math> के गैर-शून्य गुणधर्म के लिए एक बेसिस सम्मिलित करते हैं। यहां <math>r_m</math> विशिष्ट स्तंभ <math>{\bf u}{r_m}</math> को अभिलिखित किया जाए, जो मानक फैक्टर-m फ्लैटेनिंग <math>\mathcal{A}{[m]}</math> के <math>r_m</math>वें सबसे बड़े गैर-शून्य गुणधर्म से मिलता है। <math>{\bf U}m</math> के स्तंभ फैक्टर-m फ्लैटेनिंग <math>\mathcal{A}{[m]}</math> के छवि के लिए एक बेसिस बनाते हैं, इससे हमें निम्नलिखित सम्बन्ध मिलता है:<math display="block">\mathcal{A}_{[m]} = {\bf U}_m {\bf U}_m^H \mathcal{A}_{[m]} = \bigl( \mathcal{A} \times_m ({\bf U}_m {\bf U}_m^H)  \bigr)_{[m]},</math>जहां पहली समानता [[प्रक्षेपण (रैखिक बीजगणित)|प्रक्षेपण]] के गुणों के कारण है और अंतिम समानता बहुरेखीय गुणन के गुणों के कारण है। चूँकि फ़्लैटनिंग विशेषणात्मक मानचित्र हैं और उपरोक्त सूत्र सभी के लिए मान्य है <math>m=1,2,\ldots,m,\ldots,M</math>, हम उससे पहले जैसा पाते हैं<math display="block">\begin{array}{rcl}
मान लीजिए कि <math>{\bf U}m\in \mathbb{C}^{I_m\times R_m}</math> एक आव्यूह है जिसके स्तंभ इकाईवार होते हैं और जो मानक फैक्टर-m फ्लैटेनिंग <math>\mathcal{A}{[m]}</math> के गैर-शून्य गुणधर्म के लिए एक बेसिस सम्मिलित करते हैं। यहां <math>r_m</math> विशिष्ट स्तंभ <math>{\bf u}{r_m}</math> को अभिलिखित किया जाए, जो मानक फैक्टर-m फ्लैटेनिंग <math>\mathcal{A}{[m]}</math> के <math>r_m</math>वें सबसे बड़े गैर-शून्य गुणधर्म से मिलता है। <math>{\bf U}m</math> के स्तंभ फैक्टर-m फ्लैटेनिंग <math>\mathcal{A}{[m]}</math> के छवि के लिए एक बेसिस बनाते हैं, इससे हमें निम्नलिखित सम्बन्ध मिलता है:<math display="block">\mathcal{A}_{[m]} = {\bf U}_m {\bf U}_m^H \mathcal{A}_{[m]} = \bigl( \mathcal{A} \times_m ({\bf U}_m {\bf U}_m^H)  \bigr)_{[m]},</math>जहां पहली समानता [[प्रक्षेपण (रैखिक बीजगणित)|प्रक्षेपण]] के गुणों के कारण है और अंतिम समानता बहुरेखीय गुणन के गुणों के कारण है। चूँकि फ़्लैटनिंग विशेषणात्मक मानचित्र हैं और उपरोक्त सूत्र सभी के लिए मान्य है <math>m=1,2,\ldots,m,\ldots,M</math>, हम उससे पहले जैसा पाते हैं<math display="block">\begin{array}{rcl}
Line 71: Line 71:


=== इंटरलेसिंग गणना ===
=== इंटरलेसिंग गणना ===
एक ऐसी रणनीति जो कुछ या सभी होने पर काफी तेज़ होती है <math>r_k \ll n_k </math> इसमें कोर टेंसर और कारक आव्यूह की गणना को निम्नानुसार सम्मिलित किया गया है:<ref name=":4">{{Cite journal|last1=Vannieuwenhoven|first1=N.|last2=Vandebril|first2=R.|last3=Meerbergen|first3=K.|date=2012-01-01|title=उच्च-क्रम एकवचन मूल्य अपघटन के लिए एक नई ट्रंकेशन रणनीति|journal=SIAM Journal on Scientific Computing|volume=34|issue=2|pages=A1027–A1052|doi=10.1137/110836067|bibcode=2012SJSC...34A1027V |s2cid=15318433 |issn=1064-8275|url=https://lirias.kuleuven.be/handle/123456789/337210}}</ref><ref name=":5">{{Cite book|title=Tensor Spaces and Numerical Tensor Calculus {{!}} SpringerLink|volume = 42|last=Hackbusch|first=Wolfgang|language=en-gb|doi=10.1007/978-3-642-28027-6|series = Springer Series in Computational Mathematics|year = 2012|isbn = 978-3-642-28026-9| s2cid=117253621 }}</ref><ref name=":fist_hosvd">{{Cite conference|last1=Cobb|first1=Benjamin|last2=Kolla|first2=Hemanth|last3=Phipps|first3=Eric|last4=Çatalyürek|first4=Ümit V.|date=2022|title=FIST-HOSVD: जगह में जुड़े हुए अनुक्रमिक रूप से उच्च क्रम वाले एकवचन मूल्य अपघटन को काट दिया गया|conference=Platform for Advanced Scientific Computing(PASC) |language=en|isbn=9781450394109|doi=10.1145/3539781.3539798|url=https://doi.org/10.1145/3539781.3539798}}</ref>
जब कुछ या सभी <math>r_k \ll n_k </math> हों, तो एक रणनीति जिसमें मध्य टेंसर और कारक आव्यूह की गणना को निम्नानुसार सम्मिलित किया गया है,जो निम्नलिखित रूप से होता है<ref name=":4">{{Cite journal|last1=Vannieuwenhoven|first1=N.|last2=Vandebril|first2=R.|last3=Meerbergen|first3=K.|date=2012-01-01|title=उच्च-क्रम एकवचन मूल्य अपघटन के लिए एक नई ट्रंकेशन रणनीति|journal=SIAM Journal on Scientific Computing|volume=34|issue=2|pages=A1027–A1052|doi=10.1137/110836067|bibcode=2012SJSC...34A1027V |s2cid=15318433 |issn=1064-8275|url=https://lirias.kuleuven.be/handle/123456789/337210}}</ref><ref name=":5">{{Cite book|title=Tensor Spaces and Numerical Tensor Calculus {{!}} SpringerLink|volume = 42|last=Hackbusch|first=Wolfgang|language=en-gb|doi=10.1007/978-3-642-28027-6|series = Springer Series in Computational Mathematics|year = 2012|isbn = 978-3-642-28026-9| s2cid=117253621 }}</ref><ref name=":fist_hosvd">{{Cite conference|last1=Cobb|first1=Benjamin|last2=Kolla|first2=Hemanth|last3=Phipps|first3=Eric|last4=Çatalyürek|first4=Ümit V.|date=2022|title=FIST-HOSVD: जगह में जुड़े हुए अनुक्रमिक रूप से उच्च क्रम वाले एकवचन मूल्य अपघटन को काट दिया गया|conference=Platform for Advanced Scientific Computing(PASC) |language=en|isbn=9781450394109|doi=10.1145/3539781.3539798|url=https://doi.org/10.1145/3539781.3539798}}</ref>


