रेले भागफल: Difference between revisions
No edit summary |
No edit summary |
||
Line 2: | Line 2: | ||
गणित में, किसी दिए गए सम्मिश्र [[हर्मिटियन मैट्रिक्स|हर्मिटियन आव्यूह]] <math>M</math> और अशून्य सदिश (ज्यामिति) <math>x</math> के लिए रेले भागफल<ref>Also known as the '''Rayleigh–Ritz ratio'''; named after [[Walther Ritz]] and [[Lord Rayleigh]].</ref> ({{IPAc-en|ˈ|r|eɪ|.|l|i}}) को इस प्रकार परिभाषित किया गया है:<ref>{{cite book |last1=Horn |first1=R. A. |first2=C. A. |last2=Johnson |year=1985 |title=मैट्रिक्स विश्लेषण|publisher=Cambridge University Press |pages=176–180 |isbn=0-521-30586-1 |url=https://books.google.com/books?id=PlYQN0ypTwEC&pg=PA176 }}</ref><ref>{{cite book |last=Parlett |first=B. N. |title=सममित आइगेनवेल्यू समस्या|publisher=SIAM |series=Classics in Applied Mathematics |year=1998 |isbn=0-89871-402-8 }}</ref><math display="block">R(M,x) = {x^{*} M x \over x^{*} x}.</math>वास्तविक आव्यूहों और सदिशों के लिए, हर्मिटियन होने की स्थिति सममित होने की स्थिति में कम हो जाती है और संयुग्मी परिवर्त <math>x^{*}</math> को सामान्य परिवर्त <math>x'</math> में परिवर्तित कर देता है। ध्यान दें कि किसी भी अशून्य अदिश <math>c</math> के लिए <math>R(M, c x) = R(M,x)</math> है। स्मरण रखें कि हर्मिटियन (अथवा वास्तविक सममित) | गणित में, किसी दिए गए सम्मिश्र [[हर्मिटियन मैट्रिक्स|हर्मिटियन आव्यूह]] <math>M</math> और अशून्य सदिश (ज्यामिति) <math>x</math> के लिए रेले भागफल<ref>Also known as the '''Rayleigh–Ritz ratio'''; named after [[Walther Ritz]] and [[Lord Rayleigh]].</ref> ({{IPAc-en|ˈ|r|eɪ|.|l|i}}) को इस प्रकार परिभाषित किया गया है:<ref>{{cite book |last1=Horn |first1=R. A. |first2=C. A. |last2=Johnson |year=1985 |title=मैट्रिक्स विश्लेषण|publisher=Cambridge University Press |pages=176–180 |isbn=0-521-30586-1 |url=https://books.google.com/books?id=PlYQN0ypTwEC&pg=PA176 }}</ref><ref>{{cite book |last=Parlett |first=B. N. |title=सममित आइगेनवेल्यू समस्या|publisher=SIAM |series=Classics in Applied Mathematics |year=1998 |isbn=0-89871-402-8 }}</ref><math display="block">R(M,x) = {x^{*} M x \over x^{*} x}.</math>वास्तविक आव्यूहों और सदिशों के लिए, हर्मिटियन होने की स्थिति सममित होने की स्थिति में कम हो जाती है और संयुग्मी परिवर्त <math>x^{*}</math> को सामान्य परिवर्त <math>x'</math> में परिवर्तित कर देता है। ध्यान दें कि किसी भी अशून्य अदिश <math>c</math> के लिए <math>R(M, c x) = R(M,x)</math> है। स्मरण रखें कि हर्मिटियन (अथवा वास्तविक सममित) आव्यूह केवल वास्तविक आइगेन मान के साथ [[वर्णक्रमीय प्रमेय|विकर्ण योग्य]] है। यह दिखाया जा सकता है कि, किसी दिए गए आव्यूह के लिए, रेले भागफल अपने न्यूनतम मान <math>\lambda_\min</math> (<math>M</math> का सबसे छोटा [[eigenvalue|आइगेन मान]]) तक पहुँच जाता है जब <math>x</math>, <math>v_\min</math> (संबंधित [[eigenvector|आइगेन]][[eigenvector|वेक्टर]]) होता है।