सिग्नल पुनर्निर्माण: Difference between revisions
No edit summary |
m (added Category:Vigyan Ready using HotCat) |
||
Line 49: | Line 49: | ||
[[Category: Machine Translated Page]] | [[Category: Machine Translated Page]] | ||
[[Category:Created On 25/07/2023]] | [[Category:Created On 25/07/2023]] | ||
[[Category:Vigyan Ready]] |
Revision as of 16:01, 9 August 2023
संकेत प्रोसेसिंग में, पुनर्निर्माण का कारण सामान्यतः समान दूरी वाले प्रतिरूपों के अनुक्रम से मूल निरंतर सिग्नल का निर्धारण होता है।
यह आलेख सिग्नल सैंपलिंग और पुनर्निर्माण के लिए सामान्यीकृत एब्स्ट्रेक्ट गणितीय दृष्टिकोण अपनाता है। बैंड-सीमित संकेतों पर आधारित अधिक व्यावहारिक दृष्टिकोण के लिए, व्हिटेकर-शैनन इंटरपोलेशन सूत्र देखें।
सामान्य सिद्धांत
मान लीजिए कि F कोई सैम्पलिंग विधि है, अर्थात वर्ग-अभिन्न फलनों के हिल्बर्ट समिष्ट से सम्मिश्र समिष्ट तक एक रेखीय मानचित्र हमारे उदाहरण में, सैंपलिंग संकेतों का सदिश समिष्ट n-आयामी सम्मिश्र समिष्ट है। F के किसी भी प्रस्तावित व्युत्क्रम R (पुनर्निर्माण सूत्र, भाषा में) को को के कुछ सबसेट में मैप करना होगा। हम इस उपसमुच्चय को अनैतिक रूप से से चुन सकते हैं, किन्तु यदि हम एक पुनर्निर्माण सूत्र आर चाहते हैं जो एक रैखिक मानचित्र भी है, तो हमें का एक n-आयामी रैखिक उपस्थान चुनना होगा
यह तथ्य कि आयामों को सहमत होना है, नाइक्विस्ट-शैनन सैम्पलिंग प्रमेय से संबंधित है।
प्राथमिक रैखिक बीजगणित दृष्टिकोण यहां कार्य करता है। मान लीजिए (kth प्रविष्टि को छोड़कर, जो कि एक है, सभी प्रविष्टियाँ शून्य हैं) या कोई अन्य आधार F के लिए व्युत्क्रम परिभाषित करने के लिए, बस प्रत्येक k के लिए n चुनें जिससे . यह विशिष्ट रूप से F के (छद्म-) व्युत्क्रम को परिभाषित करता है।
निस्संदेह, कोई पहले कुछ पुनर्निर्माण सूत्र चुन सकता है, फिर या तो पुनर्निर्माण सूत्र से कुछ सैंपलिंग एल्गोरिदम की गणना कर सकता है, या दिए गए सूत्र के संबंध में दिए गए सैंपलिंग एल्गोरिदम के व्यवहार का विश्लेषण कर सकता है।
सामान्यतः, पुनर्निर्माण सूत्र अपेक्षित त्रुटि विचरण को कम करके प्राप्त किया जाता है। इसके लिए आवश्यक है कि या तो सिग्नल आँकड़े ज्ञात हों या सिग्नल के लिए पूर्व संभावना निर्दिष्ट की जा सकती है। इस प्रकार सूचना क्षेत्र सिद्धांत इष्टतम पुनर्निर्माण सूत्र प्राप्त करने के लिए उपयुक्त गणितीय औपचारिकता है।[1]
लोकप्रिय पुनर्निर्माण सूत्र
संभवतः सबसे व्यापक रूप से इस्तेमाल किया जाने वाला पुनर्निर्माण सूत्र इस प्रकार है। मान लीजिए कि हिल्बर्ट समिष्ट अर्थ में का आधार है; उदाहरण के लिए, कोई ईकोनल का उपयोग कर सकता है
- ,
चूँकि अन्य विकल्प निश्चित रूप से संभव हैं। ध्यान दें कि यहाँ सूचकांक k कोई भी पूर्णांक हो सकता है, यहाँ तक कि ऋणात्मक भी होता है।
तब हम रेखीय मानचित्र R को परिभाषित कर सकते हैं
प्रत्येक के लिए , जहाँ का आधार है
(यह सामान्य असतत फूरियर आधार है।)
रेंज का चुनाव कुछ सीमा तक अनैतिक है, चूँकि यह आयामीता की आवश्यकता को पूरा करता है और सामान्य धारणा को दर्शाता है कि सबसे महत्वपूर्ण जानकारी कम आवृत्तियों में निहित है। कुछ स्थितियों में, यह गलत है, इसलिए अलग पुनर्निर्माण सूत्र चुनने की आवश्यक है।
हिल्बर्ट आधारों के अतिरिक्त तरंगिकाओं का उपयोग करके समान दृष्टिकोण प्राप्त किया जा सकता है। कई अनुप्रयोगों के लिए, सर्वोत्तम दृष्टिकोण आज भी स्पष्ट नहीं है।
यह भी देखें
- एलियासिंग
- नाइक्विस्ट-शैनन सैम्पलिंग प्रमेय
- व्हिटेकर-शैनन इंटरपोलेशन सूत्र
संदर्भ
- ↑ "सूचना क्षेत्र सिद्धांत". Max Planck Society. Retrieved 13 November 2014.