* तय करना <math>\mathcal{A}^0 = \mathcal{A}</math>;
* यदि  <math>\mathcal{A}^0 = \mathcal{A}</math>;
* के लिए <math>m = 0,1,2 \ldots, M</math> निम्नलिखित कार्य करें:
* के लिए <math>m = 0,1,2 \ldots, M</math> निम्नलिखित कार्य करें:
*# मानक मोड-एम फ़्लैटनिंग का निर्माण करें <math>\mathcal{A}_{[m]}^{m-1}</math>;
*# मानक मोड-एम फ़्लैटनिंग <math>\mathcal{A}_{[m]}^{m-1}</math> का निर्माण करें ;
*# (कॉम्पैक्ट   ) एकवचन मूल्य अपघटन की गणना करें <math>\mathcal{A}_{[m]}^{m-1} = U_m \Sigma_m V^T_m </math>, और बाएँ एकवचन वैक्टर को संग्रहीत करें <math>U_m \in F^{I_m \times R_m}</math>;
*# कॉम्पैक्ट सिंगुलर मूल्य विघटन की गणना करें <math>\mathcal{A}_{[m]}^{m-1} = U_m \Sigma_m V^T_m </math>, और बाएँ सिंगुलर वैक्टर <math>U_m \in F^{I_m \times R_m}</math>को संग्रहीत करें :
*# तय करना <math>\mathcal{A}^m = U_m^H \times_m \mathcal{A}^{m-1} </math>, या, समकक्ष, <math>\mathcal{A}^m_{[m]} = \Sigma_m V_m^T </math>.
*# यदि <math>\mathcal{A}^m = U_m^H \times_m \mathcal{A}^{m-1} </math>, या, समकक्ष, <math>\mathcal{A}^m_{[m]} = \Sigma_m V_m^T </math>.


=== इन-प्लेस गणना ===
=== इन-प्लेस गणना ===
एचओएसवीडी की गणना फ़्यूज्ड इन-प्लेस सीक्वेंशियली ट्रंकेटेड हायर ऑर्डर सिंगुलर वैल्यू डीकंपोजिशन (FIST-एचओएसवीडी) के माध्यम से की जा सकती है। <ref name=":fist_hosvd" />एचओएसवीडी कोर टेंसर द्वारा मूल टेंसर को ओवरराइट करके कलन विधि , एचओएसवीडी की गणना करने की मेमोरी खपत को काफी कम कर देता है।
एचओएसवीडी की गणना फ़्यूज्ड इन-प्लेस अनुक्रमिक रूप से उच्च क्रम सिंगुलर कलन विधि के माध्यम से प्लेस में गणना कर सकते हैं जिसमें मूल टेंसर को एचओएसवीडी कोर टेंसर से ओवरराइट किया जाता है, जिससे एचओएसवीडी की गणना में मेमोरी का उपयोग बहुत कम हो जाता है।


[[Category:Created On 24/07/2023|Higher Order Singular Value Decomposition]]
[[Category:Created On 24/07/2023|Higher Order Singular Value Decomposition]]
Line 99: Line 99:


