पत्राचार विश्लेषण: Difference between revisions

From Vigyanwiki
(text)
(text)
Line 101: Line 101:


==कार्यान्वयन==
==कार्यान्वयन==
* '''डेटा विज़ुअलाइज़ेशन सिस्टम ऑरेंज (सॉफ़्टवेयर) में मापदंड सम्मिलित है: orngCA।'''
* '''आंकड़े मानस दर्शन पद्धति ऑरेंज (सॉफ़्टवेयर) में मापदंड सम्मिलित है: orngCA।'''
* '''सांख्यिकीय कार्यरचना भाषा [[आर (प्रोग्रामिंग भाषा)]] में कई पैकेज सम्मिलित हैं, जो (सरल सममित) पत्राचार विश्लेषण के लिए एक कार्य प्रदान करते हैं। R नोटेशन [package_name::function_name] का उपयोग करते हुए पैकेज और संबंधित कार्य हैं: <code>ade4::dudi.coa()</code>, <code>ca::ca()</code> , <code>ExPosition::epCA()</code>, <code>FactoMineR::CA()</code>, <code>MASS::corresp()</code>, <code>vegan::cca()</code>. शुरुआती लोगों के लिए सबसे आसान तरीका है <code>ca::ca()</code> चूँकि एक विस्तृत पाठ्य पुस्तक है<ref>{{Cite book|last=Greenacre|first=Michael|title=व्यवहार में पत्राचार विश्लेषण|publisher=CRC PRESS|year=2021|isbn=9780367782511|edition=third|location=London}}</ref> उस पैकेज के साथ.'''
* '''सांख्यिकीय कार्यरचना भाषा [[आर (प्रोग्रामिंग भाषा)|आर (कार्यरचना भाषा)]] में कई पैकेज सम्मिलित हैं, जो (सरल सममित) पत्राचार विश्लेषण के लिए एक कार्य प्रदान करते हैं। R संकेत पद्धति [package_name::function_name] का उपयोग करते हुए पैकेज और संबंधित कार्य हैं: <code>ade4::dudi.coa()</code>, <code>ca::ca()</code> , <code>ExPosition::epCA()</code>, <code>FactoMineR::CA()</code>, <code>MASS::corresp()</code>, <code>vegan::cca()</code>. शुरुआती लोगों के लिए सबसे आसान तरीका है <code>ca::ca()</code> चूँकि एक विस्तृत पाठ्य पुस्तक है<ref>{{Cite book|last=Greenacre|first=Michael|title=व्यवहार में पत्राचार विश्लेषण|publisher=CRC PRESS|year=2021|isbn=9780367782511|edition=third|location=London}}</ref> उस पैकेज के साथ.'''
*'''फ्रीवेयर पास्ट (पैलियोन्टोलॉजिकल सांख्यिकी)<ref>{{Cite web|last=Hammer|first=Øyvind|title=Past 4 - the Past of the Future|url=https://www.nhm.uio.no/english/research/infrastructure/past/|url-status=live|access-date=2021-09-14|archive-url=https://web.archive.org/web/20201101000539/https://www.nhm.uio.no/english/research/infrastructure/past/ |archive-date=2020-11-01 }}</ref> मेनू मल्टीवेरिएट/ऑर्डिनेशन/कॉरेस्पोंडेंस (सीए) के माध्यम से (सरल सममित) पत्राचार विश्लेषण प्रदान करता है।'''
*'''फ्रीवेयर पास्ट (पैलियोन्टोलॉजिकल सांख्यिकी)<ref>{{Cite web|last=Hammer|first=Øyvind|title=Past 4 - the Past of the Future|url=https://www.nhm.uio.no/english/research/infrastructure/past/|url-status=live|access-date=2021-09-14|archive-url=https://web.archive.org/web/20201101000539/https://www.nhm.uio.no/english/research/infrastructure/past/ |archive-date=2020-11-01 }}</ref> मेनू मल्टीवेरिएट/ऑर्डिनेशन/कॉरेस्पोंडेंस (सीए) के माध्यम से (सरल सममित) पत्राचार विश्लेषण प्रदान करता है।'''



