संदृढ़ता आव्युह: Difference between revisions

From Vigyanwiki
(Created page with "{{Short description|Matrix used in finite element analysis}} {{For|the stiffness tensor in solid mechanics|Hooke's law#Matrix representation (stiffness tensor)}} अण्ड...")
 
No edit summary
Line 2: Line 2:
{{For|the stiffness tensor in solid mechanics|Hooke's law#Matrix representation (stiffness tensor)}}
{{For|the stiffness tensor in solid mechanics|Hooke's law#Matrix representation (stiffness tensor)}}


अण्डाकार [[आंशिक अंतर समीकरण]]ों के संख्यात्मक समाधान के लिए परिमित तत्व विधि में, कठोरता मैट्रिक्स एक [[मैट्रिक्स (गणित)]] है जो [[रैखिक समीकरणों की प्रणाली]] का प्रतिनिधित्व करता है जिसे अंतर समीकरण के अनुमानित समाधान का पता लगाने के लिए हल किया जाना चाहिए।
अण्डाकार [[आंशिक अंतर समीकरण]]ों के संख्यात्मक समाधान के लिए परिमित तत्व विधि में, कठोरता मैट्रिक्स [[मैट्रिक्स (गणित)]] है जो [[रैखिक समीकरणों की प्रणाली]] का प्रतिनिधित्व करता है जिसे अंतर समीकरण के अनुमानित समाधान का पता लगाने के लिए हल किया जाना चाहिए।


==[[पॉइसन समस्या]] के लिए कठोरता मैट्रिक्स==
==[[पॉइसन समस्या]] के लिए कठोरता मैट्रिक्स==
Line 8: Line 8:


:<math> -\nabla^2 u = f</math>
:<math> -\nabla^2 u = f</math>
कुछ डोमेन पर {{math|Ω}}, सीमा शर्त के अधीन {{math|1=''u'' = 0}} की सीमा पर {{math|Ω}}. परिमित तत्व विधि द्वारा इस समीकरण को अलग करने के लिए, कोई [[आधार कार्य]]ों का एक सेट चुनता है {{math|{''φ''{{sub|1}}, …, ''φ{{sub|n}}''} }} पर परिभाषित किया गया {{math|Ω}} जो सीमा पर लुप्त भी हो जाते हैं। फिर एक अनुमान लगाता है
कुछ डोमेन पर {{math|Ω}}, सीमा शर्त के अधीन {{math|1=''u'' = 0}} की सीमा पर {{math|Ω}}. परिमित तत्व विधि द्वारा इस समीकरण को अलग करने के लिए, कोई [[आधार कार्य]] का सेट चुनता है {{math|{''φ''{{sub|1}}, …, ''φ{{sub|n}}''} }} पर परिभाषित किया गया {{math|Ω}} जो सीमा पर लुप्त भी हो जाते हैं। फिर अनुमान लगाता है


:<math> u \approx u^h = u_1\varphi_1+\cdots+u_n\varphi_n.</math>
:<math> u \approx u^h = u_1\varphi_1+\cdots+u_n\varphi_n.</math>
Line 17: Line 17:


:<math> \mathbf A_{ij} = \int_{x \in \Omega} \nabla\varphi_i\cdot\nabla\varphi_j\, dx.</math>
:<math> \mathbf A_{ij} = \int_{x \in \Omega} \nabla\varphi_i\cdot\nabla\varphi_j\, dx.</math>
वेक्टर को परिभाषित करके {{math|'''F'''}}घटकों के साथ <math display="inline">\mathbf F_i = \int_\Omega\varphi_i f\,dx,</math> गुणांक {{mvar|u{{sub|i}}}}रेखीय प्रणाली द्वारा निर्धारित होते हैं {{math|1='''Au''' = '''F'''}}. कठोरता मैट्रिक्स [[सममित मैट्रिक्स]] है, अर्थात। {{math|1='''A'''{{sub|''ij''}} = '''A'''{{sub|''ji''}}}}, इसलिए इसके सभी [[eigenvalue]]s ​​​​वास्तविक हैं। इसके अलावा, यह एक सख्ती से [[सकारात्मक-निश्चित मैट्रिक्स]] है, ताकि सिस्टम {{math|1='''Au''' = '''F'''}} के पास हमेशा एक अनोखा समाधान होता है। (अन्य समस्याओं के लिए, ये अच्छी संपत्तियाँ खो जाएँगी।)
वेक्टर को परिभाषित करके {{math|'''F'''}}घटकों के साथ <math display="inline">\mathbf F_i = \int_\Omega\varphi_i f\,dx,</math> गुणांक {{mvar|u{{sub|i}}}}रेखीय प्रणाली द्वारा निर्धारित होते हैं {{math|1='''Au''' = '''F'''}}. कठोरता मैट्रिक्स [[सममित मैट्रिक्स]] है, अर्थात। {{math|1='''A'''{{sub|''ij''}} = '''A'''{{sub|''ji''}}}}, इसलिए इसके सभी [[eigenvalue]]s ​​​​वास्तविक हैं। इसके अलावा, यह सख्ती से [[सकारात्मक-निश्चित मैट्रिक्स]] है, ताकि सिस्टम {{math|1='''Au''' = '''F'''}} के पास हमेशा अनोखा समाधान होता है। (अन्य समस्याओं के लिए, ये अच्छी संपत्तियाँ खो जाएँगी।)


ध्यान दें कि कठोरता मैट्रिक्स डोमेन के लिए उपयोग किए गए कम्प्यूटेशनल ग्रिड और किस प्रकार के परिमित तत्व का उपयोग किया जाता है, इसके आधार पर भिन्न होगा। उदाहरण के लिए, जब टुकड़ेवार द्विघात परिमित तत्वों का उपयोग किया जाता है तो कठोरता मैट्रिक्स में टुकड़ेवार रैखिक तत्वों की तुलना में स्वतंत्रता की अधिक डिग्री होगी।
ध्यान दें कि कठोरता मैट्रिक्स डोमेन के लिए उपयोग किए गए कम्प्यूटेशनल ग्रिड और किस प्रकार के परिमित तत्व का उपयोग किया जाता है, इसके आधार पर भिन्न होगा। उदाहरण के लिए, जब टुकड़ेवार द्विघात परिमित तत्वों का उपयोग किया जाता है तो कठोरता मैट्रिक्स में टुकड़ेवार रैखिक तत्वों की तुलना में स्वतंत्रता की अधिक डिग्री होगी।


==अन्य समस्याओं के लिए कठोरता मैट्रिक्स==
=='''अन्य समस्याओं के लिए कठोरता मैट्रिक्स'''==
अन्य पीडीई के लिए कठोरता मैट्रिक्स का निर्धारण अनिवार्य रूप से एक ही प्रक्रिया का पालन करता है, लेकिन यह सीमा स्थितियों की पसंद से जटिल हो सकता है। अधिक जटिल उदाहरण के रूप में, [[अण्डाकार वक्र]] पर विचार करें
अन्य पीडीई के लिए कठोरता मैट्रिक्स का निर्धारण अनिवार्य रूप से ही प्रक्रिया का पालन करता है, लेकिन यह सीमा स्थितियों की पसंद से जटिल हो सकता है। अधिक जटिल उदाहरण के रूप में, [[अण्डाकार वक्र]] पर विचार करें