इस अनुकूलन समस्या को हल करने का प्रयास करने का एक सरल विचार क्लासिक या इंटरलेस्ड गणना के चरण 2 में (कॉम्पैक्ट    ) एसवीडी को छोटा करना है। क्लासिक गणना में चरण 2 को प्रतिस्थापित करके एक शास्त्रीय रूप से काट दिया गया एचओएसवीडी प्राप्त किया जाता है
इस अनुकूलन समस्या को हल करने का प्रयास करने का एक सरल विचार क्लासिक या इंटरलेस्ड गणना के चरण 2 में (कॉम्पैक्ट    ) एसवीडी को छोटा करना है। क्लासिक गणना में चरण 2 को प्रतिस्थापित करके एक शास्त्रीय रूप से काट दिया गया एचओएसवीडी प्राप्त किया जाता है
* एक रैंक की गणना करें-<math>\bar R_m </math> छोटा किया गया एसवीडी <math>\mathcal{A}_{[m]} \approx U_m \Sigma_m V^T_m </math>, और शीर्ष पर स्टोर करें <math>\bar R_m </math> बाएं एकवचन सदिश <math>U_m \in F^{I_m \times \bar R_m}</math>;
* एक रैंक की गणना करें-<math>\bar R_m </math> छोटा किया गया एसवीडी <math>\mathcal{A}_{[m]} \approx U_m \Sigma_m V^T_m </math>, और शीर्ष पर स्टोर करें <math>\bar R_m </math> बाएं सिंगुलर सदिश <math>U_m \in F^{I_m \times \bar R_m}</math>;
जबकि क्रमिक रूप से काटे गए एचओएसवीडी (या क्रमिक रूप से काटे गए एचओएसवीडी) को इंटरलेस्ड गणना में चरण 2 को प्रतिस्थापित करके प्राप्त किया जाता है
जबकि क्रमिक रूप से काटे गए एचओएसवीडी (या क्रमिक रूप से काटे गए एचओएसवीडी) को इंटरलेस्ड गणना में चरण 2 को प्रतिस्थापित करके प्राप्त किया जाता है
* एक रैंक की गणना करें-<math>\bar R_m </math> छोटा किया गया एसवीडी <math>\mathcal{A}_{[m]}^{m-1} \approx U_m \Sigma_m V^T_m </math>, और शीर्ष पर स्टोर करें <math>\bar R_m </math> बाएं एकवचन सदिश <math>U_m \in F^{I_m \times \bar R_m}</math>. दुर्भाग्य से, ट्रंकेशन के परिणामस्वरूप सर्वोत्तम निम्न बहुरेखीय रैंक अनुकूलन समस्या का इष्टतम समाधान नहीं मिलता है,<ref name=":2" /><ref name=":Vasilescu2002"/><ref name=":4" /><ref name=":fist_hosvd" /> हालाँकि, शास्त्रीय और इंटरलीव्ड काटे गए एचओएसवीडी दोनों का परिणाम अर्ध-इष्टतम समाधान में होता है:<ref name=":4" /><ref name=":fist_hosvd" /><ref name="Vasilescu2003" /><ref name=":5" /><ref>{{Cite journal|last=Grasedyck|first=L.|date=2010-01-01|title=टेंसरों का पदानुक्रमित एकवचन मान अपघटन|journal=SIAM Journal on Matrix Analysis and Applications|volume=31|issue=4|pages=2029–2054|doi=10.1137/090764189|issn=0895-4798|citeseerx=10.1.1.660.8333}}</ref> अगर <math>\mathcal{\bar A}_t </math> शास्त्रीय या क्रमिक रूप से काटे गए एचओएसवीडी को दर्शाता है <math>\mathcal{\bar A}^* </math> तब, सर्वोत्तम निम्न बहुरेखीय रैंक सन्निकटन समस्या के इष्टतम समाधान को दर्शाता है<math display="block">\| \mathcal{A} - \mathcal{\bar A}_t \|_F \le \sqrt{M} \| \mathcal{A} - \mathcal{\bar A}^* \|_F; </math>व्यवहार में इसका मतलब यह है कि यदि एक छोटी सी त्रुटि के साथ एक इष्टतम समाधान मौजूद है, तो कई इच्छित उद्देश्यों के लिए एक छोटा एचओएसवीडी भी पर्याप्त रूप से अच्छा समाधान देगा।
* एक रैंक की गणना करें-<math>\bar R_m </math> छोटा किया गया एसवीडी <math>\mathcal{A}_{[m]}^{m-1} \approx U_m \Sigma_m V^T_m </math>, और शीर्ष पर स्टोर करें <math>\bar R_m </math> बाएं सिंगुलर सदिश <math>U_m \in F^{I_m \times \bar R_m}</math>. दुर्भाग्य से, ट्रंकेशन के परिणामस्वरूप सर्वोत्तम निम्न बहुरेखीय रैंक अनुकूलन समस्या का इष्टतम समाधान नहीं मिलता है,<ref name=":2" /><ref name=":Vasilescu2002"/><ref name=":4" /><ref name=":fist_hosvd" /> हालाँकि, शास्त्रीय और इंटरलीव्ड काटे गए एचओएसवीडी दोनों का परिणाम अर्ध-इष्टतम समाधान में होता है:<ref name=":4" /><ref name=":fist_hosvd" /><ref name="Vasilescu2003" /><ref name=":5" /><ref>{{Cite journal|last=Grasedyck|first=L.|date=2010-01-01|title=टेंसरों का पदानुक्रमित एकवचन मान अपघटन|journal=SIAM Journal on Matrix Analysis and Applications|volume=31|issue=4|pages=2029–2054|doi=10.1137/090764189|issn=0895-4798|citeseerx=10.1.1.660.8333}}</ref> अगर <math>\mathcal{\bar A}_t </math> शास्त्रीय या क्रमिक रूप से काटे गए एचओएसवीडी को दर्शाता है <math>\mathcal{\bar A}^* </math> तब, सर्वोत्तम निम्न बहुरेखीय रैंक सन्निकटन समस्या के इष्टतम समाधान को दर्शाता है<math display="block">\| \mathcal{A} - \mathcal{\bar A}_t \|_F \le \sqrt{M} \| \mathcal{A} - \mathcal{\bar A}^* \|_F; </math>व्यवहार में इसका मतलब यह है कि यदि एक छोटी सी त्रुटि के साथ एक इष्टतम समाधान मौजूद है, तो कई इच्छित उद्देश्यों के लिए एक छोटा एचओएसवीडी भी पर्याप्त रूप से अच्छा समाधान देगा।