Revision as of 09:04, 2 August 2023

पत्राचार विश्लेषण (सीए) एक बहुभिन्नरूपी सांख्यिकीय तकनीक है [1] जिसे हरमन ओटो हार्टले (हिर्शफेल्ड) द्वारा प्रस्तावित [2] और बाद में जीन-पॉल बेंज़ेक्रि द्वारा विकसित किया गया। [3] यह वैचारिक रूप से प्रमुख घटक विश्लेषण के समान है, परन्तु निरंतर आंकड़ों के बजाय श्रेणीबद्ध आंकड़ों पर लागू होता है। प्रमुख घटक विश्लेषण के समान तरीके से, यह आंकड़ों के एक समुच्चय को द्वि-आयामी ग्राफिकल रूप में प्रदर्शित या सारांशित करने का एक साधन प्रदान करता है। इसका उद्देश्य आंकड़ों की तालिका की बहुभिन्नरूपी समायोजन में छिपी किसी भी संरचना को बाइप्लॉट में प्रदर्शित करना है। इस प्रकार यह बहुभिन्नरूपी समन्वयन (सांख्यिकी) के क्षेत्र की एक तकनीक है। चूंकि यहां वर्णित सीए के प्रकार को या तो पंक्तियों पर या स्तंभों पर ध्यान केंद्रित करके प्रयुक्त किया जा सकता है, इसलिए इसे वास्तव में सरल (सममित) पत्राचार विश्लेषण कहा जाना चाहिए। [4]

इसे परंपरागत रूप से माप के स्तर#नाममात्र स्तर की एक जोड़ी की आकस्मिक तालिकाओं पर प्रयुक्त किया जाता है, जहां प्रत्येक कोशिका में या तो एक गिनती या शून्य मान होता है। यदि दो से अधिक श्रेणीबद्ध चर को संक्षेप में प्रस्तुत किया जाना है, तो इसके बजाय एकाधिक पत्राचार विश्लेषण नामक एक संस्करण को चुना जाना चाहिए। सीए को बाइनरी आंकड़ों पर भी प्रयुक्त किया जा सकता है, उपस्थिति/अनुपस्थिति कोडिंग सरलीकृत गिनती आंकड़ों का प्रतिनिधित्व करती है यानी 1 एक सकारात्मक गिनती का वर्णन करता है और 0 शून्य की गिनती के लिए है। उपयोग किए गए अंक के आधार पर सीए तालिका की पंक्तियों या स्तंभों के बीच ची-वर्ग दूरी को संरक्षित रखता है। [5][6] क्योंकि सीए एक वर्णनात्मक तकनीक है, इसे महत्वपूर्ण ची-वर्ग परीक्षण की उपेक्षा किए बिना तालिकाओं पर लागू किया जा सकता है। [7][8] यद्यपि सांख्यिकीय अनुमान में उपयोग किया जाने वाला आँकड़ा और ची-वर्ग दूरी संगणनात्मक रूप से संबंधित हैं, उन्हें भ्रमित नहीं होना चाहिए क्योंकि बाद वाला CA में बहुभिन्नरूपी विश्लेषण सांख्यिकीय दूरी माप के रूप में काम करता है जबकि आँकड़ा वास्तव में एक अदिश (गणित) है न कि मात्रिक (गणित)। [9]


विवरण

प्रमुख घटक विश्लेषण की तरह, पत्राचार विश्लेषण आयतीय घटक (या अक्ष) बनाता है और, तालिका में प्रत्येक वस्तु के लिए यानी प्रत्येक पंक्ति के लिए, अंक का एक समुच्चय (कभी-कभी कारक अंक भी कहा जाता है, कारक विश्लेषण देखें)। पत्राचार विश्लेषण आंकड़ों की तालिका पर किया जाता है, जिसे m × n आकार के आव्यूह C के रूप में माना जाता है, जहां m पंक्तियों की संख्या है और n स्तंभों की संख्या है। विधि के निम्नलिखित गणितीय विवरण में इटली शैली में बड़े अक्षर एक आव्यूह(गणित) को संदर्भित करते हैं जबकि इटली शैली में अक्षर पंक्ति और स्तम्भ सदिश को संदर्भित करते हैं। निम्नलिखित गणनाओं को समझने के लिए आव्यूह गुणन का ज्ञान आवश्यक है।