:<math> -\sum_{k,l}\frac{\partial}{\partial x_k}\left(a^{kl}\frac{\partial u}{\partial x_l}\right)= f</math>
:<math> -\sum_{k,l}\frac{\partial}{\partial x_k}\left(a^{kl}\frac{\partial u}{\partial x_l}\right)= f</math>
कहाँ <math displaystyle="inline">\mathbf A(x) = a^{kl}(x)</math> प्रत्येक बिंदु के लिए परिभाषित एक सकारात्मक-निश्चित मैट्रिक्स है {{mvar|x}} डोमेन में. हम रॉबिन सीमा शर्त लागू करते हैं
कहाँ <math displaystyle="inline">\mathbf A(x) = a^{kl}(x)</math> प्रत्येक बिंदु के लिए परिभाषित सकारात्मक-निश्चित मैट्रिक्स है {{mvar|x}} डोमेन में. हम रॉबिन सीमा शर्त लागू करते हैं


:<math> -\sum_{k,l}\nu_k a^{kl}\frac{\partial u}{\partial x_l} = c(u-g),</math>
:<math> -\sum_{k,l}\nu_k a^{kl}\frac{\partial u}{\partial x_l} = c(u-g),</math>
Line 31: Line 31:


:<math> \sum_j\left(\sum_{k,l}\int_\Omega a^{kl}\frac{\partial\varphi_i}{\partial x_k}\frac{\partial\varphi_j}{\partial x_l}dx+\int_{\partial\Omega}c\varphi_i\varphi_j\, ds\right)u_j = \int_\Omega\varphi_i f\, dx+\int_{\partial\Omega}c\varphi_i g\, ds,</math>
:<math> \sum_j\left(\sum_{k,l}\int_\Omega a^{kl}\frac{\partial\varphi_i}{\partial x_k}\frac{\partial\varphi_j}{\partial x_l}dx+\int_{\partial\Omega}c\varphi_i\varphi_j\, ds\right)u_j = \int_\Omega\varphi_i f\, dx+\int_{\partial\Omega}c\varphi_i g\, ds,</math>
जैसा कि ग्रीन की पहचान के एनालॉग का उपयोग करके दिखाया जा सकता है। गुणांक {{mvar|u{{sub|i}}}} अभी भी रैखिक समीकरणों की एक प्रणाली को हल करके पाए जाते हैं, लेकिन प्रणाली का प्रतिनिधित्व करने वाला मैट्रिक्स सामान्य पॉइसन समस्या से स्पष्ट रूप से भिन्न है।
जैसा कि ग्रीन की पहचान के एनालॉग का उपयोग करके दिखाया जा सकता है। गुणांक {{mvar|u{{sub|i}}}} अभी भी रैखिक समीकरणों की प्रणाली को हल करके पाए जाते हैं, लेकिन प्रणाली का प्रतिनिधित्व करने वाला मैट्रिक्स सामान्य पॉइसन समस्या से स्पष्ट रूप से भिन्न है।


सामान्य तौर पर, प्रत्येक अदिश अण्डाकार ऑपरेटर के लिए {{mvar|L}} आदेश की {{math|2''k''}}, एक [[द्विरेखीय रूप]] संबद्ध है {{mvar|B}} सोबोलेव क्षेत्र पर {{mvar|H{{sup|k}}}}, ताकि समीकरण का [[कमजोर सूत्रीकरण]] हो सके {{math|1=''Lu'' = ''f''}} है
सामान्य तौर पर, प्रत्येक अदिश अण्डाकार ऑपरेटर के लिए {{mvar|L}} आदेश की {{math|2''k''}}, [[द्विरेखीय रूप]] संबद्ध है {{mvar|B}} सोबोलेव क्षेत्र पर {{mvar|H{{sup|k}}}}, ताकि समीकरण का [[कमजोर सूत्रीकरण]] हो सके {{math|1=''Lu'' = ''f''}} है


:<math> B[u,v] = (f,v)</math>
:<math> B[u,v] = (f,v)</math>
Line 39: Line 39:


:<math> \mathbf A_{ij} = B[\varphi_j,\varphi_i].</math>
:<math> \mathbf A_{ij} = B[\varphi_j,\varphi_i].</math>
 