== अनुप्रयोग ==
== अनुप्रयोग ==

Revision as of 12:54, 2 August 2023

बहुरेखीय बीजगणित में, टेंसर का उच्च-क्रम सिंगुलर मूल्य अपघटन (एचओएसवीडी) एक विशेष निर्देशीय टकर विघटन है। इसे एक प्रकार के आव्यूह सिंगुलर मूल्य विघटन के सामान्यीकरण के रूप में भी देखा जा सकता है। यह कंप्यूटर विजन, कंप्यूटर आरेख, यंत्र अधिगम, वैज्ञानिक कंप्यूटिंग, और संकेत प्रसंस्करण में अनुप्रयोगों के साथ उपयोग होता है।

कुछ पहलुओं का पता 1928 में एफ. एल. हिचकॉक से लगाया जा सकता है,[1] परंतु यह एल. आर. टकर ही थे जिन्होंने 1960 के दशक में तीसरे क्रम के टेंसरों के लिए सामान्य टकर अपघटन विकसित किया था,[2][3][4] आगे लिवेन डी लाथौवर एल द्वारा वकालत की गई। डी लाथौवर एट अल।[5] उनके मल्टीलिनियर एसवीडी कार्य में जो पावर विधि को नियोजित करता है, या वासिलेस्कु और टेरज़ोपोलोस द्वारा समर्थित है जिसने एम-मोड एसवीडी को एक समानांतर कलन विधि विकसित किया है जो आव्यूह एसवीडी को नियोजित करता है।

उच्च क्रम सिंगुलर मूल्य अपघटन एचओएसवीडी शब्द डेलाथौवर के नाम से निर्मित किया गया था, परंतु साहित्य में सामान्यतः एचओएसवीडी के रूप में संदर्भित कलन विधि और टकर या डेलाथौवर को स्पष्टीकरणीय ठहराया गया था, जिसे वासिलेस्कु और टेरज़ोपोलोस द्वारा विकसित किया गया था।[6][7][8] के प्रतिस्थानीय और L1-नॉर्म-आधारित विभिन्न प्रकार भी प्रस्तावित किए गए हैं।[9][10][11][12]


परिभाषा

इस लेख के उद्देश्य के लिए, यह संक्षेपण टेंसर को मान लिया जाता है कि इसे कुछ बेसिस के संदर्भ में निर्धारित नियोजित समय के साथ दिया गया है, जिसे एक M-वे सरणी भी कहा जाता है, जिसे द्वारा भी दर्शाया जा सकता है, जहां M मोड्स और टेंसर का आदेश है। वास्तविक संख्याएँ और शुद्ध काल्पनिक संख्याएँ दोनों को सम्मिलित करता है।

यदि का मानक मोड-m फ्लैटेनिंग का बेसिस सम्मिलित होता है, जिसमें विशिष्ट बेसिस का एक इकाई आव्यूह होता है, जिसमें विद्यमान के बगल दिए गए विशिष्ट मोड स्थानिक गुणधर्म के आधार वक्र के लिए ज्ञात होता है, जहां 'j' विशेष सबसे बड़े गुणधर्म के विशिष्ट स्तंभ से मेल खाता है। ध्यान दें कि मोड/फैक्टर आव्यूह विशेष मोड 'm' फ्लैटेनिंग के विशिष्ट परिभाषा पर नहीं निर्भर करती है। बहुरेखीय गुणन के गुणों से, हमारे पास है

कहाँ संयुग्म स्थानान्तरण को दर्शाता है। दूसरी समानता इसलिए है क्योंकि 'एकात्मक आव्यूह हैं। अब कोर टेंसर को परिभाषित करें
पुनः, एचओएसवीडी[5]का विघटन है
उपरोक्त निर्माण से पता चलता है कि प्रत्येक टेंसर में एक एचओएसवीडी होता है।

कॉम्पैक्ट एचओएसवीडी

जैसा कि एक आव्यूह के कॉम्पैक्ट सिंगुलर मूल्य अपघटन के स्थितियों में, एक कॉम्पैक्ट एचओएसवीडी पर विचार करना भी संभव है, जो अनुप्रयोगों में बहुत उपयोगी है।

मान लीजिए कि एक आव्यूह है जिसके स्तंभ इकाईवार होते हैं और जो मानक फैक्टर-m फ्लैटेनिंग के गैर-शून्य गुणधर्म के लिए एक बेसिस सम्मिलित करते हैं। यहां विशिष्ट स्तंभ को अभिलिखित किया जाए, जो मानक फैक्टर-m फ्लैटेनिंग के वें सबसे बड़े गैर-शून्य गुणधर्म से मिलता है। के स्तंभ फैक्टर-m फ्लैटेनिंग के छवि के लिए एक बेसिस बनाते हैं, इससे हमें निम्नलिखित सम्बन्ध मिलता है:

जहां पहली समानता प्रक्षेपण के गुणों के कारण है और अंतिम समानता बहुरेखीय गुणन के गुणों के कारण है। चूँकि फ़्लैटनिंग विशेषणात्मक मानचित्र हैं और उपरोक्त सूत्र सभी के लिए मान्य है , हम उससे पहले जैसा पाते हैं
जहां कोर टेंसर अब आकार का है