प्रीप्रोसेसिंग

कलन विधि के केंद्रीय संगणनात्मक चरण पर आगे बढ़ने से पहले, आव्यूह सी में मानों को बदलना होगा। [10] सबसे पहले स्तंभों और पंक्तियों (कभी-कभी द्रव्यमान कहा जाता है) के लिए वजन के एक समुच्चय की गणना करें, [11][12] जहां पंक्ति और स्तंभ का भार क्रमशः पंक्ति और स्तंभ सदिश द्वारा दिया जाता है:

यहाँ आव्यूह C में सभी कोशिका मानों का योग है, या C का योग संक्षेप में है, और उचित आयाम वाले लोगों की एक स्तम्भ पंक्ति और स्तम्भ सदिश है।

सरल शब्दों में कहें तो, केवल एक सदिश है जिसके तत्व C की पंक्ति के योग को C के योग से विभाजित करते हैं, और एक सदिश है जिसके तत्व C के स्तंभ योग को C के योग से विभाजित किया जाता है।

भार विकर्ण आव्यूह में परिवर्तित हो जाते हैं

और

यहाँ के विकर्ण तत्व हैं और वे हैं क्रमशः अर्थात सदिश तत्व द्रव्यमान के वर्गमूल के गुणक व्युत्क्रम होते हैं। सभी ऑफ-विकर्ण तत्व 0 हैं।

अगला, आव्यूह की गणना करें विभाजित करके इसके योग से

सरल शब्दों में, आव्यूह यह केवल आंकड़ा आव्यूह (आकस्मिकता तालिका या बाइनरी तालिका) है जो भागों में परिवर्तित हो जाती है यानी प्रत्येक कोशिका मान पूरी तालिका के योग का केवल कोशिका भाग है।

अंत में, आव्यूह की गणना करें , जिसेआव्यूह गुणन द्वारा कभी-कभी मानकीकृत अवशेषों का आव्यूह भी कहा जाता है, [13]

ध्यान दें, सदिश और एक बाह्य उत्पाद में संयोजित होते हैं जिसके परिणामस्वरूप उसी आयाम (सदिश स्थान) का एक आव्यूह बनता है । शब्दों में सूत्र पढ़ता है: आव्यूह आव्यूह से घटाया गया है और परिणामी आव्यूह को विकर्ण आव्यूह द्वारा और मापक्रम (भारित) किया जाता है। परिणामी आव्यूह को विकर्ण आव्यूहों से गुणा करना, इसकी i-वीं पंक्ति (या स्तंभ) को इसके विकर्ण के i-वें तत्व से गुणा करने के बराबर है। या , क्रमश [14]

प्रीप्रोसेसिंग की व्याख्या

सदिश और क्रमशः पंक्ति और स्तंभ द्रव्यमान या पंक्तियों और स्तंभों के लिए सीमांत संभावनाएं हैं। घटाव आव्यूह आव्यूह से डेटा को डबल केन्द्रित आव्यूह का आव्यूह बीजगणित संस्करण है। इस अंतर को विकर्ण भार आव्यूह से गुणा करने पर एक आव्यूह बनता है जिसमें सदिश रिक्त स्थान के उदाहरणों की उत्पत्ति (गणित) से भारित विचलन होता है। यह मूल आव्यूह द्वारा परिभाषित किया गया है .

वास्तव में आव्यूह ची-वर्ग परीक्षण में अपेक्षित आवृत्तियों के आव्यूह के समान है। इसलिए संगणनात्मक रूप से उस परीक्षण में प्रयुक्त स्वतंत्रता प्रतिरूप से संबंधित है। लेकिन चूंकि सीए एक अनुमानात्मक पद्धति नहीं है इसलिए स्वतंत्रता प्रतिरूप शब्द यहां अनुपयुक्त है।

ऑर्थोगोनल घटक

तालिका फिर एक विलक्षण मूल्य अपटन द्वारा विघटित हो जाता है [10]

जहाँ और के बाएँ और दाएँ एकवचन सदिश हैं और एकवचन मानों वाला एक वर्ग विकर्ण आव्यूह है का विकर्ण पर। आयाम का है इस तरह आयाम m×p और का है n×p का है. रूढ़िवादिता के रूप में और पूरा

.

