संवर्धन मूल्यांकन के लिए वरीयता रैंकिंग संगठन विधि: Difference between revisions

From Vigyanwiki
(Created page with "{{Short description|Promethee & Gaia, tools for management}} {{Use dmy dates|date=December 2021}} {{multiple issues| {{COI|date=June 2014}} {{notability|date=June 2014}} {{tec...")
 
No edit summary
Line 1: Line 1:
{{Short description|Promethee & Gaia, tools for management}}
{{Short description|Promethee & Gaia, tools for management}}
{{Use dmy dates|date=December 2021}}
 
{{multiple issues|
 
{{COI|date=June 2014}}
{{notability|date=June 2014}}
{{technical|date=June 2014}}
}}
मूल्यांकन को समृद्ध करने के लिए वरीयता रैंकिंग संगठन विधि और इंटरैक्टिव सहायता के लिए इसके वर्णनात्मक पूरक ज्यामितीय विश्लेषण को प्रोमेथी और गैया के रूप में जाना जाता है।<ref name="Figueria">{{Cite book|title=Multiple Criteria Decision Analysis: State of the Art Surveys|author1=J. Figueira |author2=S. Greco |author3=M. Ehrgott  |name-list-style=amp |year=2005|publisher=Springer Verlag  }}</ref> तरीके.
मूल्यांकन को समृद्ध करने के लिए वरीयता रैंकिंग संगठन विधि और इंटरैक्टिव सहायता के लिए इसके वर्णनात्मक पूरक ज्यामितीय विश्लेषण को प्रोमेथी और गैया के रूप में जाना जाता है।<ref name="Figueria">{{Cite book|title=Multiple Criteria Decision Analysis: State of the Art Surveys|author1=J. Figueira |author2=S. Greco |author3=M. Ehrgott  |name-list-style=amp |year=2005|publisher=Springer Verlag  }}</ref> तरीके.


Line 12: Line 8:
निर्णय लेने में इसका विशेष अनुप्रयोग है, और दुनिया भर में व्यवसाय, सरकारी संस्थानों, परिवहन, स्वास्थ्य सेवा और शिक्षा जैसे क्षेत्रों में विभिन्न प्रकार के निर्णय परिदृश्यों में इसका उपयोग किया जाता है।
निर्णय लेने में इसका विशेष अनुप्रयोग है, और दुनिया भर में व्यवसाय, सरकारी संस्थानों, परिवहन, स्वास्थ्य सेवा और शिक्षा जैसे क्षेत्रों में विभिन्न प्रकार के निर्णय परिदृश्यों में इसका उपयोग किया जाता है।


एक सही निर्णय को इंगित करने के बजाय, प्रोमेथी और गैया पद्धति निर्णय निर्माताओं को वह विकल्प ढूंढने में मदद करती है जो उनके लक्ष्य और समस्या की उनकी समझ के लिए सबसे उपयुक्त हो। यह एक निर्णय समस्या की संरचना करने, इसके संघर्षों और सहक्रियाओं, कार्यों के समूहों की पहचान करने और मात्रा निर्धारित करने के लिए एक व्यापक और तर्कसंगत ढांचा प्रदान करता है, और मुख्य विकल्पों और पीछे के संरचित तर्क को उजागर करता है।
एक सही निर्णय को इंगित करने के बजाय, प्रोमेथी और गैया पद्धति निर्णय निर्माताओं को वह विकल्प ढूंढने में मदद करती है जो उनके लक्ष्य और समस्या की उनकी समझ के लिए सबसे उपयुक्त हो। यह निर्णय समस्या की संरचना करने, इसके संघर्षों और सहक्रियाओं, कार्यों के समूहों की पहचान करने और मात्रा निर्धारित करने के लिए व्यापक और तर्कसंगत ढांचा प्रदान करता है, और मुख्य विकल्पों और पीछे के संरचित तर्क को उजागर करता है।


==इतिहास==
==इतिहास==
Line 22: Line 18:
प्रोमेथी नामक अनुदेशात्मक दृष्टिकोण,<ref name="Promethee">{{Cite news|title=A preference ranking organisation method: The PROMETHEE method for MCDM|author1=J.P. Brans  |author2=P. Vincke |name-list-style=amp |publisher=Management Science|year=1985}}</ref> निर्णय निर्माता को कार्यों की पूर्ण और आंशिक दोनों रैंकिंग प्रदान करता है।
प्रोमेथी नामक अनुदेशात्मक दृष्टिकोण,<ref name="Promethee">{{Cite news|title=A preference ranking organisation method: The PROMETHEE method for MCDM|author1=J.P. Brans  |author2=P. Vincke |name-list-style=amp |publisher=Management Science|year=1985}}</ref> निर्णय निर्माता को कार्यों की पूर्ण और आंशिक दोनों रैंकिंग प्रदान करता है।


