स्थिरता स्पेक्ट्रम: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
[[मॉडल सिद्धांत]] में, [[गणितीय तर्क]] की शाखा, पूर्ण सिद्धांत [[प्रथम-क्रम सिद्धांत]] T को λ (अनंत कार्डिनल संख्या) में स्थिर कहा जाता है, यदि आकार ≤ λ के प्रत्येक मॉडल के स्टोन [[संरचना (गणितीय तर्क)]] के आकार का ≤ λ है। T को '[[स्थिर सिद्धांत]]' कहा जाता है यदि कार्डिनल्स κ के लिए कोई ऊपरी सीमा नहीं है जैसे कि T, κ में स्थिर है। T का 'स्थिरता स्पेक्ट्रम' सभी कार्डिनल्स κ का वर्ग है जैसे कि T, κ में स्थिर है।
[[मॉडल सिद्धांत]] में, [[गणितीय तर्क]] की शाखा, पूर्ण सिद्धांत [[प्रथम-क्रम सिद्धांत]] T को λ (अनंत कार्डिनल संख्या) में स्थिर कहा जाता है, यदि आकार ≤ λ के प्रत्येक मॉडल के स्टोन [[संरचना (गणितीय तर्क)]] के आकार का ≤ λ है। T को '[[स्थिर सिद्धांत]]' कहा जाता है यदि कार्डिनल्स κ के लिए कोई ऊपरी सीमा नहीं है जैसे कि T, κ में स्थिर है। T का ''''स्थिरता स्पेक्ट्रम'''<nowiki/>' सभी कार्डिनल्स κ का वर्ग है जैसे कि T, κ में स्थिर है।


गणनीय सिद्धांतों के लिए केवल चार संभावित स्थिरता स्पेक्ट्रा हैं। संबंधित [[विभाजन रेखा (मॉडल सिद्धांत)]] पूर्ण रूप पारलौकिकता, [[सुपरस्टेबल सिद्धांत|अतिस्थिरता सिद्धांत]] और स्थिरता के लिए हैं। यह परिणाम [[सहारों शेलाह|सहरोन शेलाह]] के कारण है, जिन्होंने स्थिरता और सुपरस्टेबिलिटी को भी परिभाषित किया।
गणनीय सिद्धांतों के लिए केवल चार संभावित स्थिरता स्पेक्ट्रा हैं। संबंधित [[विभाजन रेखा (मॉडल सिद्धांत)]] पूर्ण रूप पारलौकिकता, [[सुपरस्टेबल सिद्धांत|अतिस्थिरता सिद्धांत]] और स्थिरता के लिए हैं। यह परिणाम [[सहारों शेलाह|सहरोन शेलाह]] के कारण है, जिन्होंने स्थिरता और सुपरस्टेबिलिटी को भी परिभाषित किया।
Line 14: Line 14:


=== पूर्णतः पारलौकिक सिद्धांत ===
=== पूर्णतः पारलौकिक सिद्धांत ===
{{main|Totally transcendental theory}}
{{main|पूर्णतः पारलौकिक सिद्धांत}}
पूर्ण प्रथम-क्रम सिद्धांत T को 'पूर्ण रूप से ट्रान्सेंडैंटल' कहा जाता है यदि प्रत्येक सूत्र ने [[मॉर्ले रैंक]] को सीमित कर दिया है, अर्थात यदि RM (φ) < ∞, प्रत्येक सूत्र φ (x) के लिए T के मॉडल में पैरामीटर के साथ जहां x चर का समूह हो सकता है। यह परीक्षण के लिए पर्याप्त है कि RM(x=x) < ∞, जहां x एकल चर है।
पूर्ण प्रथम-क्रम सिद्धांत T को 'पूर्ण रूप से ट्रान्सेंडैंटल' कहा जाता है यदि प्रत्येक सूत्र ने [[मॉर्ले रैंक]] को सीमित कर दिया है, अर्थात यदि RM (φ) < ∞, प्रत्येक सूत्र φ (x) के लिए T के मॉडल में पैरामीटर के साथ जहां x चर का समूह हो सकता है। यह परीक्षण के लिए पर्याप्त है कि RM(x=x) < ∞, जहां x एकल चर है।


Line 22: Line 22:


=== अतिस्थिर सिद्धांत ===
=== अतिस्थिर सिद्धांत ===
{{main|Superstable theory}}
{{main|अतिस्थिर सिद्धांत}}
पूर्ण प्रथम-क्रम सिद्धांत T सुपरस्टेबल है यदि पूर्ण प्रकारों पर रैंक फलन होता है जिसमें अनिवार्य रूप से पूर्ण रूप से ट्रान्सेंडैंटल सिद्धांत में मॉर्ले रैंक के समान गुण होते हैं। प्रत्येक पूर्णतः पारलौकिक सिद्धांत अतिस्थायी है। सिद्धांत T सुपरस्टेबल है यदि केवल यह सभी कार्डिनल्स λ ≥ 2<sup>|T|</sup> में स्थिर हैं।
 