दूसरे शब्दों में, बहुभिन्नरूपी जानकारी जो इसमें निहित है साथ ही इसमें अब इसे दो (समन्वय) आव्यूहों में वितरित किया गया है और और एक विकर्ण (स्केलिंग) आव्यूह । उनके द्वारा परिभाषित सदिश समष्टि में आयामों की संख्या p है, जो कि दो मानों, शून्य से 1 पंक्तियों की संख्या और स्तंभों की संख्या में से छोटा है।

जड़ता

जबकि एक प्रमुख घटक विश्लेषण को प्रमुख घटक विश्लेषण#कंप्यूटिंग पीसीए को सहप्रसरण विधि का उपयोग करके कहा जा सकता है| (सह)विचरण को विघटित करें, और इसलिए इसकी सफलता का माप पहले कुछ पीसीए अक्षों द्वारा सुरक्षित किए गए (सह-)विचरण की मात्रा है - जिसे आइगेनवैल्यू में मापा जाता है -, एक सीए एक भारित (सह-)विचरण के साथ काम करता है जिसे जड़ता कहा जाता है। [15] वर्ग एकवचन मानों का योग कुल जड़त्व है आंकड़े तालिका की गणना इस प्रकार की जाती है

कुल जड़ता आंकड़े तालिका की गणना सीधे भी की जा सकती है जैसा

एकवचन सदिशों के i-वें समुच्चय द्वारा सुरक्षित की गई जड़ता की मात्रा है , प्रमुख जड़ता. पहले कुछ एकवचन सदिश द्वारा सुरक्षित किया गया जड़त्व का भाग जितना अधिक होगा यानी कुल जड़त्व की तुलना में मुख्य जड़त्व का योग जितना बड़ा होगा, सीए उतना ही अधिक सफल होगा। [15] इसलिए सभी प्रमुख जड़त्व मानों को भाग के रूप में व्यक्त किया जाता है कुल जड़ता का

और एक डरावने कथानक के रूप में प्रस्तुत किये गये हैं। वास्तव में एक मिट्टी - रोढ़ी वाला भूखंड सभी प्रमुख जड़त्व भागों का एक बार भूखंड मात्र है .

निर्देशांक

एकवचन सदिश को निर्देशांक में बदलने के लिए जो पंक्तियों या स्तंभों के बीच की दूरी को संरक्षित करता है, एक अतिरिक्त भार चरण आवश्यक है। परिणामी निर्देशांकों को सीए पाठ्य पुस्तकों में प्रमुख निर्देशांक कहा जाता है। [10] यदि पंक्तियों के लिए प्रमुख निर्देशांक का उपयोग किया जाता है तो उनके मानस दर्शन को पंक्ति सममितीय ,अर्थमिति में प्रवर्धन और पारिस्थितिकी में प्रवर्धन1 कहा जाता है। [16] [17] चूंकि भार में एकल मान सम्मिलित होते हैं मानकीकृत अवशेषों के आव्यूह का इन निर्देशांकों को कभी-कभी एकवचन मान मापक्रम किए गए एकवचन सदिश के रूप में संदर्भित किया जाता है, या, थोड़ा भ्रामक, मापक्रम्ड ईजेन सदिश के रूप में। वास्तव में गैर-तुच्छ आइजन्वेक्टर बाएँ एकवचन सदिश हैं का और वे सही एकवचन सदिश हैं का जबकि इनमें से किसी भी आव्यूह के ईजेनवैल्यू ​​​​एकवचन मानों के वर्ग हैं . लेकिन चूंकि सीए के लिए सभी आधुनिक कलन विधि एक एकल मूल्य अपघटन पर आधारित हैं, इसलिए इस शब्दावली से बचना चाहिए। सीए की फ्रांसीसी परंपरा में निर्देशांक को कभी-कभी (कारक) अंक कहा जाता है।