मल्टिलिनियर रैंक

टेंसर का मल्टिलिनियर रैंक[1] रैंक- के रूप में दर्शाया जाता है। मल्टिलिनियर रैंक एक में एक ट्यूपल है, जहां है। सभी ट्यूपल में मल्टिलिनियर रैंक नहीं होते हैं।[13] मल्टिलिनियर रैंक द्वारा सीमित होते हैं और यह शर्त को पूरा करते हैं।[13]

कॉम्पैक्ट एचओएसवीडी उस संदर्भ में एक रैंक-प्रकटक विघटन है जिसमें इसके कोर टेंसर के आयाम टेंसर के मल्टिलिनियर रैंक के अंशों के साथ मेल खाते हैं।

व्याख्या

निम्नलिखित ज्यामितीय व्याख्या पूर्ण और कॉम्पैक्ट एचओएसवीडी दोनों के लिए मान्य है। यदि टेंसर की मल्टिलिनियर रैंक बनें तब यह एक बहुआयामी सरणी है, हम इसे निम्नानुसार विस्तारित कर सकते हैं

यहाँ वह का वां मानक आधार वेक्टर है।. मल्टिलिनियर गुणन की परिभाषा के अनुसार, यह सत्य होता है कि:
,यहाँ वे स्तंभ हैं जो के हैं। आसानी से सत्यापित किया जा सकता है कि एक अधार निर्धारित टेंसरों का एक अधार निर्धारित समूह है। इसका मतलब है कि एचओएसवीडी टेंसर को एक विशेष चुने गए अधार निर्धारित अधार के संदर्भ में व्यक्त करने का एक विधि है, जिसमें गुणकों को मल्टिलिनियर सारणी के रूप में दिया जाता है।

गणना

एक टेंसर है, जिसमें रैंक- है, जहां में वास्तविक संख्याएँ को एक उपसमूह के रूप में सम्मिलित हैं।

पारंपरिक गणना

मल्टिलिनियर एसडब्ल्यूडी और M-मोड एसडब्ल्यूडी की गणना के लिए 1960 के दशक में एल. आर. टकर ने प्रस्तुत किया था,[3] जो बाद में एल डी लाथौवर आदि ने समर्थित किया,[5] और वासिलेस्कु और टेरज़ोपुलस ने भी समर्थित किया।[8][6] टर्म एचओएसडब्ल्यूडी को लिवेन डी लाथौवर ने बनाया था, लेकिन सामान्यतः साहित्य में एचओएसडब्ल्यूडी के लिए उपयोग किया जाने वाला कलन विधि वासिलेस्कु और टेरज़ोपोलोस ने प्रस्तुत किया था,[6][8] जिसे M-मोड एसडब्ल्यूडी के नाम से भी जाना जाता है। यह एक पैरलेल गणना है जो मैट्रिक्स एसडब्ल्यूडी का उपयोग करती है जिससे अधार-उपसर्गी मोड आव्यूहो की गणना की जा सके।

एम-मोड एसवीडी:[6][8]

मोड-m फ्लैटेनिंग का निर्माण करें। सिंगुलर मूल्य विघटन की गणना करें, और बाएँ सिंगुलर वेक्टर को स्टोर करें।

इसके बाद मल्टिलिनियर गुणन के द्वारा मध्य टेंसर की गणना करें:

इंटरलेसिंग गणना

जब कुछ या सभी हों, तो एक रणनीति जिसमें मध्य टेंसर और कारक आव्यूह की गणना को निम्नानुसार सम्मिलित किया गया है,जो निम्नलिखित रूप से होता है[14][15][16]

  • यदि ;
  • के लिए निम्नलिखित कार्य करें:
    1. मानक मोड-एम फ़्लैटनिंग का निर्माण करें ;
    2. कॉम्पैक्ट सिंगुलर मूल्य विघटन की गणना करें , और बाएँ सिंगुलर वैक्टर को संग्रहीत करें :
    3. यदि , या, समकक्ष, .

इन-प्लेस गणना

एचओएसवीडी की गणना फ़्यूज्ड इन-प्लेस अनुक्रमिक रूप से उच्च क्रम सिंगुलर कलन विधि के माध्यम से प्लेस में गणना कर सकते हैं जिसमें मूल टेंसर को एचओएसवीडी कोर टेंसर से ओवरराइट किया जाता है, जिससे एचओएसवीडी की गणना में मेमोरी का उपयोग बहुत कम हो जाता है।

अनुमान

अनुप्रयोगों में, जैसे कि नीचे उल्लिखित हैं, एक सामान्य समस्या किसी दिए गए टेंसर का अनुमान लगाना है एक कम बहुरेखीय रैंक के साथ। औपचारिक रूप से, यदि बहुरेखीय रैंक द्वारा निरूपित किया जाता है , फिर इष्टतम की गणना करें वह अनुमानित है किसी दिए गए कम के लिए एक अरैखिक गैर-उत्तल है -अनुकूलन समस्या

कहाँ के साथ घटी हुई बहुरेखीय रैंक है , और आदर्श फ्रोबेनियस मानदंड है.