दुनिया भर में कई निर्णय लेने वाले संदर्भों में प्रोमेथी का सफलतापूर्वक उपयोग किया गया है। प्रोमेथी विधियों से संबंधित एक्सटेंशन, अनुप्रयोगों और चर्चाओं के बारे में वैज्ञानिक प्रकाशनों की एक गैर-विस्तृत सूची<ref name="applications">{{Cite news|author1=M. Behzadian |author2=R.B. Kazemzadeh |author3=A. Albadvi |author4=M. Aghdasi |title=PROMETHEE: A comprehensive literature review on methodologies and applications|year=2010|publisher=European Journal of Operational Research}}</ref> 2010 में प्रकाशित हुआ था.
दुनिया भर में कई निर्णय लेने वाले संदर्भों में प्रोमेथी का सफलतापूर्वक उपयोग किया गया है। प्रोमेथी विधियों से संबंधित एक्सटेंशन, अनुप्रयोगों और चर्चाओं के बारे में वैज्ञानिक प्रकाशनों की गैर-विस्तृत सूची<ref name="applications">{{Cite news|author1=M. Behzadian |author2=R.B. Kazemzadeh |author3=A. Albadvi |author4=M. Aghdasi |title=PROMETHEE: A comprehensive literature review on methodologies and applications|year=2010|publisher=European Journal of Operational Research}}</ref> 2010 में प्रकाशित हुआ था.


== उपयोग और अनुप्रयोग ==
== उपयोग और अनुप्रयोग ==
Line 29: Line 25:


जिन निर्णय स्थितियों में प्रोमेथी और गैया को लागू किया जा सकता है उनमें शामिल हैं:
जिन निर्णय स्थितियों में प्रोमेथी और गैया को लागू किया जा सकता है उनमें शामिल हैं:
* विकल्प - विकल्पों के दिए गए सेट में से एक विकल्प का चयन, आमतौर पर जहां कई निर्णय मानदंड शामिल होते हैं।
* विकल्प - विकल्पों के दिए गए सेट में से विकल्प का चयन, आमतौर पर जहां कई निर्णय मानदंड शामिल होते हैं।
* प्राथमिकताकरण - किसी एक को चुनने या केवल उन्हें [[ श्रेणी ]] देने के बजाय, विकल्पों के एक समूह के सदस्यों की सापेक्ष योग्यता का निर्धारण करना।
* प्राथमिकताकरण - किसी को चुनने या केवल उन्हें [[ श्रेणी |श्रेणी]] देने के बजाय, विकल्पों के समूह के सदस्यों की सापेक्ष योग्यता का निर्धारण करना।
* संसाधन आवंटन - विकल्पों के एक सेट के बीच [[संसाधनों का आवंटन]]
* संसाधन आवंटन - विकल्पों के सेट के बीच [[संसाधनों का आवंटन]]
* रैंकिंग - विकल्पों के एक सेट को सबसे अधिक से कम [[पसंद]]ीदा के क्रम में रखना
* रैंकिंग - विकल्पों के सेट को सबसे अधिक से कम [[पसंद]]ीदा के क्रम में रखना
* संघर्ष समाधान - स्पष्ट रूप से असंगत उद्देश्यों वाले पक्षों के बीच विवादों का निपटारा
* संघर्ष समाधान - स्पष्ट रूप से असंगत उद्देश्यों वाले पक्षों के बीच विवादों का निपटारा
<br>
<br>
Line 45: Line 41:


=== धारणाएँ ===
=== धारणाएँ ===
होने देना <math>A=\{a_1 ,..,a_n\}</math> n क्रियाओं का एक सेट बनें और दें <math>F=\{f_1 ,..,f_q\}</math> q मानदंड का एक सुसंगत परिवार बनें। व्यापकता की हानि के बिना, हम मान लेंगे कि इन मानदंडों को अधिकतम करना होगा।
होने देना <math>A=\{a_1 ,..,a_n\}</math> n क्रियाओं का सेट बनें और दें <math>F=\{f_1 ,..,f_q\}</math> q मानदंड का सुसंगत परिवार बनें। व्यापकता की हानि के बिना, हम मान लेंगे कि इन मानदंडों को अधिकतम करना होगा।