आव्यूह सी की पंक्तियों के लिए कारक अंक या प्रमुख निर्देशांक की गणना की जाती है

यानी बाएं एकवचन सदिश को पंक्ति द्रव्यमान के वर्गमूल के व्युत्क्रम और एकवचन मानों द्वारा मापक्रम किया जाता है। क्योंकि प्रमुख निर्देशांक की गणना एकवचन मानों का उपयोग करके की जाती है, उनमें मूल तालिका में पंक्तियों (या स्तंभों) के बीच भिन्नता के बारे में जानकारी होती है। प्रमुख निर्देशांक में इकाइयों के बीच यूक्लिडियन दूरियों की गणना करने से ऐसे मान प्राप्त होते हैं जो उनकी ची-वर्ग दूरियों के बराबर होते हैं, यही कारण है कि सीए को ची-वर्ग दूरियों को संरक्षित करने के लिए कहा जाता है।

स्तंभों के लिए प्रमुख निर्देशांक की गणना करें

सीए के परिणाम को एक उचित बाइप्लॉट में दर्शाने के लिए, उन श्रेणियों को जिन्हें प्रमुख निर्देशांक में भूखंड नहीं किया जाता है, यानी कि ची-वर्ग दूरी के निर्देशांक को संरक्षित करते हुए, तथाकथित मानक निर्देशांक में भूखंड किया जाना चाहिए। [10] उन्हें मानक निर्देशांक कहा जाता है क्योंकि मानक निर्देशांक के प्रत्येक सदिश को माध्य 0 और विचरण 1 प्रदर्शित करने के लिए मानकीकृत किया गया है। [18] मानक निर्देशांक की गणना करते समय एकवचन मानों को छोड़ दिया जाता है जो कि बिप्लॉट को लागू करने का प्रत्यक्ष परिणाम है जिसके द्वारा एकवचन सदिश आव्यूह के दो समुच्चयों में से एक को शून्य की शक्ति तक बढ़ाए गए एकवचन मानों द्वारा मापक्रम किया जाना चाहिए यानी एक से गुणा किया जाना चाहिए यानी एकवचन मानों को छोड़कर गणना की जानी चाहिए यदि एकवचन सदिश के दूसरे समुच्चय को एकवचन मानों द्वारा मापक्रम किया गया है। यह निर्देशांक के दो समुच्चयों के बीच एक डॉट उत्पाद के अस्तित्व को आश्वस्त करता है यानी यह एक बाइप्लॉट में उनके स्थानिक संबंधों की सार्थक व्याख्या की ओर ले जाता है।

व्यावहारिक रूप में कोई मानक निर्देशांक को सदिश स्थान के कोने (ज्यामिति) के रूप में सोच सकता है जिसमें प्रमुख निर्देशांक का समुच्चय (यानी संबंधित बिंदु) सम्मिलित होता है। [19] पंक्तियों के लिए मानक निर्देशांक हैं

और वे स्तम्भों के लिए हैं

ध्यान दें कि प्रवर्धन1 [17] पारिस्थितिकी में बिप्लॉट का तात्पर्य पंक्तियों को मूल निर्देशांक में और स्तंभों को मानक निर्देशांक में होना है, जबकि प्रवर्धन2 का तात्पर्य पंक्तियों को मानक में और स्तंभों को प्रमुख निर्देशांक में होना है। अर्थात। प्रवर्धन1 का तात्पर्य एक द्विप्लॉट से है के साथ साथ जबकि प्रवर्धन2 का तात्पर्य एक द्विप्लॉट से है के साथ साथ

परिणाम का चित्रमय प्रतिनिधित्व

सीए परिणाम का मानस दर्शन हमेशा पहले कुछ एकल सदिशों द्वारा प्रसार के सारांश की सफलता का मूल्यांकन करने के लिए प्रमुख जड़ता मूल्यों के स्क्री भूखंड को प्रदर्शित करने के साथ शुरू होता है।