इस अनुकूलन समस्या को हल करने का प्रयास करने का एक सरल विचार क्लासिक या इंटरलेस्ड गणना के चरण 2 में (कॉम्पैक्ट ) एसवीडी को छोटा करना है। क्लासिक गणना में चरण 2 को प्रतिस्थापित करके एक शास्त्रीय रूप से काट दिया गया एचओएसवीडी प्राप्त किया जाता है

  • एक रैंक की गणना करें- छोटा किया गया एसवीडी , और शीर्ष पर स्टोर करें बाएं सिंगुलर सदिश ;

जबकि क्रमिक रूप से काटे गए एचओएसवीडी (या क्रमिक रूप से काटे गए एचओएसवीडी) को इंटरलेस्ड गणना में चरण 2 को प्रतिस्थापित करके प्राप्त किया जाता है

  • एक रैंक की गणना करें- छोटा किया गया एसवीडी , और शीर्ष पर स्टोर करें बाएं सिंगुलर सदिश . दुर्भाग्य से, ट्रंकेशन के परिणामस्वरूप सर्वोत्तम निम्न बहुरेखीय रैंक अनुकूलन समस्या का इष्टतम समाधान नहीं मिलता है,[5][6][14][16] हालाँकि, शास्त्रीय और इंटरलीव्ड काटे गए एचओएसवीडी दोनों का परिणाम अर्ध-इष्टतम समाधान में होता है:[14][16][7][15][17] अगर शास्त्रीय या क्रमिक रूप से काटे गए एचओएसवीडी को दर्शाता है तब, सर्वोत्तम निम्न बहुरेखीय रैंक सन्निकटन समस्या के इष्टतम समाधान को दर्शाता है
    व्यवहार में इसका मतलब यह है कि यदि एक छोटी सी त्रुटि के साथ एक इष्टतम समाधान मौजूद है, तो कई इच्छित उद्देश्यों के लिए एक छोटा एचओएसवीडी भी पर्याप्त रूप से अच्छा समाधान देगा।

अनुप्रयोग

एचओएसवीडी का उपयोग आमतौर पर बहु-मार्गीय सरणियों से प्रासंगिक जानकारी निकालने के लिए किया जाता है।

2000 के दशक की शुरुआत में, वासिलेस्कु ने डेटा विश्लेषण, पहचान और संश्लेषण समस्याओं को मल्टीलाइनर टेंसर समस्याओं के रूप में पुनः परिभाषित करके कारण संबंधी प्रश्नों को संबोधित किया। गति पहचान के लिए ह्यूमन मोशन सिग्नेचर के संदर्भ में, डेटा निर्माण के कारण कारकों के संदर्भ में एक छवि को विघटित और प्रस्तुत करके टेंसर ढांचे की शक्ति का प्रदर्शन किया गया था।[18] चेहरे की पहचान—TensorFaces[19][20] और कंप्यूटर ग्राफ़िक्स—TensorTextures।[21] एचओएसवीडी को सिग्नल प्रोसेसिंग और बड़े डेटा, जैसे जीनोमिक सिग्नल प्रोसेसिंग में सफलतापूर्वक लागू किया गया है।[22][23][24] इन अनुप्रयोगों ने उच्च-क्रम वाले जीएसवीडी (एचओ जीएसवीडी) को भी प्रेरित किया।[25] और एक टेंसर जीएसवीडी।[26] रोग निगरानी में जटिल डेटा स्ट्रीम (स्थान और समय आयामों के साथ बहुभिन्नरूपी डेटा) से वास्तविक समय में घटना का पता लगाने के लिए एचओएसवीडी और एसडब्ल्यूडी का संयोजन भी लागू किया गया है।[27] इसका उपयोग टेंसर उत्पाद मॉडल परिवर्तन-आधारित नियंत्रक डिज़ाइन में भी किया जाता है।[28][29] एचओएसवीडी की अवधारणा को टीपी मॉडल परिवर्तन के माध्यम से बरनी और यम द्वारा कार्यों में ले जाया गया था।[28][29]इस विस्तार ने टेंसर उत्पाद फ़ंक्शंस और लीनियर पैरामीटर वेरिंग सिस्टम मॉडल के एचओएसवीडी-आधारित विहित रूप की परिभाषा को जन्म दिया।[30] और उत्तल पतवार हेरफेर आधारित नियंत्रण अनुकूलन सिद्धांत के लिए, नियंत्रण सिद्धांतों में टीपी मॉडल परिवर्तन देखें।

एचओएसवीडी को बहु-दृश्य डेटा विश्लेषण पर लागू करने का प्रस्ताव दिया गया था[31] और जीन अभिव्यक्ति से सिलिको दवा की खोज में इसे सफलतापूर्वक लागू किया गया।[32]


मजबूत एल1-मानक संस्करण

L1-टकर टकर अपघटन का Lp_space|L1-मानदंड-आधारित, मजबूत_सांख्यिकी संस्करण है।[10][11]L1-एचओएसवीडी, L1-टकर के समाधान के लिए एचओएसवीडी के समान है।[10][12]