<ref>{{cite web |first=Rodica D. |last=Costin |date=2013 |title=मध्यावधि नोट्स|work=Mathematics 5102 Linear Mathematics in Infinite Dimensions, lecture notes |publisher=The Ohio State University |url=https://people.math.osu.edu/costin.10/5102/Rayleigh%20quotient.pdf }}</ref> इस प्रकार, <math>R(M, x) \leq \lambda_\max</math> और <math>R(M, v_\max) = \lambda_\max</math> होता है। | ||
रेले भागफल का उपयोग [[न्यूनतम-अधिकतम प्रमेय]] में सभी आइगेन | रेले भागफल का उपयोग [[न्यूनतम-अधिकतम प्रमेय]] में सभी आइगेन मानों के त्रुटिहीन मान प्राप्त करने के लिए किया जाता है। इसका उपयोग आइजेनवेक्टर सन्निकटन से आइगेन मान सन्निकटन प्राप्त करने के लिए [[eigenvalue एल्गोरिथ्म|आइगेन मान एल्गोरिथ्म]] (जैसे कि [[रेले भागफल पुनरावृत्ति]]) में भी किया जाता है। | ||
रेले भागफल की सीमा (किसी भी | रेले भागफल की सीमा (किसी भी आव्यूह के लिए यह आवश्यक नहीं कि हर्मिटियन हो) को [[संख्यात्मक सीमा]] कहा जाता है और इसमें इसका स्पेक्ट्रम (कार्यात्मक विश्लेषण) सम्मिलित होता है। जब आव्यूह हर्मिटियन होता है, तो संख्यात्मक त्रिज्या वर्णक्रमीय मानक के समान होती है। अभी भी कार्यात्मक विश्लेषण में, <math>\lambda_\max</math> को [[वर्णक्रमीय त्रिज्या]] के रूप में जाना जाता है। <math>C^\star</math>-बीजगणित अथवा बीजगणितीय क्वांटम यांत्रिकी के सन्दर्भ में, वह फलन जो <math>M</math> बीजगणित के माध्यम से भिन्न होने वाले निश्चित <math>x</math> और <math>M</math> के लिए रेले-रिट्ज भागफल <math>R(M, x)</math> को जोड़ता है, उसे बीजगणित की सदिश स्थिति के रूप में संदर्भित किया जाएगा। | ||
[[क्वांटम यांत्रिकी]] में, रेले भागफल | [[क्वांटम यांत्रिकी]] में, रेले भागफल उस प्रणाली के लिए संकारक <math>M</math> के अनुरूप अवलोकन योग्य का अपेक्षित मान देता है जिसकी स्थिति <math>x</math> द्वारा दी गई है। | ||
यदि हम | यदि हम सम्मिश्र आव्यूह <math>M</math> को व्यवस्थित करते हैं, तो परिणामी रेले भागफल मानचित्र (जिसे <math>x</math> के फलन के रूप में माना जाता है) ध्रुवीकरण प्रमाण के माध्यम से <math>M</math> को पूर्ण रूप से निर्धारित करता है; वास्तव में, यह सत्य होगा यदि हम <math>M</math> को गैर-हर्मिटियन होने की अनुमति दें। (यद्यपि, यदि हम अदिशों के क्षेत्र को वास्तविक संख्याओं तक सीमित रखते हैं, तो रेले भागफल केवल <math>M</math> के सममित आव्यूह भाग को निर्धारित करता है।) | ||
==हर्मिटियन | ==हर्मिटियन ''M'' के लिए सीमाएं== | ||
जैसा कि परिचय में कहा गया है, किसी भी वेक्टर x के लिए, के पास है <math>R(M,x) \in \left[\lambda_\min, \lambda_\max \right]</math>, कहाँ <math>\lambda_\min, \lambda_\max</math> क्रमशः सबसे छोटे और सबसे बड़े आइगेन मान हैं <math>M</math>. यह देखने के तुरंत बाद है कि रेले भागफल एम के आइगेन मान का भारित औसत है: | जैसा कि परिचय में कहा गया है, किसी भी वेक्टर x के लिए, के पास है <math>R(M,x) \in \left[\lambda_\min, \lambda_\max \right]</math>, कहाँ <math>\lambda_\min, \lambda_\max</math> क्रमशः सबसे छोटे और सबसे बड़े आइगेन मान हैं <math>M</math>. यह देखने के तुरंत बाद है कि रेले भागफल एम के आइगेन मान का भारित औसत है: | ||