वास्तविक समन्वय एक लेखाचित्र में प्रस्तुत किया गया है जो - पहली नज़र में - एक जटिल बिखराव के षड्यंत्र के साथ भ्रमित हो सकता है। वास्तव में इसमें दो स्कैटर भूखंड एक के ऊपर एक मुद्रित होते हैं, पंक्तियों के लिए बिंदुओं का एक समुच्चय और स्तंभों के लिए एक समुच्चय। लेकिन एक द्विप्लॉट होने के नाते एक स्पष्ट व्याख्या नियम उपयोग किए गए दो समन्वय आव्यूह से संबंधित है।

आमतौर पर सीए समाधान के पहले दो आयामों को भूखंड किया जाता है क्योंकि उनमें आंकड़े तालिका के बारे में अधिकतम जानकारी सम्मिलित होती है जिसे 2डी में प्रदर्शित किया जा सकता है, हालांकि आयामों के अन्य संयोजनों की जांच एक बाइप्लॉट द्वारा की जा सकती है। बाइप्लॉट वास्तव में मूल तालिका में मौजूद जानकारी के एक हिस्से का आयामी कमी मानचित्र (गणित) है।

सामान्य नियम के रूप में वह समुच्चय (पंक्तियाँ या स्तंभ) जिसका विश्लेषण उसकी संरचना के संबंध में किया जाना चाहिए जैसा कि दूसरे समुच्चय द्वारा मापा जाता है, प्रमुख निर्देशांक में प्रदर्शित होता है जबकि दूसरा समुच्चय मानक निर्देशांक में प्रदर्शित होता है। जैसे जब ध्यान समान मतदान के अनुसार जिलों को क्रमबद्ध करने पर होता है, तो चुनावी जिले को पंक्तियों में और राजनीतिक दलों को गिनती वाले कक्षों के साथ स्तम्भ में प्रदर्शित करने वाली तालिका को प्रमुख निर्देशांक में जिलों (पंक्तियों) के साथ प्रदर्शित किया जा सकता है।

परंपरागत रूप से, सीए में फ्रांसीसी परंपरा से उत्पन्न, [20] प्रारंभिक सीए बाइप्लॉट्स ने दोनों संस्थाओं आमतौर पर प्रमुख निर्देशांक को एक ही समन्वय संस्करण में छायाचित्र किया, लेकिन इस प्रकार का प्रदर्शन भ्रामक है: हालांकि इसे बाइप्लॉट कहा जाता है, इसमें पंक्ति और स्तंभ अंक के बीच कोई उपयोगी आंतरिक उत्पाद संबंध नहीं है, जैसा कि आर पैकेज एमएएसएस के अनुरक्षक ब्रायन डी. रिप्ले ने सही ढंग से बताया है। [21] आज उस तरह के प्रदर्शन से बचना चाहिए क्योंकि आम लोगों को आमतौर पर दो बिंदु समुच्चयों के बीच के संबंध की कमी के बारे में पता नहीं होता है।

एक प्रवर्धन1 [17] बाइप्लॉट (प्रमुख निर्देशांक में पंक्तियाँ, मानक निर्देशांक में स्तंभ) की व्याख्या इस प्रकार की जाती है: [22]

  • पंक्ति बिंदुओं के बीच की दूरी उनकी ची-वर्ग दूरी का अनुमान लगाती है। एक दूसरे के निकट स्थित बिंदु मूल आंकड़े तालिका में बहुत समान मान वाली पंक्तियों का प्रतिनिधित्व करते हैं। यानी वे गिनती आंकड़ों के मामले में समान आवृत्तियों या उपस्थिति/अनुपस्थिति आंकड़ों के मामले में निकट से संबंधित बाइनरी मान प्रदर्शित कर सकते हैं।
  • मानक निर्देशांक में (स्तंभ) बिंदु सदिश स्थान के शीर्षों का प्रतिनिधित्व करते हैं यानी किसी चीज़ के बाहरी कोने का बहुआयामी अंतरिक्ष में एक अनियमित पॉलीहेड्रॉन का आकार होता है। परियोजना पंक्ति किसी स्तंभ के मूल और मानक निर्देशांक को जोड़ने वाली रेखा पर इंगित करती है; यदि उस संपर्क रेखा के साथ अनुमानित स्थिति मानक समन्वय की स्थिति के नज़दीक है, तो वह पंक्ति बिंदु दृढ़ता से इस स्तम्भ से जुड़ा हुआ है यानी गिनती आंकड़ों के मामले में पंक्ति में उस श्रेणी की उच्च आवृत्ति होती है और उपस्थिति/अनुपस्थिति आंकड़ों के मामले में पंक्ति उस स्तंभ में 1 प्रदर्शित करने की संभावना है। पंक्ति बिंदु जिनके प्रक्षेपण के लिए संपर्क रेखा को मूल से आगे बढ़ाने की आवश्यकता होगी, उस स्तंभ में औसत मान से कम है।