संदर्भ

  1. 1.0 1.1 Hitchcock, Frank L (1928-04-01). "एम-वे ऐरे या टेन्सर के एकाधिक अपरिवर्तनीय और सामान्यीकृत रैंक". Journal of Mathematics and Physics (in English). 7 (1–4): 39–79. doi:10.1002/sapm19287139. ISSN 1467-9590.
  2. Tucker, Ledyard R. (1966-09-01). "तीन-मोड कारक विश्लेषण पर कुछ गणितीय नोट्स". Psychometrika (in English). 31 (3): 279–311. doi:10.1007/bf02289464. ISSN 0033-3123. PMID 5221127. S2CID 44301099.
  3. 3.0 3.1 Tucker, L. R. (1963). "परिवर्तन की माप के लिए तीन-तरफा मैट्रिक्स के कारक विश्लेषण के निहितार्थ". In C. W. Harris (Ed.), Problems in Measuring Change. Madison, Wis.: Univ. Wis. Press.: 122–137.
  4. Tucker, L. R. (1964). "त्रि-आयामी मैट्रिक्स तक कारक विश्लेषण का विस्तार". In N. Frederiksen and H. Gulliksen (Eds.), Contributions to Mathematical Psychology. New York: Holt, Rinehart and Winston: 109–127.
  5. 5.0 5.1 5.2 5.3 De Lathauwer, L.; De Moor, B.; Vandewalle, J. (2000-01-01). "एक बहुरेखीय एकवचन मूल्य अपघटन". SIAM Journal on Matrix Analysis and Applications. 21 (4): 1253–1278. CiteSeerX 10.1.1.102.9135. doi:10.1137/s0895479896305696. ISSN 0895-4798.
  6. 6.0 6.1 6.2 6.3 6.4 M. A. O. Vasilescu, D. Terzopoulos (2002) with the name M-mode SVD. The M-mode SVD is suitable for parallel computation and employs the matrix SVD "Multilinear Analysis of Image Ensembles: TensorFaces", Proc. 7th European Conference on Computer Vision (ECCV'02), Copenhagen, Denmark, May, 2002
  7. 7.0 7.1 M. A. O. Vasilescu, D. Terzopoulos (2003) "Multilinear Subspace Analysis of Image Ensembles", "Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR’03), Madison, WI, June, 2003"
  8. 8.0 8.1 8.2 8.3 M. A. O. Vasilescu, D. Terzopoulos (2005) "Multilinear Independent Component Analysis", "Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, June 2005, vol.1, 547–553."
  9. Godfarb, Donald; Zhiwei, Qin (2014). "Robust low-rank tensor recovery: Models and algorithms". SIAM Journal on Matrix Analysis and Applications. 35 (1): 225–253. arXiv:1311.6182. doi:10.1137/130905010. S2CID 1051205.
  10. 10.0 10.1 10.2 Chachlakis, Dimitris G.; Prater-Bennette, Ashley; Markopoulos, Panos P. (22 November 2019). "L1-मानदंड टकर टेंसर अपघटन". IEEE Access. 7: 178454–178465. doi:10.1109/ACCESS.2019.2955134.
  11. 11.0 11.1 Markopoulos, Panos P.; Chachlakis, Dimitris G.; Papalexakis, Evangelos (April 2018). "The Exact Solution to Rank-1 L1-Norm TUCKER2 Decomposition". IEEE Signal Processing Letters. 25 (4): 511–515. arXiv:1710.11306. Bibcode:2018ISPL...25..511M. doi:10.1109/LSP.2018.2790901. S2CID 3693326.
  12. 12.0 12.1 Markopoulos, Panos P.; Chachlakis, Dimitris G.; Prater-Bennette, Ashley (21 February 2019). "L1-Norm Higher-Order Singular-Value Decomposition". 2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP). pp. 1353–1357. doi:10.1109/GlobalSIP.2018.8646385. ISBN 978-1-7281-1295-4. S2CID 67874182.
  13. 13.0 13.1 Carlini, Enrico; Kleppe, Johannes (2011). "Ranks derived from multilinear maps". Journal of Pure and Applied Algebra. 215 (8): 1999–2004. doi:10.1016/j.jpaa.2010.11.010.
  14. 14.0 14.1 14.2 Vannieuwenhoven, N.; Vandebril, R.; Meerbergen, K. (2012-01-01). "उच्च-क्रम एकवचन मूल्य अपघटन के लिए एक नई ट्रंकेशन रणनीति". SIAM Journal on Scientific Computing. 34 (2): A1027–A1052. Bibcode:2012SJSC...34A1027V. doi:10.1137/110836067. ISSN 1064-8275. S2CID 15318433.
  15. 15.0 15.1 Hackbusch, Wolfgang (2012). Tensor Spaces and Numerical Tensor Calculus | SpringerLink. Springer Series in Computational Mathematics (in British English). Vol. 42. doi:10.1007/978-3-642-28027-6. ISBN 978-3-642-28026-9. S2CID 117253621.
  16. 16.0 16.1 16.2 Cobb, Benjamin; Kolla, Hemanth; Phipps, Eric; Çatalyürek, Ümit V. (2022). FIST-HOSVD: जगह में जुड़े हुए अनुक्रमिक रूप से उच्च क्रम वाले एकवचन मूल्य अपघटन को काट दिया गया. Platform for Advanced Scientific Computing(PASC) (in English). doi:10.1145/3539781.3539798. ISBN 9781450394109.
  17. Grasedyck, L. (2010-01-01). "टेंसरों का पदानुक्रमित एकवचन मान अपघटन". SIAM Journal on Matrix Analysis and Applications. 31 (4): 2029–2054. CiteSeerX 10.1.1.660.8333. doi:10.1137/090764189. ISSN 0895-4798.
  18. M. A. O. Vasilescu (2002) "Human Motion Signatures: Analysis, Synthesis, Recognition," Proceedings of International Conference on Pattern Recognition (ICPR 2002), Vol. 3, Quebec City, Canada, Aug, 2002, 456–460.