ऐसी समस्या से संबंधित बुनियादी डेटा को एक तालिका में लिखा जा सकता है <math>n\times q</math> मूल्यांकन. प्रत्येक पंक्ति एक क्रिया से मेल खाती है और प्रत्येक कॉलम एक मानदंड से मेल खाता है।
ऐसी समस्या से संबंधित बुनियादी डेटा को तालिका में लिखा जा सकता है <math>n\times q</math> मूल्यांकन. प्रत्येक पंक्ति क्रिया से मेल खाती है और प्रत्येक कॉलम मानदंड से मेल खाता है।


: <math>
: <math>
Line 76: Line 72:


:<math>\pi_k(a_i,a_j)=P_k[d_k(a_i,a_j)]</math>
:<math>\pi_k(a_i,a_j)=P_k[d_k(a_i,a_j)]</math>
कहाँ <math>P_k:\R\rightarrow[0,1]</math> यह एक सकारात्मक गैर-घटती प्राथमिकता फ़ंक्शन है जैसे कि <math>P_j(0)=0</math>. मूल प्रोमेथी परिभाषा में छह अलग-अलग प्रकार के वरीयता फ़ंक्शन प्रस्तावित हैं। उनमें से, रैखिक यूनिकाइटेरियन वरीयता फ़ंक्शन का उपयोग अक्सर मात्रात्मक मानदंड के लिए अभ्यास में किया जाता है:
कहाँ <math>P_k:\R\rightarrow[0,1]</math> यह सकारात्मक गैर-घटती प्राथमिकता फ़ंक्शन है जैसे कि <math>P_j(0)=0</math>. मूल प्रोमेथी परिभाषा में छह अलग-अलग प्रकार के वरीयता फ़ंक्शन प्रस्तावित हैं। उनमें से, रैखिक यूनिकाइटेरियन वरीयता फ़ंक्शन का उपयोग अक्सर मात्रात्मक मानदंड के लिए अभ्यास में किया जाता है:


:<math>P_k(x) \begin{cases} 0, & \text{if } x\le q_k \\ \frac{x-q_k}{p_k-q_k}, & \text{if } q_k<x\le p_k \\ 1, & \text{if } x>p_k  \end{cases}</math>
:<math>P_k(x) \begin{cases} 0, & \text{if } x\le q_k \\ \frac{x-q_k}{p_k-q_k}, & \text{if } q_k<x\le p_k \\ 1, & \text{if } x>p_k  \end{cases}</math>
कहाँ <math>q_j</math> और <math>p_j</math> क्रमशः उदासीनता और वरीयता सीमाएँ हैं। इन मापदंडों का अर्थ निम्नलिखित है: जब अंतर उदासीनता सीमा से छोटा होता है तो निर्णय निर्माता द्वारा इसे नगण्य माना जाता है। इसलिए, संबंधित यूनिकाइटेरियन वरीयता डिग्री शून्य के बराबर है। यदि अंतर वरीयता सीमा से अधिक है तो इसे महत्वपूर्ण माना जाता है। इसलिए, यूनिकाइटेरियन वरीयता डिग्री एक (अधिकतम मूल्य) के बराबर है। जब अंतर दो सीमाओं के बीच होता है, तो एक रैखिक प्रक्षेप का उपयोग करके वरीयता डिग्री के लिए एक मध्यवर्ती मान की गणना की जाती है।
कहाँ <math>q_j</math> और <math>p_j</math> क्रमशः उदासीनता और वरीयता सीमाएँ हैं। इन मापदंडों का अर्थ निम्नलिखित है: जब अंतर उदासीनता सीमा से छोटा होता है तो निर्णय निर्माता द्वारा इसे नगण्य माना जाता है। इसलिए, संबंधित यूनिकाइटेरियन वरीयता डिग्री शून्य के बराबर है। यदि अंतर वरीयता सीमा से अधिक है तो इसे महत्वपूर्ण माना जाता है। इसलिए, यूनिकाइटेरियन वरीयता डिग्री (अधिकतम मूल्य) के बराबर है। जब अंतर दो सीमाओं के बीच होता है, तो रैखिक प्रक्षेप का उपयोग करके वरीयता डिग्री के लिए मध्यवर्ती मान की गणना की जाती है।