<math display="block">R(M,x) = {x^{*} M x \over x^{*} x} = \frac{\sum_{i=1}^n \lambda_i y_i^2}{\sum_{i=1}^n y_i^2}</math> | <math display="block">R(M,x) = {x^{*} M x \over x^{*} x} = \frac{\sum_{i=1}^n \lambda_i y_i^2}{\sum_{i=1}^n y_i^2}</math> | ||
Line 20: | Line 20: | ||
==[[सहप्रसरण आव्यूह]]ों का विशेष मामला== | ==[[सहप्रसरण आव्यूह]]ों का विशेष मामला== | ||
अनुभवजन्य सहप्रसरण | अनुभवजन्य सहप्रसरण आव्यूह <math>M</math> उत्पाद के रूप में प्रस्तुत किया जा सकता है <math>A'A</math> डेटा आव्यूह का (बहुभिन्नरूपी आँकड़े) <math>A</math> इसके स्थानान्तरण द्वारा पूर्व-गुणा किया गया <math>A'</math>. सकारात्मक अर्ध-निश्चित आव्यूह होने के नाते, <math>M</math> इसमें गैर-नकारात्मक आइगेन मान, और ऑर्थोगोनल (या ऑर्थोगोनलाइज़ेबल) eigenvectors हैं, जिन्हें निम्नानुसार प्रदर्शित किया जा सकता है। | ||
सबसे पहले, कि आइगेन मान <math>\lambda_i</math> गैर-नकारात्मक हैं: | सबसे पहले, कि आइगेन मान <math>\lambda_i</math> गैर-नकारात्मक हैं: | ||
Line 96: | Line 96: | ||
&= \frac{ \left \{ \left. -p(x)y(x)y'(x) \right |_a^b \right \} + \left \{ \int_a^b \left [p(x)y'(x)^2 + q(x)y(x)^2 \right] \, dx \right \} } {\int_a^b{w(x)y(x)^2} \, dx}. | &= \frac{ \left \{ \left. -p(x)y(x)y'(x) \right |_a^b \right \} + \left \{ \int_a^b \left [p(x)y'(x)^2 + q(x)y(x)^2 \right] \, dx \right \} } {\int_a^b{w(x)y(x)^2} \, dx}. | ||
\end{align}</math>सामान्यीकरण == | \end{align}</math>सामान्यीकरण == | ||
# | # आव्यूह के दिए गए जोड़े (ए, बी) और दिए गए गैर-शून्य वेक्टर x के लिए, 'सामान्यीकृत रेले भागफल' को इस प्रकार परिभाषित किया गया है: <math display="block">R(A,B; x) := \frac{x^* A x}{x^* B x}.</math> सामान्यीकृत रेले भागफल को रेले भागफल तक कम किया जा सकता है <math>R(D, C^*x)</math> परिवर्तन के माध्यम से <math>D = C^{-1} A {C^*}^{-1}</math> कहाँ <math>CC^*</math> हर्मिटियन सकारात्मक-निश्चित आव्यूह बी का चोल्स्की अपघटन है। | ||
# गैर-शून्य सदिशों की दी गई जोड़ी (x, y) और दिए गए हर्मिटियन | # गैर-शून्य सदिशों की दी गई जोड़ी (x, y) और दिए गए हर्मिटियन आव्यूह H के लिए, 'सामान्यीकृत रेले भागफल' को इस प्रकार परिभाषित किया जा सकता है: <math display="block">R(H; x,y) := \frac{y^* H x}\sqrt{y^*y \cdot x^*x}</math> जो R(H,x) के साथ मेल खाता है जब x = y। क्वांटम यांत्रिकी में, इस मात्रा को आव्यूह तत्व या कभी-कभी संक्रमण आयाम कहा जाता है। | ||
==यह भी देखें== | ==यह भी देखें== |
Revision as of 20:27, 2 August 2023