एक्सटेंशन और अनुप्रयोग

सीए के कई प्रकार उपलब्ध हैं, जिनमें डिट्रेंडेड पत्राचार विश्लेषण (डीसीए) और कैनोनिकल पत्राचार विश्लेषण (सीसीए) सम्मिलित हैं। उत्तरार्द्ध (सीसीए) का उपयोग तब किया जाता है जब जांच की गई संस्थाओं के बीच समानता के संभावित कारणों के बारे में जानकारी होती है। कई श्रेणीगत चरों तक पत्राचार विश्लेषण के विस्तार को एकाधिक पत्राचार विश्लेषण कहा जाता है। गुणात्मक चर (यानी, गुणात्मक आंकड़ों के लिए विभेदक विश्लेषण के समतुल्य) के आधार पर भेदभाव की समस्या के लिए पत्राचार विश्लेषण के अनुकूलन को विभेदक पत्राचार विश्लेषण या बैरीसेंट्रिक विभेदक विश्लेषण कहा जाता है।

सामाजिक विज्ञान में, पत्राचार विश्लेषण, और विशेष रूप से इसके विस्तार एकाधिक पत्राचार विश्लेषण, फ्रांसीसी समाजशास्त्री पियरे बॉर्डियू के आवेदन के माध्यम से फ्रांस के बाहर ज्ञात किया गया था। [23]


कार्यान्वयन

  • आंकड़े मानस दर्शन पद्धति ऑरेंज (सॉफ़्टवेयर) में मापदंड सम्मिलित है: orngCA।
  • सांख्यिकीय कार्यरचना भाषा आर (कार्यरचना भाषा) में कई पैकेज सम्मिलित हैं, जो (सरल सममित) पत्राचार विश्लेषण के लिए एक कार्य प्रदान करते हैं। R संकेत पद्धति [package_name::function_name] का उपयोग करते हुए पैकेज और संबंधित कार्य हैं: ade4::dudi.coa(), ca::ca() , ExPosition::epCA(), FactoMineR::CA(), MASS::corresp(), vegan::cca(). शुरुआती लोगों के लिए सबसे आसान तरीका है ca::ca() चूँकि एक विस्तृत पाठ्य पुस्तक है[24] उस पैकेज के साथ.
  • फ्रीवेयर पास्ट (पैलियोन्टोलॉजिकल सांख्यिकी)[25] मेनू मल्टीवेरिएट/ऑर्डिनेशन/कॉरेस्पोंडेंस (सीए) के माध्यम से (सरल सममित) पत्राचार विश्लेषण प्रदान करता है।