=='''कठोरता मैट्रिक्स की व्यावहारिक असेंबली'''==
 
कंप्यूटर पर परिमित तत्व विधि को लागू करने के लिए, किसी को पहले आधार कार्यों का सेट चुनना होगा और फिर कठोरता मैट्रिक्स को परिभाषित करने वाले इंटीग्रल्स की गणना करनी होगी। आमतौर पर, डोमेन {{math|Ω}} को जाल निर्माण के कुछ रूपों द्वारा विभेदित किया जाता है, जिसमें इसे गैर-अतिव्यापी त्रिभुज जाल या [[जाल के प्रकार]]ों में विभाजित किया जाता है, जिन्हें आम तौर पर तत्वों के रूप में जाना जाता है। फिर आधार कार्यों को प्रत्येक तत्व के भीतर कुछ क्रम के [[बहुपद]] और तत्व सीमाओं के पार निरंतर चुना जाता है। सबसे सरल विकल्प त्रिकोणीय तत्वों के लिए टुकड़ावार रैखिक फ़ंक्शन और आयताकार तत्वों के लिए टुकड़ावार द्विरेखीय हैं।
==कठोरता मैट्रिक्स की व्यावहारिक असेंबली==
कंप्यूटर पर परिमित तत्व विधि को लागू करने के लिए, किसी को पहले आधार कार्यों का एक सेट चुनना होगा और फिर कठोरता मैट्रिक्स को परिभाषित करने वाले इंटीग्रल्स की गणना करनी होगी। आमतौर पर, डोमेन {{math|Ω}} को जाल निर्माण के कुछ रूपों द्वारा विभेदित किया जाता है, जिसमें इसे गैर-अतिव्यापी त्रिभुज जाल या [[जाल के प्रकार]]ों में विभाजित किया जाता है, जिन्हें आम तौर पर तत्वों के रूप में जाना जाता है। फिर आधार कार्यों को प्रत्येक तत्व के भीतर कुछ क्रम के [[बहुपद]] और तत्व सीमाओं के पार निरंतर चुना जाता है। सबसे सरल विकल्प त्रिकोणीय तत्वों के लिए टुकड़ावार रैखिक फ़ंक्शन और आयताकार तत्वों के लिए टुकड़ावार द्विरेखीय हैं।


तत्व कठोरता मैट्रिक्स {{math|'''A'''<sup>[''k'']</sup>}}तत्व के लिए {{mvar|T{{sub|k}}}} मैट्रिक्स है
तत्व कठोरता मैट्रिक्स {{math|'''A'''<sup>[''k'']</sup>}}तत्व के लिए {{mvar|T{{sub|k}}}} मैट्रिक्स है
Line 49: Line 47:
अधिकांश मानों के लिए तत्व कठोरता मैट्रिक्स शून्य है {{mvar|i}} और {{mvar|j}}, जिसके लिए संबंधित आधार फ़ंक्शन शून्य हैं {{mvar|T{{sub|k}}}}. पूर्ण कठोरता मैट्रिक्स {{math|'''A'''}} तत्व कठोरता मैट्रिक्स का योग है। विशेष रूप से, उन आधार कार्यों के लिए जो केवल स्थानीय रूप से समर्थित हैं, कठोरता मैट्रिक्स [[विरल मैट्रिक्स]] है।
अधिकांश मानों के लिए तत्व कठोरता मैट्रिक्स शून्य है {{mvar|i}} और {{mvar|j}}, जिसके लिए संबंधित आधार फ़ंक्शन शून्य हैं {{mvar|T{{sub|k}}}}. पूर्ण कठोरता मैट्रिक्स {{math|'''A'''}} तत्व कठोरता मैट्रिक्स का योग है। विशेष रूप से, उन आधार कार्यों के लिए जो केवल स्थानीय रूप से समर्थित हैं, कठोरता मैट्रिक्स [[विरल मैट्रिक्स]] है।


