वीनर श्रृंखला: Difference between revisions

From Vigyanwiki
No edit summary
Line 63: Line 63:
[[Category: Machine Translated Page]]
[[Category: Machine Translated Page]]
[[Category:Created On 25/07/2023]]
[[Category:Created On 25/07/2023]]
[[Category:Vigyan Ready]]

Revision as of 11:22, 8 August 2023

गणित में, वीनर श्रृंखला, या वीनर जी-फलनल विस्तार, नॉर्बर्ट वीनर की सत्र 1958 की पुस्तक से उत्पन्न हुआ है। यह गैर-रेखीय कार्यात्मक (गणित) के लिए ऑर्थोगोनल विस्तार है जो वोल्टेरा श्रृंखला से निकटता से संबंधित है और इसका ऑर्थोगोनल हर्माइट बहुपद विस्तार के समान संबंध है जो शक्ति श्रृंखला से संबंधित है। इस कारण इसे वीनर-हर्माइट विस्तार के रूप में भी जाना जाता है। गुणांकों के एनालॉग को वीनर कर्नेल कहा जाता है। श्वेत ध्वनि के सांख्यिकीय इनपुट के संबंध में श्रृंखला की शर्तें ऑर्थोगोनल (असंबद्ध) हैं। यह संपत्ति ली-शेटज़ेन विधि द्वारा अनुप्रयोगों में शर्तों को पहचानने की अनुमति देती है।

प्रणाली पहचान में वीनर श्रृंखला महत्वपूर्ण है। इस संदर्भ में, श्रृंखला किसी भी समय प्रणाली इनपुट के संपूर्ण इतिहास के साथ आउटपुट के कार्यात्मक संबंध का अनुमान लगाती है। वीनर श्रृंखला को अधिकतर जैविक प्रणालियों की पहचान के लिए प्रयुक्त किया गया है, विशेषकर तंत्रिका विज्ञान में।

वीनर श्रृंखला का नाम लगभग विशेष रूप से प्रणाली सिद्धांत में उपयोग किया जाता है। गणितीय साहित्य में यह इटो विस्तार (1951) के रूप में होता है जिसका भिन्न रूप है किन्तु यह पूरी तरह से इसके समकक्ष है।

वीनर श्रृंखला को विनीज़ फ़िल्टर के साथ भ्रमित नहीं किया जाना चाहिए, जो सिग्नल प्रोसेसिंग में उपयोग किए जाने वाले नॉर्बर्ट वीनर द्वारा विकसित और एल्गोरिदम है।

वीनर जी-कार्यात्मक अभिव्यक्ति

इनपुट/आउटपुट जोड़ी वाला प्रणाली दिया गया है जहां इनपुट शून्य माध्य मान और पावर ए के साथ सफेद ध्वनि है, हम प्रणाली के आउटपुट को वीनर जी-फलनल की श्रृंखला के योग के रूप में लिख सकते हैं

निम्नलिखित में पांचवें क्रम तक जी-फंक्शनल के भाव दिए जाएंगे:

यह भी देखें

संदर्भ

  • वीनर, नॉर्बर्ट (1958). यादृच्छिक सिद्धांत में अरेखीय समस्याएं. विली और एमआईटी प्रेस.
  • ली और शेटज़ेन; शेटज़ेन‡, एम. (1965). "क्रॉस-सहसंबंध द्वारा एक गैर-रेखीय प्रणाली के वीनर कर्नेल का मापन". नियंत्रण के अंतर्राष्ट्रीय जर्नल. पहला. 2 (3): 237–254. doi:10.1080/00207176508905543.
  • इटो के "ए मल्टीपल वीनर इंटीग्रल" जे. मैथ। समाज. जेपीएन. 3 1951 157-169
  • मार्मारेलिस, पी.जेड.; नाका, के. (1972). "न्यूरॉन श्रृंखला का श्वेत-शोर विश्लेषण: वीनर सिद्धांत का एक अनुप्रयोग". विज्ञान. 175 (4027): 1276–1278. doi:10.1126/science.175.4027.1276. PMID 5061252.
  • Schetzen, मार्टिन (1980). नॉनलाइनियर सिस्टम के वोल्टेरा और वीनर सिद्धांत. जॉन विली एंड संस. ISBN 978-0-471-04455-0.
  • मार्मारेलिस, पी.जेड. (1991). "नॉनलाइनियर फीडबैक का वीनर विश्लेषण". बायोमेडिकल इंजीनियरिंग के सेंसरी सिस्टम एनल्स. 19 (4): 345–382. doi:10.1007/BF02584316.
  • फ्रांज, एम; स्कोल्कोफ़, बी. (2006). "वीनर और वोल्टेरा सिद्धांत और बहुपद कर्नेल प्रतिगमन का एक एकीकृत दृष्टिकोण". तंत्रिका संगणना. 18 (12): 3097–3118. doi:10.1162/neco.2006.18.12.3097.
  • एल.ए. ज़ादेह नॉनलाइनियर ऑपरेटरों के प्रतिनिधित्व पर। आईआरई वेस्टकॉन रूपांतरण रिकॉर्ड भाग 2 1957 105-113।