=== बहुमानदंड वरीयता डिग्री ===
=== बहुमानदंड वरीयता डिग्री ===
जब निर्णय निर्माता द्वारा प्रत्येक मानदंड के साथ एक प्राथमिकता फ़ंक्शन जोड़ा गया है, तो सभी मानदंडों के लिए सभी क्रियाओं के बीच सभी तुलनाएं की जा सकती हैं। फिर प्रत्येक दो कार्यों की विश्व स्तर पर तुलना करने के लिए एक बहुमानदंडीय वरीयता डिग्री की गणना की जाती है:
जब निर्णय निर्माता द्वारा प्रत्येक मानदंड के साथ प्राथमिकता फ़ंक्शन जोड़ा गया है, तो सभी मानदंडों के लिए सभी क्रियाओं के बीच सभी तुलनाएं की जा सकती हैं। फिर प्रत्येक दो कार्यों की विश्व स्तर पर तुलना करने के लिए बहुमानदंडीय वरीयता डिग्री की गणना की जाती है:


:<math>\pi(a,b)=\displaystyle\sum_{k=1}^qP_{k}(a,b)\cdot w_{k}</math>
:<math>\pi(a,b)=\displaystyle\sum_{k=1}^qP_{k}(a,b)\cdot w_{k}</math>
Line 96: Line 92:
:<math>\phi^{+}(a)=\frac{1}{n-1}\displaystyle\sum_{x \in A}\pi(a,x)</math>
:<math>\phi^{+}(a)=\frac{1}{n-1}\displaystyle\sum_{x \in A}\pi(a,x)</math>
:<math>\phi^{-}(a)=\frac{1}{n-1}\displaystyle\sum_{x \in  A}\pi(x,a)</math>
:<math>\phi^{-}(a)=\frac{1}{n-1}\displaystyle\sum_{x \in  A}\pi(x,a)</math>
सकारात्मक प्राथमिकता प्रवाह <math>\phi^{+}(a_i)</math> किसी दी गई कार्रवाई को परिमाणित करता है <math>a_i</math> वैश्विक स्तर पर अन्य सभी कार्यों की तुलना में नकारात्मक प्राथमिकता प्रवाह को प्राथमिकता दी जाती है <math>\phi^{-}(a_i)</math> किसी दी गई कार्रवाई को परिमाणित करता है <math>a_i</math> अन्य सभी कार्यों द्वारा विश्व स्तर पर पसंद किया जा रहा है। एक आदर्श कार्रवाई में 1 के बराबर सकारात्मक प्राथमिकता प्रवाह और 0 के बराबर नकारात्मक प्राथमिकता प्रवाह होगा। दो प्राथमिकता प्रवाह क्रियाओं के सेट पर दो आम तौर पर अलग-अलग पूर्ण रैंकिंग उत्पन्न करते हैं। पहला उनके सकारात्मक प्रवाह स्कोर के घटते मूल्यों के अनुसार कार्यों की रैंकिंग करके प्राप्त किया जाता है। दूसरा उनके नकारात्मक प्रवाह स्कोर के बढ़ते मूल्यों के अनुसार कार्यों की रैंकिंग करके प्राप्त किया जाता है। प्रोमेथी I आंशिक रैंकिंग को इन दो रैंकिंग के प्रतिच्छेदन के रूप में परिभाषित किया गया है। परिणामस्वरूप, एक क्रिया <math>a_i</math> किसी अन्य कार्रवाई के समान ही अच्छा होगा <math>a_j</math> अगर <math> \phi^{-}(a_i) \ge \phi^{-}(a_j)</math> और <math>\phi^{-}(a_i)\le \phi^{-}(a_j)</math>
सकारात्मक प्राथमिकता प्रवाह <math>\phi^{+}(a_i)</math> किसी दी गई कार्रवाई को परिमाणित करता है <math>a_i</math> वैश्विक स्तर पर अन्य सभी कार्यों की तुलना में नकारात्मक प्राथमिकता प्रवाह को प्राथमिकता दी जाती है <math>\phi^{-}(a_i)</math> किसी दी गई कार्रवाई को परिमाणित करता है <math>a_i</math> अन्य सभी कार्यों द्वारा विश्व स्तर पर पसंद किया जा रहा है। आदर्श कार्रवाई में 1 के बराबर सकारात्मक प्राथमिकता प्रवाह और 0 के बराबर नकारात्मक प्राथमिकता प्रवाह होगा। दो प्राथमिकता प्रवाह क्रियाओं के सेट पर दो आम तौर पर अलग-अलग पूर्ण रैंकिंग उत्पन्न करते हैं। पहला उनके सकारात्मक प्रवाह स्कोर के घटते मूल्यों के अनुसार कार्यों की रैंकिंग करके प्राप्त किया जाता है। दूसरा उनके नकारात्मक प्रवाह स्कोर के बढ़ते मूल्यों के अनुसार कार्यों की रैंकिंग करके प्राप्त किया जाता है। प्रोमेथी I आंशिक रैंकिंग को इन दो रैंकिंग के प्रतिच्छेदन के रूप में परिभाषित किया गया है। परिणामस्वरूप, क्रिया <math>a_i</math> किसी अन्य कार्रवाई के समान ही अच्छा होगा <math>a_j</math> अगर <math> \phi^{-}(a_i) \ge \phi^{-}(a_j)</math> और <math>\phi^{-}(a_i)\le \phi^{-}(a_j)</math>
सकारात्मक और नकारात्मक वरीयता प्रवाह को शुद्ध वरीयता प्रवाह में एकत्रित किया जाता है:
सकारात्मक और नकारात्मक वरीयता प्रवाह को शुद्ध वरीयता प्रवाह में एकत्रित किया जाता है:


Line 117: Line 113:
A}\{P_{k}(a_i,a_j)-P_{k}(a_j,a_i)\}</math>.
A}\{P_{k}(a_i,a_j)-P_{k}(a_j,a_i)\}</math>.


यूनिक्राइटेरियन शुद्ध प्रवाह, निरूपित <math>\phi_{k}(a_i)\in[-1;1]</math>, बहुमानदंड शुद्ध प्रवाह के समान ही व्याख्या है <math>\phi(a_i)</math> लेकिन यह एक ही मानदंड तक सीमित है। कोई गतिविधि <math>a_i</math> एक वेक्टर द्वारा चित्रित किया जा सकता है <math>\vec \phi(a_i) =[\phi_1(a_i),\ldots,\phi_k(a_i),\phi_q(a_i)]</math> में एक <math>q</math> आयामी स्थान. जीएआईए विमान इस स्थान में कार्यों के सेट पर प्रमुख घटक विश्लेषण लागू करके प्राप्त किया गया मुख्य विमान है।
यूनिक्राइटेरियन शुद्ध प्रवाह, निरूपित <math>\phi_{k}(a_i)\in[-1;1]</math>, बहुमानदंड शुद्ध प्रवाह के समान ही व्याख्या है <math>\phi(a_i)</math> लेकिन यह ही मानदंड तक सीमित है। कोई गतिविधि <math>a_i</math> वेक्टर द्वारा चित्रित किया जा सकता है <math>\vec \phi(a_i) =[\phi_1(a_i),\ldots,\phi_k(a_i),\phi_q(a_i)]</math> में <math>q</math> आयामी स्थान. जीएआईए विमान इस स्थान में कार्यों के सेट पर प्रमुख घटक विश्लेषण लागू करके प्राप्त किया गया मुख्य विमान है।


=== प्रोमेथी वरीयता फ़ंक्शन ===
=== प्रोमेथी वरीयता फ़ंक्शन ===

Revision as of 08:15, 6 August 2023


मूल्यांकन को समृद्ध करने के लिए वरीयता रैंकिंग संगठन विधि और इंटरैक्टिव सहायता के लिए इसके वर्णनात्मक पूरक ज्यामितीय विश्लेषण को प्रोमेथी और गैया के रूप में जाना जाता है।[1] तरीके.