आधार कार्यों के कई मानक विकल्पों के लिए, यानी त्रिकोणों पर टुकड़े-टुकड़े रैखिक आधार कार्यों के लिए, तत्व कठोरता मैट्रिक्स के लिए सरल सूत्र हैं। उदाहरण के लिए, टुकड़ों में रैखिक तत्वों के लिए, शीर्षों वाले एक त्रिभुज पर विचार करें {{math|(''x''{{sub|1}}, ''y''{{sub|1}})}}, {{math|(''x''{{sub|2}}, ''y''{{sub|2}})}}, {{math|(''x''{{sub|3}}, ''y''{{sub|3}})}}, और 2×3 मैट्रिक्स को परिभाषित करें
आधार कार्यों के कई मानक विकल्पों के लिए, यानी त्रिकोणों पर टुकड़े-टुकड़े रैखिक आधार कार्यों के लिए, तत्व कठोरता मैट्रिक्स के लिए सरल सूत्र हैं। उदाहरण के लिए, टुकड़ों में रैखिक तत्वों के लिए, शीर्षों वाले त्रिभुज पर विचार करें {{math|(''x''{{sub|1}}, ''y''{{sub|1}})}}, {{math|(''x''{{sub|2}}, ''y''{{sub|2}})}}, {{math|(''x''{{sub|3}}, ''y''{{sub|3}})}}, और 2×3 मैट्रिक्स को परिभाषित करें


:<math> \mathbf D = \left[\begin{matrix}x_3 - x_2 & x_1 - x_3 & x_2 - x_1 \\ y_3 - y_2 & y_1 - y_3 & y_2 - y_1\end{matrix}\right].</math>
:<math> \mathbf D = \left[\begin{matrix}x_3 - x_2 & x_1 - x_3 & x_2 - x_1 \\ y_3 - y_2 & y_1 - y_3 & y_2 - y_1\end{matrix}\right].</math>
Line 55: Line 53:


:<math> \mathbf A^{[k]} = \frac{\mathbf D^\mathsf{T} \mathbf D}{4\operatorname{area}(T)}.</math>
:<math> \mathbf A^{[k]} = \frac{\mathbf D^\mathsf{T} \mathbf D}{4\operatorname{area}(T)}.</math>
जब अंतर समीकरण अधिक जटिल होता है, मान लीजिए कि एक अमानवीय प्रसार गुणांक होता है, तो तत्व कठोरता मैट्रिक्स को परिभाषित करने वाले अभिन्न अंग का मूल्यांकन गॉसियन चतुर्भुज द्वारा किया जा सकता है।
जब अंतर समीकरण अधिक जटिल होता है, मान लीजिए कि अमानवीय प्रसार गुणांक होता है, तो तत्व कठोरता मैट्रिक्स को परिभाषित करने वाले अभिन्न अंग का मूल्यांकन गॉसियन चतुर्भुज द्वारा किया जा सकता है।


कठोरता मैट्रिक्स की स्थिति संख्या संख्यात्मक ग्रिड की गुणवत्ता पर दृढ़ता से निर्भर करती है। विशेष रूप से, परिमित तत्व जाल में छोटे कोण वाले त्रिकोण कठोरता मैट्रिक्स के बड़े eigenvalues ​​​​को प्रेरित करते हैं, जिससे समाधान की गुणवत्ता खराब हो जाती है।
कठोरता मैट्रिक्स की स्थिति संख्या संख्यात्मक ग्रिड की गुणवत्ता पर दृढ़ता से निर्भर करती है। विशेष रूप से, परिमित तत्व जाल में छोटे कोण वाले त्रिकोण कठोरता मैट्रिक्स के बड़े eigenvalues ​​​​को प्रेरित करते हैं, जिससे समाधान की गुणवत्ता खराब हो जाती है।

Revision as of 19:54, 4 August 2023

अण्डाकार आंशिक अंतर समीकरणों के संख्यात्मक समाधान के लिए परिमित तत्व विधि में, कठोरता मैट्रिक्स मैट्रिक्स (गणित) है जो रैखिक समीकरणों की प्रणाली का प्रतिनिधित्व करता है जिसे अंतर समीकरण के अनुमानित समाधान का पता लगाने के लिए हल किया जाना चाहिए।