पूर्ण प्रथम-क्रम सिद्धांत T अतिस्थिर है यदि पूर्ण प्रकारों पर रैंक फलन होता है जिसमें अनिवार्य रूप से पूर्ण रूप से ट्रान्सेंडैंटल सिद्धांत में मॉर्ले रैंक के समान गुण होते हैं। प्रत्येक पूर्णतः पारलौकिक सिद्धांत अतिस्थायी है। सिद्धांत T अतिस्थिर है यदि केवल यह सभी कार्डिनल्स λ ≥ 2<sup>|T|</sup> में स्थिर हैं।


=== स्थिर सिद्धांत ===
=== स्थिर सिद्धांत ===
{{main|Stable theory}}
{{main|स्थिर सिद्धांत}}
सिद्धांत जो कार्डिनल λ ≥ |T| में स्थिर है सभी कार्डिनल्स λ में स्थिर है जो λ = λ<sup>|T</sup> को संतुष्ट करते हैं, इसलिए सिद्धांत तभी स्थिर होता है जब वह कुछ कार्डिनल λ ≥ |T| में स्थिर होता है।
सिद्धांत जो कार्डिनल λ ≥ |T| में स्थिर है सभी कार्डिनल्स λ में स्थिर है जो λ = λ<sup>|T</sup> को संतुष्ट करते हैं, इसलिए सिद्धांत तभी स्थिर होता है जब वह कुछ कार्डिनल λ ≥ |T| में स्थिर होता है।



Revision as of 20:20, 3 August 2023

मॉडल सिद्धांत में, गणितीय तर्क की शाखा, पूर्ण सिद्धांत प्रथम-क्रम सिद्धांत T को λ (अनंत कार्डिनल संख्या) में स्थिर कहा जाता है, यदि आकार ≤ λ के प्रत्येक मॉडल के स्टोन संरचना (गणितीय तर्क) के आकार का ≤ λ है। T को 'स्थिर सिद्धांत' कहा जाता है यदि कार्डिनल्स κ के लिए कोई ऊपरी सीमा नहीं है जैसे कि T, κ में स्थिर है। T का 'स्थिरता स्पेक्ट्रम' सभी कार्डिनल्स κ का वर्ग है जैसे कि T, κ में स्थिर है।

गणनीय सिद्धांतों के लिए केवल चार संभावित स्थिरता स्पेक्ट्रा हैं। संबंधित विभाजन रेखा (मॉडल सिद्धांत) पूर्ण रूप पारलौकिकता, अतिस्थिरता सिद्धांत और स्थिरता के लिए हैं। यह परिणाम सहरोन शेलाह के कारण है, जिन्होंने स्थिरता और सुपरस्टेबिलिटी को भी परिभाषित किया।

गणनीय सिद्धांतों के लिए स्थिरता स्पेक्ट्रम प्रमेय

प्रमेय: प्रत्येक गणनीय पूर्ण प्रथम-क्रम सिद्धांत T निम्नलिखित वर्गों में से आता है:

  • T सभी अनंत कार्डिनल्स के लिए λ में स्थिर है λ—T पूर्ण रूप से पारलौकिक है।
  • T, λ ≥ 2ω के साथ सभी कार्डिनल λ के लिए λ में स्थिर है—T सुपरस्टेबल है किंतु पूर्ण रूप से ट्रान्सेंडैंटल नहीं है।
  • T उन सभी कार्डिनल्स के लिए λ में स्थिर है जो λ = λω को संतुष्ट करते हैं—T स्थिर है किंतु सुपरस्टेबल नहीं है।
  • T किसी अनंत कार्डिनल में स्थिर नहीं है λ—T अस्थिर है।

तीसरे स्तिथि में λ पर नियम λ = κω के रूप के कार्डिनल्स के लिए प्रारम्भ होती है, किंतु सहअंतिमता ω के कार्डिनल्स λ के लिए नहीं (क्योंकि λ<λcof λ) है।

पूर्णतः पारलौकिक सिद्धांत

पूर्ण प्रथम-क्रम सिद्धांत T को 'पूर्ण रूप से ट्रान्सेंडैंटल' कहा जाता है यदि प्रत्येक सूत्र ने मॉर्ले रैंक को सीमित कर दिया है, अर्थात यदि RM (φ) < ∞, प्रत्येक सूत्र φ (x) के लिए T के मॉडल में पैरामीटर के साथ जहां x चर का समूह हो सकता है। यह परीक्षण के लिए पर्याप्त है कि RM(x=x) < ∞, जहां x एकल चर है।