  19. M.A.O. Vasilescu, D. Terzopoulos (2003) "Multilinear Subspace Analysis for Image Ensembles, M. A. O. Vasilescu, D. Terzopoulos, Proc. Computer Vision and Pattern Recognition Conf. (CVPR '03), Vol.2, Madison, WI, June, 2003, 93–99.
  20. M.A.O. Vasilescu, D. Terzopoulos (2002) "Multilinear Analysis of Image Ensembles: TensorFaces," Proc. 7th European Conference on Computer Vision (ECCV'02), Copenhagen, Denmark, May, 2002, in Computer Vision -- ECCV 2002, Lecture Notes in Computer Science, Vol. 2350, A. Heyden et al. (Eds.), Springer-Verlag, Berlin, 2002, 447–460.
  21. M.A.O. Vasilescu, D. Terzopoulos (2004) "TensorTextures: Multilinear Image-Based Rendering", M. A. O. Vasilescu and D. Terzopoulos, Proc. ACM SIGGRAPH 2004 Conference Los Angeles, CA, August, 2004, in Computer Graphics Proceedings, Annual Conference Series, 2004, 336–342.
  22. L. Omberg; G. H. Golub; O. Alter (November 2007). "विभिन्न अध्ययनों से डीएनए माइक्रोएरे डेटा के एकीकृत विश्लेषण के लिए एक टेंसर उच्च-क्रम एकवचन मूल्य अपघटन". PNAS. 104 (47): 18371–18376. Bibcode:2007PNAS..10418371O. doi:10.1073/pnas.0709146104. PMC 2147680. PMID 18003902.
  23. L. Omberg; J. R. Meyerson; K. Kobayashi; L. S. Drury; J. F. X. Diffley; O. Alter (October 2009). "यूकेरियोटिक जीन अभिव्यक्ति पर डीएनए प्रतिकृति और डीएनए प्रतिकृति मूल गतिविधि के वैश्विक प्रभाव". Molecular Systems Biology. 5: 312. doi:10.1038/msb.2009.70. PMC 2779084. PMID 19888207. Highlight.
  24. C. Muralidhara; A. M. Gross; R. R. Gutell; O. Alter (April 2011). "टेंसर अपघटन राइबोसोमल आरएनए में संरचनात्मक रूपांकनों के साथ समवर्ती विकासवादी अभिसरण और विचलन और सहसंबंध को प्रकट करता है". PLOS ONE. 6 (4): e18768. Bibcode:2011PLoSO...618768M. doi:10.1371/journal.pone.0018768. PMC 3094155. PMID 21625625. Highlight.
  25. S. P. Ponnapalli; M. A. Saunders; C. F. Van Loan; O. Alter (December 2011). "एकाधिक जीवों से वैश्विक एमआरएनए अभिव्यक्ति की तुलना के लिए एक उच्च-क्रम सामान्यीकृत एकवचन मूल्य अपघटन". PLOS ONE. 6 (12): e28072. Bibcode:2011PLoSO...628072P. doi:10.1371/journal.pone.0028072. PMC 3245232. PMID 22216090. Highlight.
  26. P. Sankaranarayanan; T. E. Schomay; K. A. Aiello; O. Alter (April 2015). "रोगी और प्लेटफ़ॉर्म-मिलान वाले ट्यूमर और सामान्य डीएनए कॉपी-नंबर प्रोफाइल का टेंसर जीएसवीडी ट्यूमर के क्रोमोसोम आर्म-वाइड पैटर्न को उजागर करता है-सेल परिवर्तन के लिए विशिष्ट प्लेटफ़ॉर्म-संगत परिवर्तन एन्कोडिंग और डिम्बग्रंथि के कैंसर के अस्तित्व की भविष्यवाणी करता है।". PLOS ONE. 10 (4): e0121396. Bibcode:2015PLoSO..1021396S. doi:10.1371/journal.pone.0121396. PMC 4398562. PMID 25875127. AAAS EurekAlert! Press Release and NAE Podcast Feature.
  27. Hadi Fanaee-T; João Gama (May 2015). "EigenEvent: An algorithm for event detection from complex data streams in Syndromic surveillance". Intelligent Data Analysis. 19 (3): 597–616. arXiv:1406.3496. Bibcode:2014arXiv1406.3496F. doi:10.3233/IDA-150734. S2CID 17966555.
  28. 28.0 28.1 P. Baranyi (April 2004). "एलएमआई आधारित नियंत्रक डिजाइन के एक तरीके के रूप में टीपी मॉडल परिवर्तन". IEEE Transactions on Industrial Electronics. 51 (2): 387–400. doi:10.1109/tie.2003.822037. S2CID 7957799.
  29. 29.0 29.1 P. Baranyi; D. Tikk; Y. Yam; R. J. Patton (2003). "विभेदक समीकरणों से लेकर संख्यात्मक परिवर्तन के माध्यम से पीडीसी नियंत्रक डिजाइन तक". Computers in Industry. 51 (3): 281–297. doi:10.1016/s0166-3615(03)00058-7.
  30. P. Baranyi; L. Szeidl; P. Várlaki; Y. Yam (July 3–5, 2006). बहुविषयक गतिशील मॉडल के HOSVD-आधारित विहित रूप की परिभाषा. 3rd International Conference on Mechatronics (ICM 2006). Budapest, Hungary. pp. 660–665.
  31. Y-h. Taguchi (August 2017). "मल्टी-व्यू डेटा प्रोसेसिंग के लिए मैट्रिक्स उत्पादों पर टेन्सर अपघटन-आधारित अप्रशिक्षित सुविधा निष्कर्षण लागू किया गया". PLOS ONE. 12 (8): e0183933. Bibcode:2017PLoSO..1283933T. doi:10.1371/journal.pone.0183933. PMC 5571984. PMID 28841719.
  32. Y-h. Taguchi (October 2017). "रोगों और ड्रगमैट्रिक्स डेटासेट के बीच जीन अभिव्यक्ति के एकीकृत विश्लेषण में टेंसर-अपघटन-आधारित अनपर्यवेक्षित फ़ीचर निष्कर्षण का उपयोग करके उम्मीदवार दवाओं की पहचान". Scientific Reports. 7 (1): 13733. Bibcode:2017NatSR...713733T. doi:10.1038/s41598-017-13003-0. PMC 5653784. PMID 29062063.