पॉइसन समस्या के लिए कठोरता मैट्रिक्स

सरलता के लिए, हम पहले पॉइसन समस्या पर विचार करेंगे

कुछ डोमेन पर Ω, सीमा शर्त के अधीन u = 0 की सीमा पर Ω. परिमित तत्व विधि द्वारा इस समीकरण को अलग करने के लिए, कोई आधार कार्य का सेट चुनता है {φ1, …, φn} पर परिभाषित किया गया Ω जो सीमा पर लुप्त भी हो जाते हैं। फिर अनुमान लगाता है

गुणांक u1, u2, …, un निर्धारित किया जाता है ताकि सन्निकटन में त्रुटि प्रत्येक आधार फ़ंक्शन के लिए ऑर्थोगोनल हो φi:

कठोरता मैट्रिक्स है n-तत्व वर्ग मैट्रिक्स A द्वारा परिभाषित

वेक्टर को परिभाषित करके Fघटकों के साथ गुणांक uiरेखीय प्रणाली द्वारा निर्धारित होते हैं Au = F. कठोरता मैट्रिक्स सममित मैट्रिक्स है, अर्थात। Aij = Aji, इसलिए इसके सभी eigenvalues ​​​​वास्तविक हैं। इसके अलावा, यह सख्ती से सकारात्मक-निश्चित मैट्रिक्स है, ताकि सिस्टम Au = F के पास हमेशा अनोखा समाधान होता है। (अन्य समस्याओं के लिए, ये अच्छी संपत्तियाँ खो जाएँगी।)

ध्यान दें कि कठोरता मैट्रिक्स डोमेन के लिए उपयोग किए गए कम्प्यूटेशनल ग्रिड और किस प्रकार के परिमित तत्व का उपयोग किया जाता है, इसके आधार पर भिन्न होगा। उदाहरण के लिए, जब टुकड़ेवार द्विघात परिमित तत्वों का उपयोग किया जाता है तो कठोरता मैट्रिक्स में टुकड़ेवार रैखिक तत्वों की तुलना में स्वतंत्रता की अधिक डिग्री होगी।

अन्य समस्याओं के लिए कठोरता मैट्रिक्स

अन्य पीडीई के लिए कठोरता मैट्रिक्स का निर्धारण अनिवार्य रूप से ही प्रक्रिया का पालन करता है, लेकिन यह सीमा स्थितियों की पसंद से जटिल हो सकता है। अधिक जटिल उदाहरण के रूप में, अण्डाकार वक्र पर विचार करें

कहाँ प्रत्येक बिंदु के लिए परिभाषित सकारात्मक-निश्चित मैट्रिक्स है x डोमेन में. हम रॉबिन सीमा शर्त लागू करते हैं

कहाँ νk इकाई जावक सामान्य वेक्टर का घटक है ν में k-वीं दिशा. हल करने की प्रणाली है

जैसा कि ग्रीन की पहचान के एनालॉग का उपयोग करके दिखाया जा सकता है। गुणांक ui अभी भी रैखिक समीकरणों की प्रणाली को हल करके पाए जाते हैं, लेकिन प्रणाली का प्रतिनिधित्व करने वाला मैट्रिक्स सामान्य पॉइसन समस्या से स्पष्ट रूप से भिन्न है।

सामान्य तौर पर, प्रत्येक अदिश अण्डाकार ऑपरेटर के लिए L आदेश की 2k, द्विरेखीय रूप संबद्ध है B सोबोलेव क्षेत्र पर Hk, ताकि समीकरण का कमजोर सूत्रीकरण हो सके Lu = f है