गणनीय सिद्धांतों के लिए कुल पारगमन ω में स्थिरता के समान है, और इसलिए गणनीय पूर्णतः पारलौकिक सिद्धांतों को संक्षिप्तता के लिए प्रायः 'ω-स्थिर' कहा जाता है। पूर्ण रूप से पारलौकिक सिद्धांत प्रत्येक λ ≥ |T| में स्थिर है, इसलिए गणनीय ω-स्थिर सिद्धांत सभी अनंत कार्डिनल्स में स्थिर है।

प्रत्येक मॉर्ले का श्रेणीबद्धता प्रमेय गणनीय सिद्धांत पूर्ण रूप से पारलौकिक है। इसमें वेक्टर रिक्त स्थान या बीजगणितीय रूप से संवृत क्षेत्रों के संपूर्ण सिद्धांत सम्मिलित हैं। परिमित मॉर्ले रैंक के समूह के सिद्धांत पूर्ण रूप से पारलौकिक सिद्धांतों का महत्वपूर्ण उदाहरण हैं।

अतिस्थिर सिद्धांत

पूर्ण प्रथम-क्रम सिद्धांत T अतिस्थिर है यदि पूर्ण प्रकारों पर रैंक फलन होता है जिसमें अनिवार्य रूप से पूर्ण रूप से ट्रान्सेंडैंटल सिद्धांत में मॉर्ले रैंक के समान गुण होते हैं। प्रत्येक पूर्णतः पारलौकिक सिद्धांत अतिस्थायी है। सिद्धांत T अतिस्थिर है यदि केवल यह सभी कार्डिनल्स λ ≥ 2|T| में स्थिर हैं।

स्थिर सिद्धांत

सिद्धांत जो कार्डिनल λ ≥ |T| में स्थिर है सभी कार्डिनल्स λ में स्थिर है जो λ = λ|T को संतुष्ट करते हैं, इसलिए सिद्धांत तभी स्थिर होता है जब वह कुछ कार्डिनल λ ≥ |T| में स्थिर होता है।

अस्थिर सिद्धांत

अधिकांश गणितीय रूप से लोकप्रिय सिद्धांत इस श्रेणी में आते हैं, जिनमें समिष्ट सिद्धांत जैसे कि जेडएफ समुच्चय सिद्धांत का कोई भी पूर्ण विस्तार और वास्तविक संवृत क्षेत्रों के सिद्धांत जैसे अपेक्षाकृत सरल सिद्धांत सम्मिलित हैं। इससे ज्ञात होता है कि स्थिरता स्पेक्ट्रम अपेक्षाकृत कुंद उपकरण है। कुछ सीमा तक उत्तम परिणाम प्राप्त करने के लिए कोई भी आकार ≤ λ के मॉडल पर स्टोन रिक्त समिष्ट की त्रुटिहीन कार्डिनैलिटी को देख सकता है, न कि केवल यह पूछने के अतिरिक्त कि क्या वे अधिकतम λ हैं।

अनकाउंटटेबल केस

संभवतः अनकाउंटटेबल सिद्धांत में सामान्य स्थिर सिद्धांत T के लिए, स्थिरता स्पेक्ट्रम दो कार्डिनल्स κ और λ0 द्वारा निर्धारित किया जाता है, जैसे कि T, λ में स्थिर होता है जब λ ≥ λ0 और λμ = λ सभी μ<κ के लिए होता है। तो λ0 सबसे छोटा अनंत कार्डिनल है जिसके लिए T स्थिर है। ये अपरिवर्तनीयताएँ असमानताओं को संतुष्ट करती हैं:

  • κ≤||T|+
  • κ ≤ λ0
  • λ0≤ 2|T|
  • यदि λ0>|T|, फिर λ0 ≥ 2ω

जब |T| गणनीय है, इसके स्थिरता स्पेक्ट्रम के लिए 4 संभावनाएँ इन कार्डिनल्स के निम्नलिखित मानों के अनुरूप हैं:

  • κ और λ0 परिभाषित नहीं हैं: T अस्थिर है।
  • λ0, 2ω है, κ ω1 है: T स्थिर है किंतु सुपरस्टेबल नहीं है
  • λ0 2ω है, κ ω है: T सुपरस्टेबल है किंतु ω-स्थिर नहीं है।
  • λ0 ω है, κ ω है: T पूर्णतः पारलौकिक (या ω-स्थिर) है।

यह भी देखें

संदर्भ

  • Poizat, Bruno (2000), A course in model theory. An introduction to contemporary mathematical logic, Universitext, New York: Springer, pp. xxxii+443, ISBN 0-387-98655-3, MR 1757487 Translated from the French
  • Shelah, Saharon (1990) [1978], Classification theory and the number of nonisomorphic models, Studies in Logic and the Foundations of Mathematics (2nd ed.), Elsevier, ISBN 978-0-444-70260-9