गणित में, किसी दिए गए सम्मिश्र हर्मिटियन आव्यूह और अशून्य सदिश (ज्यामिति) के लिए रेले भागफल[1] (/ˈreɪ.li/) को इस प्रकार परिभाषित किया गया है:[2][3]
रेले भागफल का उपयोग न्यूनतम-अधिकतम प्रमेय में सभी आइगेन मानों के त्रुटिहीन मान प्राप्त करने के लिए किया जाता है। इसका उपयोग आइजेनवेक्टर सन्निकटन से आइगेन मान सन्निकटन प्राप्त करने के लिए आइगेन मान एल्गोरिथ्म (जैसे कि रेले भागफल पुनरावृत्ति) में भी किया जाता है।
रेले भागफल की सीमा (किसी भी आव्यूह के लिए यह आवश्यक नहीं कि हर्मिटियन हो) को संख्यात्मक सीमा कहा जाता है और इसमें इसका स्पेक्ट्रम (कार्यात्मक विश्लेषण) सम्मिलित होता है। जब आव्यूह हर्मिटियन होता है, तो संख्यात्मक त्रिज्या वर्णक्रमीय मानक के समान होती है। अभी भी कार्यात्मक विश्लेषण में, को वर्णक्रमीय त्रिज्या के रूप में जाना जाता है। -बीजगणित अथवा बीजगणितीय क्वांटम यांत्रिकी के सन्दर्भ में, वह फलन जो बीजगणित के माध्यम से भिन्न होने वाले निश्चित और के लिए रेले-रिट्ज भागफल को जोड़ता है, उसे बीजगणित की सदिश स्थिति के रूप में संदर्भित किया जाएगा।
क्वांटम यांत्रिकी में, रेले भागफल उस प्रणाली के लिए संकारक के अनुरूप अवलोकन योग्य का अपेक्षित मान देता है जिसकी स्थिति द्वारा दी गई है।
यदि हम सम्मिश्र आव्यूह को व्यवस्थित करते हैं, तो परिणामी रेले भागफल मानचित्र (जिसे के फलन के रूप में माना जाता है) ध्रुवीकरण प्रमाण के माध्यम से को पूर्ण रूप से निर्धारित करता है; वास्तव में, यह सत्य होगा यदि हम को गैर-हर्मिटियन होने की अनुमति दें। (यद्यपि, यदि हम अदिशों के क्षेत्र को वास्तविक संख्याओं तक सीमित रखते हैं, तो रेले भागफल केवल के सममित आव्यूह भाग को निर्धारित करता है।)
हर्मिटियन M के लिए सीमाएं
जैसा कि परिचय में कहा गया है, किसी भी वेक्टर x के लिए, के पास है , कहाँ क्रमशः सबसे छोटे और सबसे बड़े आइगेन मान हैं . यह देखने के तुरंत बाद है कि रेले भागफल एम के आइगेन मान का भारित औसत है:
तथ्य यह है कि भागफल आइगेन मान का भारित औसत है, इसका उपयोग दूसरे, तीसरे, ... सबसे बड़े आइगेन मान की पहचान करने के लिए किया जा सकता है। होने देना घटते क्रम में आइगेन मान हो। अगर और ओर्थोगोनल होने के लिए बाध्य है , किस स्थिति में , तब अधिकतम मूल्य है , जो कब प्राप्त होता है .
सहप्रसरण आव्यूहों का विशेष मामला
अनुभवजन्य सहप्रसरण आव्यूह उत्पाद के रूप में प्रस्तुत किया जा सकता है डेटा आव्यूह का (बहुभिन्नरूपी आँकड़े) इसके स्थानान्तरण द्वारा पूर्व-गुणा किया गया . सकारात्मक अर्ध-निश्चित आव्यूह होने के नाते, इसमें गैर-नकारात्मक आइगेन मान, और ऑर्थोगोनल (या ऑर्थोगोनलाइज़ेबल) eigenvectors हैं, जिन्हें निम्नानुसार प्रदर्शित किया जा सकता है।
सबसे पहले, कि आइगेन मान गैर-नकारात्मक हैं:
अब यह स्थापित करने के लिए कि रेले भागफल को सबसे बड़े eigenvalue वाले eigenvector द्वारा अधिकतम किया गया है, मनमाना वेक्टर को विघटित करने पर विचार करें eigenvectors के आधार पर :
यदि वेक्टर अधिकतम , फिर कोई भी गैर-शून्य अदिश गुणज अधिकतम भी करता है , इसलिए समस्या को अधिकतमीकरण के लैग्रेंज गुणक तक कम किया जा सकता है उस बाध्यता के तहत .