सभी कार्यों के लिए v में Hk. फिर इस समस्या के लिए कठोरता मैट्रिक्स है

कठोरता मैट्रिक्स की व्यावहारिक असेंबली

कंप्यूटर पर परिमित तत्व विधि को लागू करने के लिए, किसी को पहले आधार कार्यों का सेट चुनना होगा और फिर कठोरता मैट्रिक्स को परिभाषित करने वाले इंटीग्रल्स की गणना करनी होगी। आमतौर पर, डोमेन Ω को जाल निर्माण के कुछ रूपों द्वारा विभेदित किया जाता है, जिसमें इसे गैर-अतिव्यापी त्रिभुज जाल या जाल के प्रकारों में विभाजित किया जाता है, जिन्हें आम तौर पर तत्वों के रूप में जाना जाता है। फिर आधार कार्यों को प्रत्येक तत्व के भीतर कुछ क्रम के बहुपद और तत्व सीमाओं के पार निरंतर चुना जाता है। सबसे सरल विकल्प त्रिकोणीय तत्वों के लिए टुकड़ावार रैखिक फ़ंक्शन और आयताकार तत्वों के लिए टुकड़ावार द्विरेखीय हैं।

तत्व कठोरता मैट्रिक्स A[k]तत्व के लिए Tk मैट्रिक्स है

अधिकांश मानों के लिए तत्व कठोरता मैट्रिक्स शून्य है i और j, जिसके लिए संबंधित आधार फ़ंक्शन शून्य हैं Tk. पूर्ण कठोरता मैट्रिक्स A तत्व कठोरता मैट्रिक्स का योग है। विशेष रूप से, उन आधार कार्यों के लिए जो केवल स्थानीय रूप से समर्थित हैं, कठोरता मैट्रिक्स विरल मैट्रिक्स है।

आधार कार्यों के कई मानक विकल्पों के लिए, यानी त्रिकोणों पर टुकड़े-टुकड़े रैखिक आधार कार्यों के लिए, तत्व कठोरता मैट्रिक्स के लिए सरल सूत्र हैं। उदाहरण के लिए, टुकड़ों में रैखिक तत्वों के लिए, शीर्षों वाले त्रिभुज पर विचार करें (x1, y1), (x2, y2), (x3, y3), और 2×3 मैट्रिक्स को परिभाषित करें

फिर तत्व कठोरता मैट्रिक्स है

जब अंतर समीकरण अधिक जटिल होता है, मान लीजिए कि अमानवीय प्रसार गुणांक होता है, तो तत्व कठोरता मैट्रिक्स को परिभाषित करने वाले अभिन्न अंग का मूल्यांकन गॉसियन चतुर्भुज द्वारा किया जा सकता है।

कठोरता मैट्रिक्स की स्थिति संख्या संख्यात्मक ग्रिड की गुणवत्ता पर दृढ़ता से निर्भर करती है। विशेष रूप से, परिमित तत्व जाल में छोटे कोण वाले त्रिकोण कठोरता मैट्रिक्स के बड़े eigenvalues ​​​​को प्रेरित करते हैं, जिससे समाधान की गुणवत्ता खराब हो जाती है।

संदर्भ

  • Ern, A.; Guermond, J.-L. (2004), Theory and Practice of Finite Elements, New York, NY: Springer-Verlag, ISBN 0387205748
  • Gockenbach, M.S. (2006), Understanding and Implementing the Finite Element Method, Philadelphia, PA: SIAM, ISBN 0898716144
  • Grossmann, C.; Roos, H.-G.; Stynes, M. (2007), Numerical Treatment of Partial Differential Equations, Berlin, Germany: Springer-Verlag, ISBN 978-3-540-71584-9
  • Johnson, C. (2009), Numemerical Solution of Partial Differential Equations by the Finite Element Method, Dover, ISBN 978-0486469003
  • Zienkiewicz, O.C.; Taylor, R.L.; Zhu, J.Z. (2005), The Finite Element Method: Its Basis and Fundamentals (6th ed.), Oxford, UK: Elsevier Butterworth-Heinemann, ISBN 978-0750663205