यह भी देखें

संदर्भ

  1. Dodge, Y. (2003) The Oxford Dictionary of Statistical Terms, OUP ISBN 0-19-850994-4
  2. Hirschfeld, H.O. (1935) "A connection between correlation and contingency", Proc. Cambridge Philosophical Society, 31, 520–524
  3. Benzécri, J.-P. (1973). L'Analyse des Données. Volume II. L'Analyse des Correspondances. Paris, France: Dunod.
  4. Beh, Eric; Lombardo, Rosaria (2014). पत्राचार विश्लेषण. सिद्धांत, अभ्यास और नई रणनीतियाँ. Chichester: Wiley. p. 120. ISBN 978-1-119-95324-1.
  5. Greenacre, Michael (2007). व्यवहार में पत्राचार विश्लेषण. Boca Raton: CRC Press. p. 204. ISBN 9781584886167.
  6. Legendre, Pierre; Legendre, Louis (2012). संख्यात्मक पारिस्थितिकी. Amsterdam: Elsevier. p. 465. ISBN 978-0-444-53868-0.
  7. Greenacre, Michael (1983). पत्राचार विश्लेषण का सिद्धांत और अनुप्रयोग. London: Academic Press. ISBN 0-12-299050-1.
  8. Greenacre, Michael (2007). Correspondence Analysis in Practice, Second Edition. London: Chapman & Hall/CRC.
  9. Greenacre, Michael (2017). व्यवहार में पत्राचार विश्लेषण (3rd ed.). Boca Raton: CRC Press. pp. 26–29. ISBN 9781498731775.
  10. 10.0 10.1 10.2 10.3 Greenacre, Michael (2007). व्यवहार में पत्राचार विश्लेषण. Boca Raton: CRC Press. p. 202. ISBN 9781584886167.
  11. Greenacre, Michael (1983). पत्राचार विश्लेषण का सिद्धांत और अनुप्रयोग. London: Academic Press. ISBN 0-12-299050-1.
  12. Greenacre, Michael (2007). अभ्यास में पत्राचार विश्लेषण, दूसरा संस्करण. London: Chapman & Hall/CRC. p. 202.
  13. Greenacre, Michael (2007). व्यवहार में पत्राचार विश्लेषण. Boca Raton: CRC Press. p. 202. ISBN 9781584886167.
  14. Abadir, Karim; Magnus, Jan (2005). मैट्रिक्स बीजगणित. Cambridge: Cambridge University Press. p. 24. ISBN 9786612394256.
  15. 15.0 15.1 Beh, Eric; Lombardo, Rosaria (2014). पत्राचार विश्लेषण. सिद्धांत, अभ्यास और नई रणनीतियाँ. Chichester: Wiley. pp. 87, 129. ISBN 978-1-119-95324-1.
  16. Beh, Eric; Lombardo, Rosaria (2014). पत्राचार विश्लेषण. सिद्धांत, अभ्यास और नई रणनीतियाँ. Chichester: Wiley. pp. 132–134. ISBN 978-1-119-95324-1.
  17. 17.0 17.1 17.2 Legendre, Pierre; Legendre, Louis (2012). संख्यात्मक पारिस्थितिकी. Amsterdam: Elsevier. p. 470. ISBN 978-0-444-53868-0.
  18. Greenacre, Michael (2017). व्यवहार में पत्राचार विश्लेषण (3rd ed.). Boca Raton: CRC Press. p. 62. ISBN 9781498731775.
  19. Blasius, Jörg (2001). पत्राचार विश्लेषण (in Deutsch). Berlin: Walter de Gruyter. pp. 40, 60. ISBN 9783486257304.
  20. Greenacre, Michael (2017). व्यवहार में पत्राचार विश्लेषण (3rd ed.). Boca Raton: CRC Press. p. 70. doi:10.1201/9781315369983. ISBN 9781498731775.
  21. Ripley, Brian (2022-01-13). "MASS R पैकेज मैनुअल". R Package Documentation (rdrr.io). Details. Retrieved 2022-03-17.
  22. Borcard, Daniel; Gillet, Francois; Legendre, Pierre (2018). आर के साथ संख्यात्मक पारिस्थितिकी (2nd ed.). Cham: Springer. p. 175. doi:10.1007/978-3-319-71404-2. ISBN 9783319714042.
  23. Bourdieu, Pierre (1984). भेद. Routledge. pp. 41. ISBN 0674212770.
  24. Greenacre, Michael (2021). व्यवहार में पत्राचार विश्लेषण (third ed.). London: CRC PRESS. ISBN 9780367782511.
  25. Hammer, Øyvind. "Past 4 - the Past of the Future". Archived from the original on 2020-11-01. Retrieved 2021-09-14.


बाहरी संबंध

  • Greenacre, Michael (2008), La Práctica del Análisis de Correspondencias, BBVA Foundation, Madrid, Spanish translation of Correspondence Analysis in Practice, available for free download from BBVA Foundation publications
  • Greenacre, Michael (2010), Biplots in Practice, BBVA Foundation, Madrid, available for free download at multivariatestatistics.org