परिभाषित करना: . यह तब रैखिक कार्यक्रम बन जाता है, जो हमेशा डोमेन के किसी कोने पर अपनी अधिकतम सीमा प्राप्त करता है। अधिकतम अंक होगा और सभी के लिए (जब आइगेन मान को घटते परिमाण के अनुसार क्रमित किया जाता है)।
इस प्रकार, रेले भागफल को सबसे बड़े eigenvalue वाले eigenvector द्वारा अधिकतम किया जाता है।
लैग्रेंज मल्टीप्लायरों का उपयोग करके सूत्रीकरण
वैकल्पिक रूप से, इस परिणाम पर लैग्रेंज मल्टीप्लायरों की विधि द्वारा पहुंचा जा सकता है। पहला भाग यह दिखाना है कि स्केलिंग के तहत भागफल स्थिर है , कहाँ अदिश राशि है
कहाँ लैग्रेंज गुणक है। के स्थिर बिंदु पर घटित होता है
इसलिए, eigenvectors का रेले भागफल के महत्वपूर्ण बिंदु और उनके संबंधित स्वदेशी मान हैं के स्थिर मान हैं . यह संपत्ति प्रमुख घटकों के विश्लेषण और विहित सहसंबंध का आधार है।
स्टर्म-लिउविल सिद्धांत में उपयोग
स्टर्म-लिउविले सिद्धांत रैखिक ऑपरेटर की कार्रवाई से संबंधित है
सामान्यीकरण
- आव्यूह के दिए गए जोड़े (ए, बी) और दिए गए गैर-शून्य वेक्टर x के लिए, 'सामान्यीकृत रेले भागफल' को इस प्रकार परिभाषित किया गया है: सामान्यीकृत रेले भागफल को रेले भागफल तक कम किया जा सकता है परिवर्तन के माध्यम से कहाँ हर्मिटियन सकारात्मक-निश्चित आव्यूह बी का चोल्स्की अपघटन है।
- गैर-शून्य सदिशों की दी गई जोड़ी (x, y) और दिए गए हर्मिटियन आव्यूह H के लिए, 'सामान्यीकृत रेले भागफल' को इस प्रकार परिभाषित किया जा सकता है: जो R(H,x) के साथ मेल खाता है जब x = y। क्वांटम यांत्रिकी में, इस मात्रा को आव्यूह तत्व या कभी-कभी संक्रमण आयाम कहा जाता है।
यह भी देखें
- मूल्यों का क्षेत्र
- न्यूनतम-अधिकतम प्रमेय
- कंपन विश्लेषण में रेले का भागफल
- डिरिचलेट आइजेनवैल्यू
संदर्भ
- ↑ Also known as the Rayleigh–Ritz ratio; named after Walther Ritz and Lord Rayleigh.
- ↑ Horn, R. A.; Johnson, C. A. (1985). मैट्रिक्स विश्लेषण. Cambridge University Press. pp. 176–180. ISBN 0-521-30586-1.
- ↑ Parlett, B. N. (1998). सममित आइगेनवेल्यू समस्या. Classics in Applied Mathematics. SIAM. ISBN 0-89871-402-8.
- ↑ Costin, Rodica D. (2013). "मध्यावधि नोट्स" (PDF). Mathematics 5102 Linear Mathematics in Infinite Dimensions, lecture notes. The Ohio State University.
अग्रिम पठन
- Shi Yu, Léon-Charles Tranchevent, Bart Moor, Yves Moreau, Kernel-based Data Fusion for Machine Learning: Methods and Applications in Bioinformatics and Text Mining, Ch. 2, Springer, 2011.
- आव्यूह के दिए गए जोड़े (ए, बी) और दिए गए गैर-शून्य वेक्टर x के लिए, 'सामान्यीकृत रेले भागफल' को इस प्रकार परिभाषित किया गया है: सामान्यीकृत रेले भागफल को रेले भागफल तक कम किया जा सकता है परिवर्तन के माध्यम से कहाँ हर्मिटियन सकारात्मक-निश्चित आव्यूह बी का चोल्स्की अपघटन है।
- गैर-शून्य सदिशों की दी गई जोड़ी (x, y) और दिए गए हर्मिटियन आव्यूह H के लिए, 'सामान्यीकृत रेले भागफल' को इस प्रकार परिभाषित किया जा सकता है: जो R(H,x) के साथ मेल खाता है जब x = y। क्वांटम यांत्रिकी में, इस मात्रा को आव्यूह तत्व या कभी-कभी संक्रमण आयाम कहा जाता है।
यह भी देखें
- मूल्यों का क्षेत्र
- न्यूनतम-अधिकतम प्रमेय
- कंपन विश्लेषण में रेले का भागफल
- डिरिचलेट आइजेनवैल्यू
संदर्भ
- ↑ Also known as the Rayleigh–Ritz ratio; named after Walther Ritz and Lord Rayleigh.
- ↑ Horn, R. A.; Johnson, C. A. (1985). मैट्रिक्स विश्लेषण. Cambridge University Press. pp. 176–180. ISBN 0-521-30586-1.
- ↑ Parlett, B. N. (1998). सममित आइगेनवेल्यू समस्या. Classics in Applied Mathematics. SIAM. ISBN 0-89871-402-8.
- ↑ Costin, Rodica D. (2013). "मध्यावधि नोट्स" (PDF). Mathematics 5102 Linear Mathematics in Infinite Dimensions, lecture notes. The Ohio State University.
अग्रिम पठन
- Shi Yu, Léon-Charles Tranchevent, Bart Moor, Yves Moreau, Kernel-based Data Fusion for Machine Learning: Methods and Applications in Bioinformatics and Text Mining, Ch. 2, Springer, 2011.