गणित और समाजशास्त्र के आधार पर, प्रोमेथी और गैया पद्धति 1980 के दशक की शुरुआत में विकसित की गई थी और तब से इसका बड़े पैमाने पर अध्ययन और परिष्कृत किया गया है।

निर्णय लेने में इसका विशेष अनुप्रयोग है, और दुनिया भर में व्यवसाय, सरकारी संस्थानों, परिवहन, स्वास्थ्य सेवा और शिक्षा जैसे क्षेत्रों में विभिन्न प्रकार के निर्णय परिदृश्यों में इसका उपयोग किया जाता है।

एक सही निर्णय को इंगित करने के बजाय, प्रोमेथी और गैया पद्धति निर्णय निर्माताओं को वह विकल्प ढूंढने में मदद करती है जो उनके लक्ष्य और समस्या की उनकी समझ के लिए सबसे उपयुक्त हो। यह निर्णय समस्या की संरचना करने, इसके संघर्षों और सहक्रियाओं, कार्यों के समूहों की पहचान करने और मात्रा निर्धारित करने के लिए व्यापक और तर्कसंगत ढांचा प्रदान करता है, और मुख्य विकल्पों और पीछे के संरचित तर्क को उजागर करता है।

इतिहास

प्रोमेथी विधि के मूल तत्वों को पहली बार 1982 में प्रोफेसर जीन-पियरे ब्रैन्स (CSOO, VUB Vrije Universiteit ब्रुसेल्स) द्वारा पेश किया गया था।[2] इसे बाद में प्रोफेसर जीन-पियरे ब्रैन्स और प्रोफेसर बर्ट्रेंड मारेस्चल (सोल्वे ब्रुसेल्स स्कूल ऑफ इकोनॉमिक्स एंड मैनेजमेंट, यूएलबी यूनिवर्सिटी लिब्रे डी ब्रुक्सलेज़) द्वारा विकसित और कार्यान्वित किया गया, जिसमें जीएआईए जैसे एक्सटेंशन शामिल थे।

गैया नाम का वर्णनात्मक दृष्टिकोण,[3] निर्णय निर्माता को निर्णय समस्या की मुख्य विशेषताओं की कल्पना करने की अनुमति देता है: वह मानदंडों के बीच संघर्ष या तालमेल को आसानी से पहचानने, कार्यों के समूहों की पहचान करने और उल्लेखनीय प्रदर्शन को उजागर करने में सक्षम है।

प्रोमेथी नामक अनुदेशात्मक दृष्टिकोण,[4] निर्णय निर्माता को कार्यों की पूर्ण और आंशिक दोनों रैंकिंग प्रदान करता है।

दुनिया भर में कई निर्णय लेने वाले संदर्भों में प्रोमेथी का सफलतापूर्वक उपयोग किया गया है। प्रोमेथी विधियों से संबंधित एक्सटेंशन, अनुप्रयोगों और चर्चाओं के बारे में वैज्ञानिक प्रकाशनों की गैर-विस्तृत सूची[5] 2010 में प्रकाशित हुआ था.

उपयोग और अनुप्रयोग

हालाँकि इसका उपयोग सीधे निर्णयों पर काम करने वाले व्यक्तियों द्वारा किया जा सकता है, प्रोमेथी और गैया सबसे उपयोगी है जहाँ लोगों के समूह जटिल समस्याओं पर काम कर रहे हैं, विशेष रूप से कई मानदंडों के साथ, जिसमें बहुत सारी मानवीय धारणाएँ और निर्णय शामिल हैं, जिनके निर्णयों का दीर्घकालिक प्रभाव होता है। जब निर्णय के महत्वपूर्ण तत्वों को मापना या तुलना करना मुश्किल होता है, या जहां विभागों या टीम के सदस्यों के बीच सहयोग उनकी अलग-अलग विशेषज्ञता या दृष्टिकोण से बाधित होता है, तो इसके अद्वितीय फायदे होते हैं।

जिन निर्णय स्थितियों में प्रोमेथी और गैया को लागू किया जा सकता है उनमें शामिल हैं:

  • विकल्प - विकल्पों के दिए गए सेट में से विकल्प का चयन, आमतौर पर जहां कई निर्णय मानदंड शामिल होते हैं।
  • प्राथमिकताकरण - किसी को चुनने या केवल उन्हें श्रेणी देने के बजाय, विकल्पों के समूह के सदस्यों की सापेक्ष योग्यता का निर्धारण करना।
  • संसाधन आवंटन - विकल्पों के सेट के बीच संसाधनों का आवंटन
  • रैंकिंग - विकल्पों के सेट को सबसे अधिक से कम पसंदीदा के क्रम में रखना
  • संघर्ष समाधान - स्पष्ट रूप से असंगत उद्देश्यों वाले पक्षों के बीच विवादों का निपटारा


जटिल बहु-मानदंड निर्णय परिदृश्यों में प्रोमेथी और गैया के अनुप्रयोगों की संख्या हजारों में है, और योजना, संसाधन आवंटन, प्राथमिकता निर्धारण और विकल्पों के बीच चयन से जुड़ी समस्याओं में व्यापक परिणाम दिए हैं। अन्य क्षेत्रों में पूर्वानुमान, प्रतिभा चयन और निविदा विश्लेषण शामिल हैं।


प्रोमेथी और गैया के कुछ उपयोग केस-स्टडी बन गए हैं। हाल ही में इनमें शामिल किया गया है:

  • एसपीएस गुणवत्ता मानकों (एसटीडीएफ - विश्व व्यापार संगठन) को पूरा करने के लिए उपलब्ध बजट में कौन से संसाधन सर्वोत्तम हैं, यह तय करना [बाहरी लिंक में और देखें]
  • ट्रेन प्रदर्शन के लिए नए मार्ग का चयन (इटालफेर)[बाहरी लिंक में और देखें]

गणितीय मॉडल

धारणाएँ

होने देना n क्रियाओं का सेट बनें और दें q मानदंड का सुसंगत परिवार बनें। व्यापकता की हानि के बिना, हम मान लेंगे कि इन मानदंडों को अधिकतम करना होगा।

ऐसी समस्या से संबंधित बुनियादी डेटा को तालिका में लिखा जा सकता है मूल्यांकन. प्रत्येक पंक्ति क्रिया से मेल खाती है और प्रत्येक कॉलम मानदंड से मेल खाता है।


जोड़ीवार तुलना

सबसे पहले, प्रत्येक मानदंड के लिए सभी क्रियाओं के बीच जोड़ीवार तुलना की जाएगी:

मानदंड के लिए दो कार्यों के मूल्यांकन के बीच का अंतर है . बेशक, ये अंतर उपयोग किए गए माप पैमानों पर निर्भर करते हैं और निर्णय निर्माता के लिए तुलना करना हमेशा आसान नहीं होता है।

वरीयता डिग्री

परिणामस्वरूप, अंतर को यूनिकाइटेरियन वरीयता डिग्री में अनुवाद करने के लिए वरीयता फ़ंक्शन की धारणा को निम्नानुसार पेश किया गया है:

कहाँ यह सकारात्मक गैर-घटती प्राथमिकता फ़ंक्शन है जैसे कि . मूल प्रोमेथी परिभाषा में छह अलग-अलग प्रकार के वरीयता फ़ंक्शन प्रस्तावित हैं। उनमें से, रैखिक यूनिकाइटेरियन वरीयता फ़ंक्शन का उपयोग अक्सर मात्रात्मक मानदंड के लिए अभ्यास में किया जाता है:

कहाँ और क्रमशः उदासीनता और वरीयता सीमाएँ हैं। इन मापदंडों का अर्थ निम्नलिखित है: जब अंतर उदासीनता सीमा से छोटा होता है तो निर्णय निर्माता द्वारा इसे नगण्य माना जाता है। इसलिए, संबंधित यूनिकाइटेरियन वरीयता डिग्री शून्य के बराबर है। यदि अंतर वरीयता सीमा से अधिक है तो इसे महत्वपूर्ण माना जाता है। इसलिए, यूनिकाइटेरियन वरीयता डिग्री (अधिकतम मूल्य) के बराबर है। जब अंतर दो सीमाओं के बीच होता है, तो रैखिक प्रक्षेप का उपयोग करके वरीयता डिग्री के लिए मध्यवर्ती मान की गणना की जाती है।

बहुमानदंड वरीयता डिग्री

जब निर्णय निर्माता द्वारा प्रत्येक मानदंड के साथ प्राथमिकता फ़ंक्शन जोड़ा गया है, तो सभी मानदंडों के लिए सभी क्रियाओं के बीच सभी तुलनाएं की जा सकती हैं। फिर प्रत्येक दो कार्यों की विश्व स्तर पर तुलना करने के लिए बहुमानदंडीय वरीयता डिग्री की गणना की जाती है:

कहाँ कसौटी के वजन का प्रतिनिधित्व करता है . यह मान लिया है कि और . प्रत्यक्ष परिणाम के रूप में, हमारे पास है:


बहुमानदंडीय प्राथमिकता प्रवाह

प्रत्येक क्रिया को अन्य सभी क्रियाओं के संबंध में स्थापित करने के लिए, दो अंकों की गणना की जाती है:

सकारात्मक प्राथमिकता प्रवाह किसी दी गई कार्रवाई को परिमाणित करता है वैश्विक स्तर पर अन्य सभी कार्यों की तुलना में नकारात्मक प्राथमिकता प्रवाह को प्राथमिकता दी जाती है किसी दी गई कार्रवाई को परिमाणित करता है अन्य सभी कार्यों द्वारा विश्व स्तर पर पसंद किया जा रहा है। आदर्श कार्रवाई में 1 के बराबर सकारात्मक प्राथमिकता प्रवाह और 0 के बराबर नकारात्मक प्राथमिकता प्रवाह होगा। दो प्राथमिकता प्रवाह क्रियाओं के सेट पर दो आम तौर पर अलग-अलग पूर्ण रैंकिंग उत्पन्न करते हैं। पहला उनके सकारात्मक प्रवाह स्कोर के घटते मूल्यों के अनुसार कार्यों की रैंकिंग करके प्राप्त किया जाता है। दूसरा उनके नकारात्मक प्रवाह स्कोर के बढ़ते मूल्यों के अनुसार कार्यों की रैंकिंग करके प्राप्त किया जाता है। प्रोमेथी I आंशिक रैंकिंग को इन दो रैंकिंग के प्रतिच्छेदन के रूप में परिभाषित किया गया है। परिणामस्वरूप, क्रिया किसी अन्य कार्रवाई के समान ही अच्छा होगा अगर और सकारात्मक और नकारात्मक वरीयता प्रवाह को शुद्ध वरीयता प्रवाह में एकत्रित किया जाता है:

पिछले सूत्र के प्रत्यक्ष परिणाम हैं:

प्रोमेथी II पूर्ण रैंकिंग शुद्ध प्रवाह स्कोर के घटते मूल्यों के अनुसार कार्यों का आदेश देकर प्राप्त की जाती है।

यूनिक्राइटेरियन नेट प्रवाह

मल्टीक्राइटेरिया वरीयता डिग्री की परिभाषा के अनुसार, मल्टीक्राइटेरिया शुद्ध प्रवाह को निम्नानुसार विभाजित किया जा सकता है:

कहाँ:

.

यूनिक्राइटेरियन शुद्ध प्रवाह, निरूपित , बहुमानदंड शुद्ध प्रवाह के समान ही व्याख्या है लेकिन यह ही मानदंड तक सीमित है। कोई गतिविधि वेक्टर द्वारा चित्रित किया जा सकता है में आयामी स्थान. जीएआईए विमान इस स्थान में कार्यों के सेट पर प्रमुख घटक विश्लेषण लागू करके प्राप्त किया गया मुख्य विमान है।

प्रोमेथी वरीयता फ़ंक्शन

  • साधारण
  • यू-आकार
  • V-आकार
  • स्तर
  • रैखिक
  • गाऊशियन


प्रोमेथी रैंकिंग

प्रोमेथी मैं

प्रोमेथी I क्रियाओं की आंशिक रैंकिंग है। यह सकारात्मक और नकारात्मक प्रवाह पर आधारित है। इसमें प्राथमिकताएँ, उदासीनता और अतुलनीयताएँ (आंशिक प्रीऑर्डर) शामिल हैं।

प्रोमेथी II

प्रोमेथी II कार्यों की पूरी रैंकिंग है। यह मल्टीक्राइटेरिया नेट फ्लो पर आधारित है। इसमें प्राथमिकताएँ और उदासीनता (प्रीऑर्डर) शामिल हैं।

यह भी देखें

संदर्भ

  1. J. Figueira; S. Greco & M. Ehrgott (2005). Multiple Criteria Decision Analysis: State of the Art Surveys. Springer Verlag.
  2. J.P. Brans (1982). "L'ingénierie de la décision: élaboration d'instruments d'aide à la décision. La méthode PROMETHEE". Presses de l’Université Laval.
  3. B. Mareschal; J.P. Brans (1988). "एमसीडीए के लिए ज्यामितीय प्रतिनिधित्व। GAIA मॉड्यूल". European Journal of Operational Research.
  4. J.P. Brans & P. Vincke (1985). "A preference ranking organisation method: The PROMETHEE method for MCDM". Management Science.
  5. M. Behzadian; R.B. Kazemzadeh; A. Albadvi; M. Aghdasi (2010). "PROMETHEE: A comprehensive literature review on methodologies and applications". European Journal of Operational Research.


बाहरी संबंध